A Generalised Theory of Proportionality in Collective Decision Making

Piotr Skowron University of Warsaw

A set of *candidates* or *projects* C = {c₁, c₂, ..., c_m}.
A set of voters N = {1, 2, ..., n}.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter *i*.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter *i*.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter i.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter i.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter i.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter *i*.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter *i*.

3. The goal is to select a subset of candidates.

A subset of a given size k with diversity constraints.

L. E. Celis, L. Huang, and N. K. Vishnoi. Multiwinner voting with fairness constraints. IJCAI-2018.

R. Bredereck, P. Faliszewski, A. Igarashi, M. Lackner, and P. Skowron. Multiwinner elections with diversity constraints. AAAI-2018.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter i.

3. The goal is to select a subset of candidates.

For each pair, c_1 and c_2 , we introduce an auxiliary candidate $c_{1,2}$, whose selecting corresponds to ranking c_1 before c_2 .

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter i.

3. The goal is to select a subset of candidates.

Committee elections with negative votes

For each c we introduce an auxiliary candidate \overline{c} , whose selecting corresponds to not selecting c.

1. A set of *candidates* or *projects* $C = \{c_1, c_2, ..., c_m\}$.

2. A set of voters $N = \{1, 2, ..., n\}$.

 A_i : the set of projects approved by voter i.

For committee elections:

An \mathscr{C} -cohesive group: a group of voters $S \subseteq N$ is cohesive if

(1)
$$|S| \ge \ell \cdot n/k$$
, and (2) $|\bigcap A_i| \ge \ell$.

 $i \in S$

For committee elections:

An ℓ -cohesive group: a group of voters $S \subseteq N$ is cohesive if (1) $|S| \ge \ell \cdot n/k$, and (2) $|\bigcap_{i \in S} A_i| \ge \ell$.

k = 10

$$\begin{array}{c} c_3 \\ c_2 \\ c_1 \end{array}$$

1 2 3 4 5 6 7 8 9 10

For committee elections:

An ℓ -cohesive group: a group of voters $S \subseteq N$ is cohesive if

(1)
$$|S| \ge \ell \cdot n/k$$
, and (2) $|\bigcap_{i \in S} A_i| \ge \ell$.

Extended Justified Representation (EJR): an outcome W satisfies extended justified representation if for each ℓ -cohesive group of voters S it holds that:

there exists $i \in S$ such that $|A_i \cap W| \ge \ell$

k = 10

1 2 3 4 5 6 7 8 9 10

For committee elections:

Group S agrees on some ℓ candidates.

Group S agrees on some ℓ candidates. Do they deserve ℓ candidates?

Group S agrees on some ℓ candidates. Do they deserve ℓ candidates?

Selecting \mathscr{C} candidates supported by S might use "too many feasibility slots" and deprive the other voters, $N \setminus S$, from the set T that they like.

Group S agrees on some ℓ candidates. Do they deserve ℓ candidates?

Selecting \mathscr{C} candidates supported by S might use "too many feasibility slots" and deprive the other voters, $N \setminus S$, from the set T that they like.

$$\frac{\ell}{|S|} > \frac{|T|}{n - |S|}$$

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathcal{F}$ at least one of the following conditions hold:

Selecting ℓ candidates supported by S might use "too many feasibility slots" and deprive the other voters, $N \setminus S$, from the set T that they like.

$$\frac{\ell}{|S|} > \frac{|T|}{n - |S|}$$

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, $i \in S$

Selecting \mathscr{C} candidates supported by S might use "too many feasibility slots" and deprive the other voters, $N \setminus S$, from the set T that they like.

$$\frac{\ell}{|S|} > \frac{|T|}{n - |S|}$$

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

Selecting \mathscr{C} candidates supported by S might use "too many feasibility slots" and deprive the other voters, $N \setminus S$, from the set T that they like.

$$\frac{\ell}{|S|} > \frac{|T|}{n - |S|}$$

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

Example (committee elections):

Group S of 30% of voters, who approve 3 candidates; k = 10.

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

Example (committee elections):

Group S of 30% of voters, who approve 3 candidates; k = 10.

1. If $|T| \leq 7$ then we can add these 3 candidates and the set is feasible.

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

Example (committee elections):

Group S of 30% of voters, who approve 3 candidates; k = 10.

1. If $|T| \le 7$ then we can add these 3 candidates and the set is feasible. 2. If |T| > 7 then

$$\frac{|S|}{n} = 0.3 > \frac{3}{3 + |T|}$$

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathcal{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathcal{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

Example (committee elections with 50% of men and 50% of women):

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

Example (committee elections with 50% of men and 50% of women): Group *S* of 30% of voters, who approve 100 woman candidates; k = 100.

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

Example (committee elections with 50% of men and 50% of women): Group *S* of 30% of voters, who approve 100 woman candidates; k = 100.

