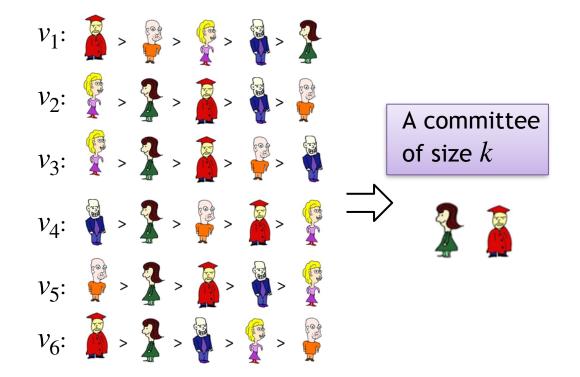
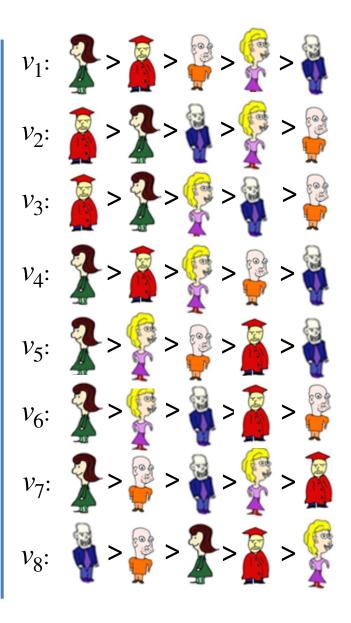
Proportional Algorithms: Rankings

Piotr Skowron

University of Warsaw

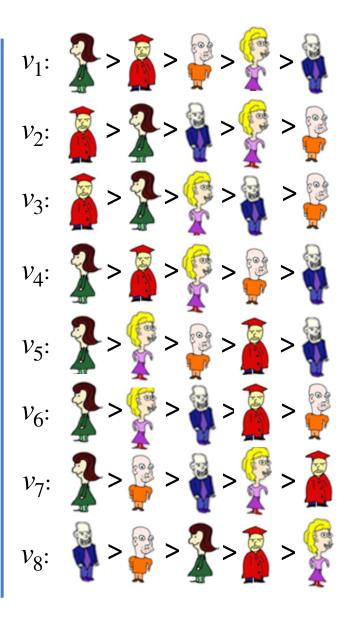


- If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.



- If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.

For
$$k = 2$$
:

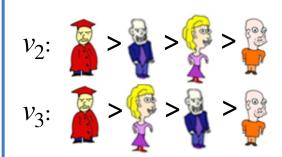


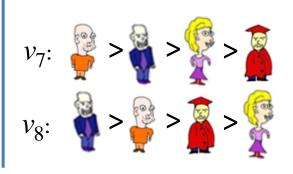
- 1. If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.

For
$$k = 2$$
:

- 1. If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.

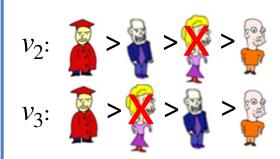
For
$$k = 2$$
:

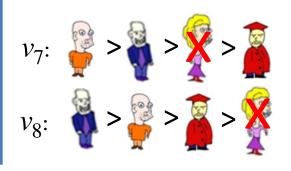




- If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.

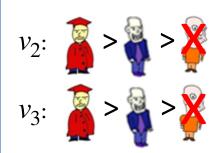
For
$$k = 2$$
:

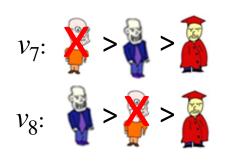




- If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.

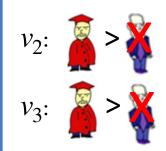
For
$$k = 2$$
:

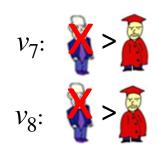




- If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- Otherwise, remove the candidate with the lowest plurality score.

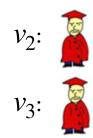
For
$$k = 2$$
:





- If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.

