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Single Transferrable Vote (STV)

Single Transferrable Vote (STV):

1.

If there exists a candidate ranked first by at
least n/k voters, take this candidate to the
committee, remove this candidate from the
election, and remove some of her n/k
supporters (voters who rank her first).

Otherwise, remove the candidate with the
lowest plurality score.
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Single Transferrable Vote (STV):

1.

If there exists a candidate ranked first by at
least n/k voters, take this candidate to the
committee, remove this candidate from the
election, and remove some of her n/k
supporters (voters who rank her first).

Otherwise, remove the candidate with the
lowest plurality score.
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Single Transferrable Vote (STV)

Single Transferrable Vote (STV):

1.

2.

If there exists a candidate ranked first by at

least n/k voters, take this candidate to the
committee, remove this candidate from the

election, and remove some of her n/k
supporters (voters who rank her first).

Otherwise, remove the candidate with the

lowest plurality score.
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Single Transferrable Vote (STV)

Single Transferrable Vote (STV):

1.

2.

If there exists a candidate ranked first by at
least n/k voters, take this candidate to the
committee, remove this candidate from the
election, and remove some of her n/k
supporters (voters who rank her first).

Otherwise, remove the candidate with the
lowest plurality score.
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Single Transferrable Vote (STV):

1. If there exists a candidate ranked first by at
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election, and remove some of her n/k
supporters (voters who rank her first).
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lowest plurality score.
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Single Transferrable Vote (STV)

Single Transferrable Vote (STV):

1. If there exists a candidate ranked first by at

least n/k voters, take this candidate to the
committee, remove this candidate from the

election, and remove some of her n/k
supporters (voters who rank her first).

. Otherwise, remove the candidate with the
lowest plurality score.
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Single Transferrable Vote (STV):
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Single Transferrable Vote (STV)

Single Transferrable Vote (STV):

1.

2.

If there exists a candidate ranked first by at
least n/k voters, take this candidate to the
committee, remove this candidate from the
election, and remove some of her n/k
supporters (voters who rank her first).
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STV for 2-Euclidean Preferences
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STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).
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Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).
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STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).
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STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).
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STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for
each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset
of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).
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STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for
each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset
of candidates 7 such that 7" >, C\T for all i € S, it holds that:

IWNT|>min(Z, |T|).
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STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).
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STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).

Theorem: STV satisfies proportionality for solid coalitions.
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IWNT|>min(Z, |T|).

Theorem: STV satisfies proportionality for solid coalitions.

Proof: Induction on Z. Assume it holds for £ < r, and show it holds for £ = r.
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Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for
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Take S C N with | S| > n/kand T such that T >; C\T forall i € S.



STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).

Theorem: STV satisfies proportionality for solid coalitions.

Proof: Induction on Z. Assume it holds for £ < r, and show it holds for £ = r.
Take S C N with | S| > n¢/kand T such that T >; C\T forall i € S.

If there is ¢ € T ranked first by at least n/k voters, then take c to the
committee, and remove n/k voters from S. The new group S’ and the new

set 7" will satisfy premises and so, by induction hypothesis:
IWNT|>min(Z—-1,|T'|)



STV and Proportionality for Solid Coalitions

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for

each £ € [k], each subset of voters S C N with | S| > nZ/k and each subset

of candidates 7 such that 7" >, C\T for all i € S, it holds that:
IWNT|>min(Z, |T|).

Theorem: STV satisfies proportionality for solid coalitions.

Proof: Induction on Z. Assume it holds for £ < r, and show it holds for £ = r.
Take S C N with | S| > n¢/kand T such that T >; C\T forall i € S.

If there is ¢ € T ranked first by at least n/k voters, then take c to the

committee, and remove n/k voters from S. The new group S’ and the new

set 7" will satisfy premises and so, by induction hypothesis:
IWNT|>minlZ—-1,|T|)

If we remove candidate ¢ € T then still 7" contains at least £ candidates

(and so, the thesis for T" will imply the thesis for 7).