The group S is entitled to 30% of 50 that is to 15 candidates. (The hardest T consists of 35 woman.)

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathcal{F}$ at least one of the following conditions hold:

1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

This definition implies:

1. EJR in the model of committee elections.

H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and T. Walsh. Justified representation in approval-based committee voting. Social Choice and Welfare. 2017.

2. Strong EJR in the model of sequential decision making.

N. Chandak, S. Goel, and D. Peters. Proportional aggregation of preferences for sequential decision making. 2023.

3. Proportionality for cohesive groups in the model of public decisions.

P. Skowron and A. Górecki. Proportional public decisions. AAAI-2022.

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or

We can use this idea to extend other notions of propotionality.

 $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

EJR ↓ PJR

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$,

2. Or

We can use this idea to extend other notions of propotionality.

 $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathcal{F}$ at least one of the following conditions hold:

1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathcal{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

We can use this idea to extend other notions of propotionality.

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathcal{F}$ at least one of the following conditions hold:

1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| = \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

We can use this idea to extend other notions of propotionality.

1. It implies the stronges known JR-notions in the more specific models.

2. Theorem: an outcome satisfying FJR always exists!

3. Theorem: PAV satisfies EJR if and only if \mathcal{F} is a matroid.

$$k = 12$$

k = 12						$t_4 = 2$								
<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆							<i>c</i> ₄	<i>C</i> ₅	<i>c</i> ₆	<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅		$t_3 = 1$			<i>c</i> ₃				
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂		$l_2 = 2/3$ $t_1 = 1/3$			c_2		<i>C</i> ₇	<i>C</i> ₈	<i>C</i> 9
	c_1		<i>C</i> ₇	<i>C</i> ₈	<i>c</i> ₉		$t_1 = 1/3$			c_1				
1	2	3	4	5	6		$\iota_0 = 0$		1	2	3	4	5	6

5. Theorem: Phragmen's Rule has the proportionality degree of $\frac{\ell-1}{2}$ if \mathscr{F} is a matroid.

5. Theorem: Phragmen's Rule has the proportionality degree of $\frac{\ell-1}{2}$ if \mathcal{F} is a matroid.

5. Theorem: Phragmen's Rule has the proportionality degree of $\frac{\ell-1}{2}$ if \mathcal{F} is a matroid.

6. Theorem: Stable priceability implies EJR if ${\mathcal F}$ is a matroid.

D. Peters, G. Pierczyński, N. Shah, and P. Skowron. Market-based explanations of collective decisions. I AAAI-2021.

- 1. It implies the stronges known JR-notions in the more specific models.
- 2. Theorem: an outcome satisfying FJR always exists!
- 3. Theorem: PAV satisfies EJR if and only if \mathcal{F} is a matroid.
- 4. Theorem: Phragmen's Rule has the proportionality degree of $\frac{\ell-1}{2}$ if $\mathcal F$ is a matroid.
- 5. Theorem: Phragmen's Rule satisfies PJR if and only if \mathcal{F} is a matroid.
- 6. Theorem: Stable priceability implies EJR if \mathcal{F} is a matroid.

The model is pretty well understood for matroid constrains.

The model is pretty well understood for matroid constrains.

A group of voters $S \subseteq N$ is ℓ -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with $|X| \ge \ell$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\ell}{|T| + \ell}$

The model is pretty well understood for matroid constrains.

When the candidates have weights

A group of voters $S \subseteq N$ is (α, β) -cohesive if for each feasible set $T \in \mathscr{F}$ at least one of the following conditions hold: 1. Either there exists $X \subseteq \bigcap_{i \in S} A_i$ with weight $(X) \le \alpha$ and $|X| \ge \beta$ s.t. $X \cup T \in \mathscr{F}$, 2. Or $\frac{|S|}{n} > \frac{\alpha}{\text{weight}(T) + \alpha}$

The model is pretty well understood for matroid constrains.

When the candidates have weights

Our results:

- 1. Phragmen's Rule provides a good approximation of PJR, yet it may fail PJR.
- 2. Stable-priceability implies a good approximation of EJR.

The model is pretty well understood for matroid constrains.

When the candidates have weights

Our results:

- 1. Phragmen's Rule provides a good approximation of PJR, yet it may fail PJR.
- 2. Stable-priceability implies a good approximation of EJR.

The model is pretty well understood for matroid constrains.

When the candidates have weights

Our results:

1. Phragmen's Rule provides a good approximation of PJR,

Summary

✓ New taxonomy of definitions of proportionality for the general model with constraints.

Summary

New taxonomy of definitions of proportionality for the general model with constraints.

✓ Quite well understood for matroids.

(PAV, Phragmen's Rule and stable priceability work well!)

Summary

- New taxonomy of definitions of proportionality for the general model with constraints.
- ✓ Quite well understood for matroids.
 - (PAV, Phragmen's Rule and stable priceability work well!)
- ✓ For **participatory budgeting** still many interesting questions.