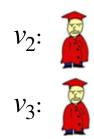
For
$$k = 2$$
:

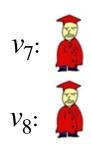




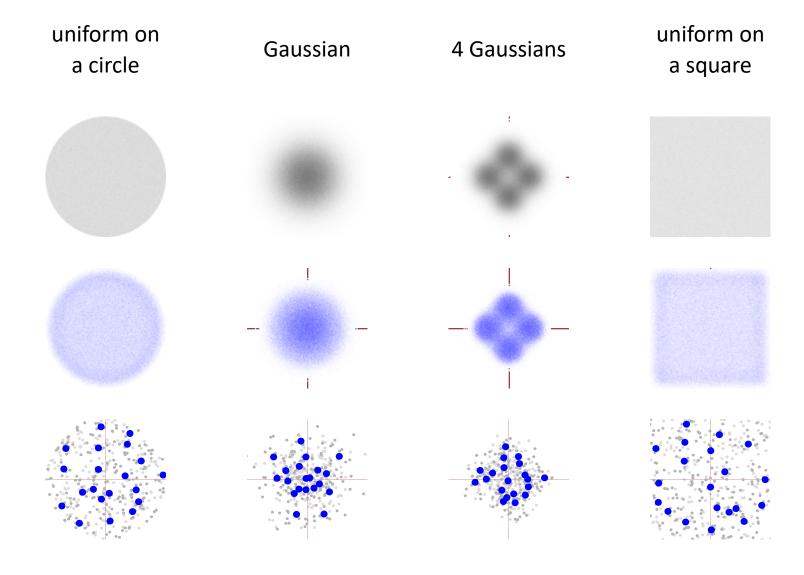
- 1. If there exists a candidate ranked first by at least n/k voters, take this candidate to the committee, remove this candidate from the election, and remove some of her n/k supporters (voters who rank her first).
- 2. Otherwise, remove the candidate with the lowest plurality score.

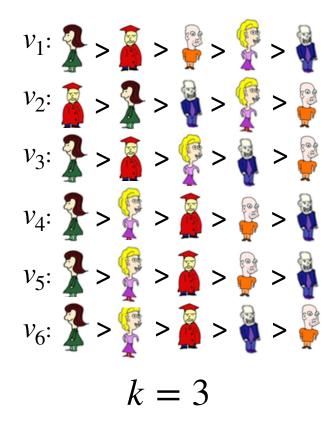
For
$$k = 2$$
:

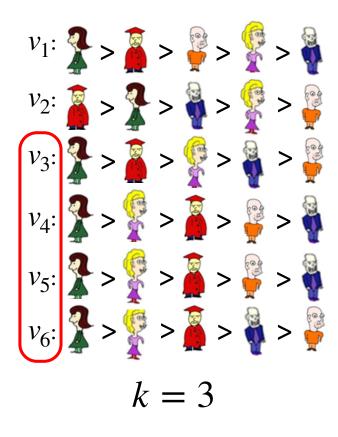


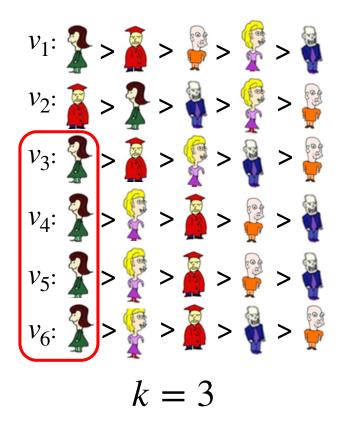


STV for 2-Euclidean Preferences

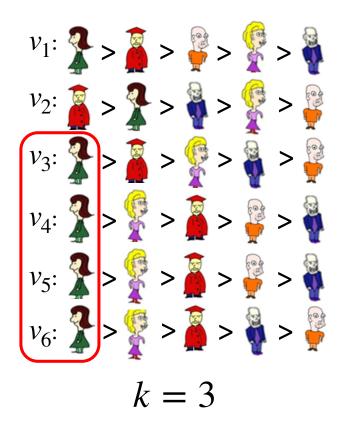






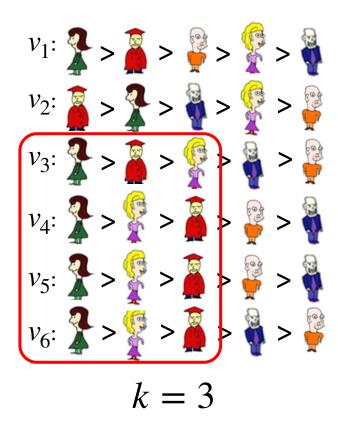


Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for each $\ell \in [k]$, each subset of voters $S \subseteq N$ with $|S| \ge n\ell/k$ and each subset of candidates T such that $T \succ_i C \setminus T$ for all $i \in S$, it holds that: $|W \cap T| \ge \min(\ell, |T|).$

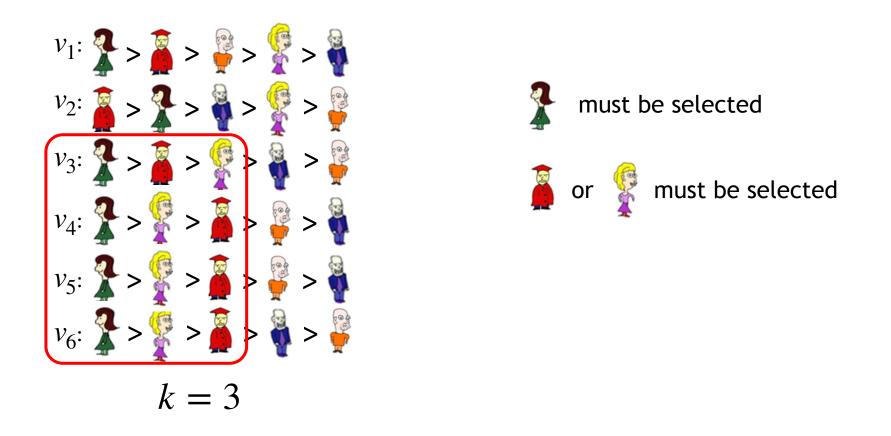


must be selected

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for each $\ell \in [k]$, each subset of voters $S \subseteq N$ with $|S| \ge n\ell/k$ and each subset of candidates T such that $T \succ_i C \setminus T$ for all $i \in S$, it holds that: $|W \cap T| \ge \min(\ell, |T|).$



must be selected



Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for each $\ell \in [k]$, each subset of voters $S \subseteq N$ with $|S| \ge n\ell/k$ and each subset of candidates T such that $T \succ_i C \setminus T$ for all $i \in S$, it holds that: $|W \cap T| \ge \min(\ell, |T|).$

Theorem: STV satisfies proportionality for solid coalitions.

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for each $\ell \in [k]$, each subset of voters $S \subseteq N$ with $|S| \ge n\ell/k$ and each subset of candidates T such that $T \succ_i C \setminus T$ for all $i \in S$, it holds that: $|W \cap T| \ge \min(\ell, |T|).$

Theorem: STV satisfies proportionality for solid coalitions.

Proof: Induction on ℓ . Assume it holds for $\ell < r$, and show it holds for $\ell = r$.

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for each $\ell \in [k]$, each subset of voters $S \subseteq N$ with $|S| \ge n\ell/k$ and each subset of candidates T such that $T \succ_i C \setminus T$ for all $i \in S$, it holds that: $|W \cap T| \ge \min(\ell, |T|).$

Theorem: STV satisfies proportionality for solid coalitions.

Proof: Induction on ℓ . Assume it holds for $\ell < r$, and show it holds for $\ell = r$.

Take $S \subseteq N$ with $|S| \ge n\ell/k$ and T such that $T \succ_i C \setminus T$ for all $i \in S$.

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for each $\ell \in [k]$, each subset of voters $S \subseteq N$ with $|S| \ge n\ell/k$ and each subset of candidates T such that $T \succ_i C \setminus T$ for all $i \in S$, it holds that: $|W \cap T| \ge \min(\ell, |T|).$

Theorem: STV satisfies proportionality for solid coalitions.