STV and monotonicity

Consider STV in this example:

o Candidate A will be eliminated first.
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STV and monotonicity

Consider STV in this example:

o Candidate A will be eliminated first.
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STV and monotonicity

Consider STV in this example:
« Candidate A will be eliminated first.
« Candidate B will be eliminated next, and so candidate C wins the

election!
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« Candidate B will be eliminated next, and so candidate C wins the

election!
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STV and monotonicity

Consider STV in this example:

What happens if the last two voters increase their support for C?
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STV and monotonicity

Consider STV in this example:

What happens if the last two voters increase their support for C?
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Consider STV in this example:
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STV and monotonicity

Consider STV in this example:

e Candidate B will be eliminated first.

What happens if the last two voters increase their support for C?
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STV and monotonicity

Consider STV in this example:

e Candidate B will be eliminated first.

What happens if the last two voters increase their support for C?
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Consider STV in this example:

e Candidate B will be eliminated first.
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STV and monotonicity

Consider STV in this example:
« Candidate B will be eliminated first.
« Candidate C will be eliminated next, and so candidate A wins the

election!

What happens if the last two voters increase their support for C?
5 6 4
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STV and monotonicity

Monotonicity: if a voter pushes a winning candidate up in her ranking, then

this candidate should still be winning.
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STV and monotonicity

Monotonicity: if a voter pushes a winning candidate up in her ranking, then

this candidate should still be winning.

STV is non-monotonic!
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STV and monotonicity

Open question: Is there a rule that satisfies proportionality for solid
coalitions and monotonicity?



The Monroe rule
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The Monroe rule

Define the score for a committee: g E
Find the best assignment of voters to
committee members so that:

Each committee member is assigned
to roughly n/k voters.
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The Monroe rule

Define the score for a committee: g E
Find the best assignment of voters to
committee members so that:

Each committee member is assigned
to roughly n/k voters.

This assignment has score:
3+46:-4+1=28
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The Monroe rule

Define the score for a committee: g E
Find the best assignment of voters to
committee members so that:

Each committee member is assigned
to roughly n/k voters.
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The Monroe rule

Define the score for a committee: g a

Find the best assignment of voters to
committee members so that:

Each committee member is assigned
to roughly n/k voters.

This would be a better
assignment with score of 30.
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The Monroe rule

Define the score for a committee: g E

Find the best assignment of voters to
committee members so that:

Each committee member is assigned
to roughly n/k voters.

This would be a better
assignment with score of 30.

But this assighment is unbalanced
and so it is not valid!
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The Monroe rule

Define the score for a committee: g E

Find the best assignment of voters to
committee members so that:

Each committee member is assigned
to roughly n/k voters.

A committee with the best
optimal valid assignment is
winning.
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters
from G from the election.
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters
from G from the election.

Fork = 2:
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters
from G from the election.
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters
from G from the election.

Fork = 2:
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters

from G from the election.

Fork = 2:
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters

from G from the election.

Fork = 2:
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters
from G from the election.

Fork = 2:
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The Greedy Monroe rule

Repeat k times:

1. Find a group G of n/k voters and a
candidate ¢ such that the score of
voters from G from ¢ is maximal.

2. Remove candidate ¢ and the voters
from G from the election.
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Monroe for 2-Euclidean Preferences

uniform on : : uniform on
_ Gaussian 4 Gaussians
a circle a square
*
® $ >
*
| |
= = — & H—
*
LA 5
| |
| o |
) ‘o. J . | ) 3
[ ] .‘ e [ ] o [ T
MR KA. A RS X K. Rk, o e e o
» X Jee® ° o .®



Greedy Monroe for 2-Euclidean Preferences
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2-Euclidean Preferences: comparison
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How Good is the Greedy Monroe Rule?
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How Good is the Greedy Monroe Rule?
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How Good is the Greedy Monroe Rule?
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How Good is the Greedy Monroe Rule?
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How Good is the Greedy Monroe Rule?
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How Good is the Greedy Monroe Rule?
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Okay, but is it really a good result?
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