Proof: Induction on ℓ . Assume it holds for $\ell < r$, and show it holds for $\ell = r$.

Take $S \subseteq N$ with $|S| \ge n\ell/k$ and T such that $T \succ_i C \setminus T$ for all $i \in S$.

If there is $c \in T$ ranked first by at least n/k voters, then take c to the committee, and remove n/k voters from S. The new group S' and the new set T' will satisfy premises and so, by induction hypothesis: $|W' \cap T'| \ge \min(\ell - 1, |T'|)$

Proportionality for Solid Coalitions (PSC). An outcome W satisfies PSC if for each $\ell \in [k]$, each subset of voters $S \subseteq N$ with $|S| \ge n\ell/k$ and each subset of candidates T such that $T \succ_i C \setminus T$ for all $i \in S$, it holds that: $|W \cap T| \ge \min(\ell, |T|).$

Theorem: STV satisfies proportionality for solid coalitions.

Proof: Induction on ℓ . Assume it holds for $\ell < r$, and show it holds for $\ell = r$.

Take $S \subseteq N$ with $|S| \ge n\ell/k$ and T such that $T \succ_i C \setminus T$ for all $i \in S$.

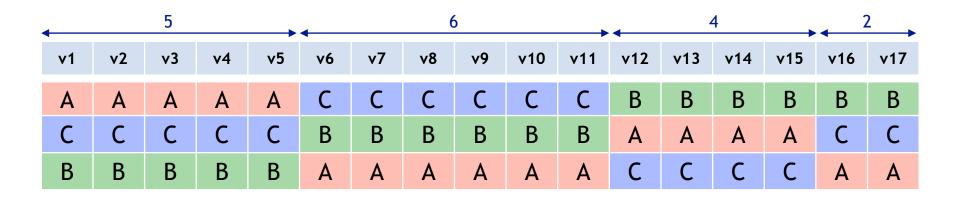
If there is $c \in T$ ranked first by at least n/k voters, then take c to the committee, and remove n/k voters from S. The new group S' and the new set T' will satisfy premises and so, by induction hypothesis:

 $|W' \cap T'| \ge \min(\ell - 1, |T'|)$

If we remove candidate $c \in T$ then still T' contains at least ℓ' candidates (and so, the thesis for T' will imply the thesis for T).

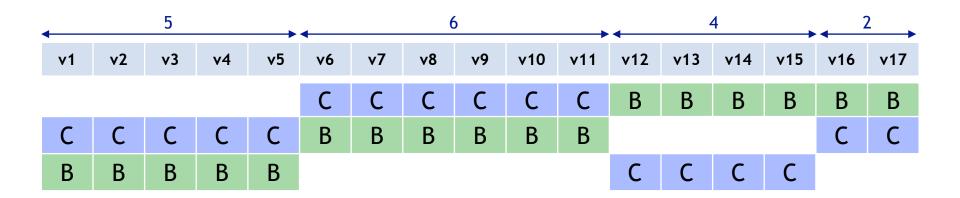
Consider STV in this example:

• Candidate A will be eliminated first.



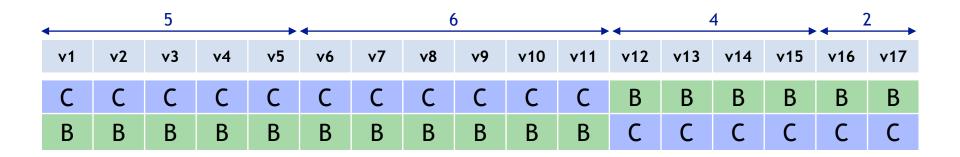
Consider STV in this example:

• Candidate A will be eliminated first.



Consider STV in this example:

• Candidate A will be eliminated first.



Consider STV in this example:

- Candidate A will be eliminated first.
- Candidate B will be eliminated next, and so candidate C wins the election!

•		5			•			6			•		4	2		
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17
С	С	С	С	С	С	С	С	С	С	С	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	С	С	С	С	С	С

Consider STV in this example:

- Candidate A will be eliminated first.
- Candidate B will be eliminated next, and so candidate C wins the election!

•		5			•		6	5			-		4	2		
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17
С	С	С	С	С	С	С	С	С	С	С	В	В	В	В	В	В
В	В	В	В	В	В	В	В	В	В	В	С	С	С	С	С	С

Consider STV in this example:

—		5			<		e	6			•			2		
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17
Α	Α	Α	А	Α	С	С	С	С	С	С	В	В	В	В	В	В
С	С	С	С	С	В	В	В	В	В	В	Α	Α	Α	Α	С	С
В	В	В	В	В	Α	А	А	А	А	А	С	С	С	С	А	Α

Consider STV in this example:

•		5			•		6	ò			•		4	•		2
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17
Α	Α	Α	Α	Α	С	С	С	С	С	С	В	В	В	В	В	В
С	С	С	С	С	В	В	В	В	В	В	Α	Α	Α	Α	С	С
В	В	В	В	В	Α	А	А	Α	Α	Α	С	С	С	С	Α	А

Consider STV in this example:

•		5			•		6	ò			•		4	•		2
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17
Α	Α	Α	Α	Α	С	С	С	С	С	С	В	В	В	В	С	C
С	С	С	С	С	В	В	В	В	В	В	Α	Α	Α	Α	В	В
В	В	В	В	В	Α	Α	Α	Α	А	Α	С	С	С	С	Α	А

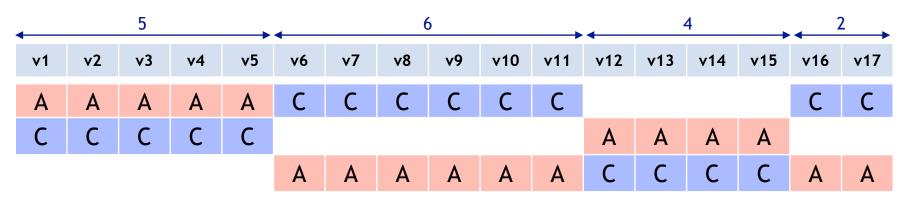
Consider STV in this example:

• Candidate B will be eliminated first.

<		5			<		(6			-			2		
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17
Α	А	Α	Α	А	С	С	С	С	С	С	В	В	В	В	С	С
C	С	С	С	С	В	В	В	В	В	В	Α	Α	Α	Α	В	В
В	В	В	В	В	Α	А	А	А	Α	А	С	С	С	С	А	Α

Consider STV in this example:

• Candidate B will be eliminated first.



Consider STV in this example:

• Candidate B will be eliminated first.

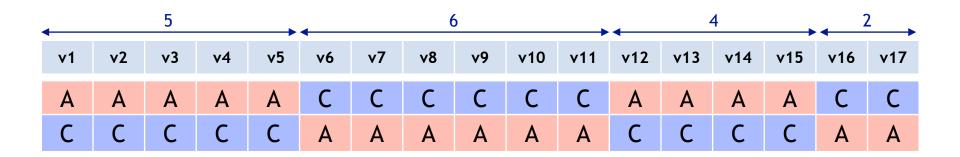
		5			▲		e	6			•		4		2		
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17	
Α	Α	А	Α	Α	С	С	С	С	С	С	Α	А	Α	А	С	С	
С	С	С	С	С	Α	Α	Α	Α	Α	Α	С	С	С	С	Α	Α	

Consider STV in this example:

- Candidate B will be eliminated first.
- Candidate C will be eliminated next, and so candidate A wins the election!

•		5			<		6	5			•		4			2
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17
Α	А	А	Α	А	С	С	С	С	С	С	Α	А	Α	А	С	С
С	С	С	С	С	Α	Α	Α	А	Α	Α	С	С	С	С	Α	А

Monotonicity: if a voter pushes a winning candidate up in her ranking, then this candidate should still be winning.



STV and monotonicity

Monotonicity: if a voter pushes a winning candidate up in her ranking, then this candidate should still be winning.

STV is non-monotonic!

5					•	6					4				2		
v1	v2	v3	v4	v5	v6	v7	v8	v9	v10	v11	v12	v13	v14	v15	v16	v17	
Α	Α	Α	Α	Α	С	С	С	С	С	С	Α	Α	Α	А	С	С	
С	С	С	С	С	Α	Α	Α	Α	А	Α	С	С	С	С	Α	Α	

STV and monotonicity

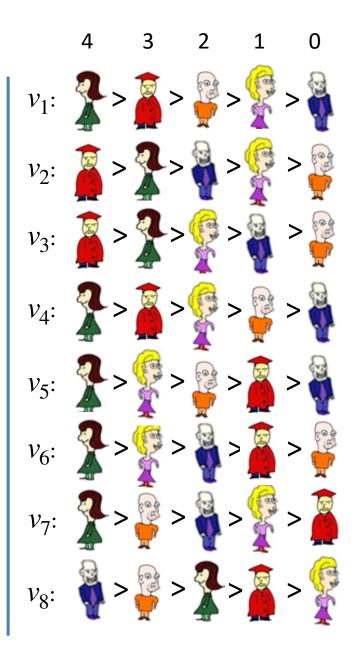
Open question: Is there a rule that satisfies proportionality for solid coalitions and monotonicity?

Define the score for a committee:

1

Find the **best** assignment of voters to committee members so that:

Each committee member is assigned to roughly n/k voters.

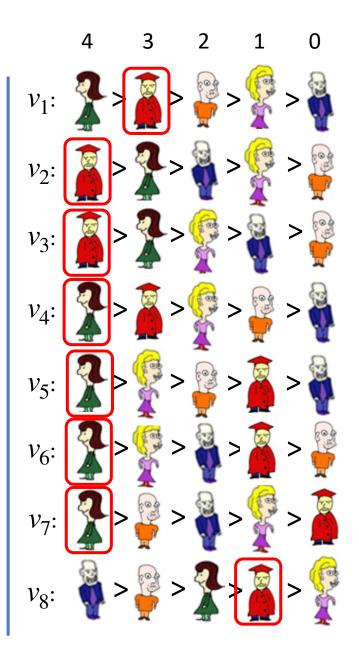


Define the score for a committee:

1

Find the **best** assignment of voters to committee members so that:

Each committee member is assigned to roughly n/k voters.



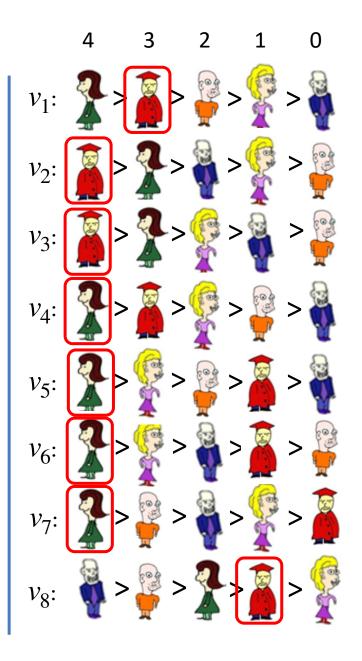
Define the score for a committee:

2

Find the **best** assignment of voters to committee members so that:

Each committee member is assigned to roughly n/k voters.

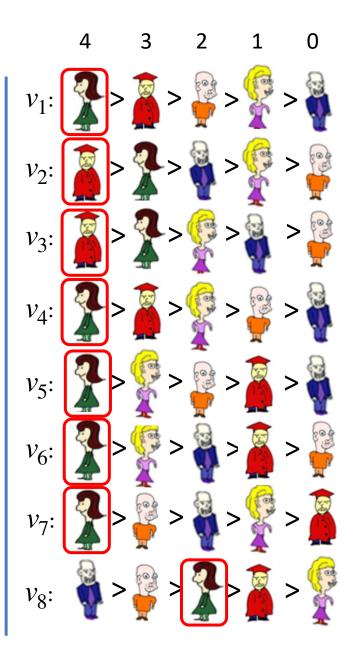
This assignment has score: $3 + 6 \cdot 4 + 1 = 28$



Define the score for a committee:

Find the **best** assignment of voters to committee members so that:

Each committee member is assigned to roughly n/k voters.

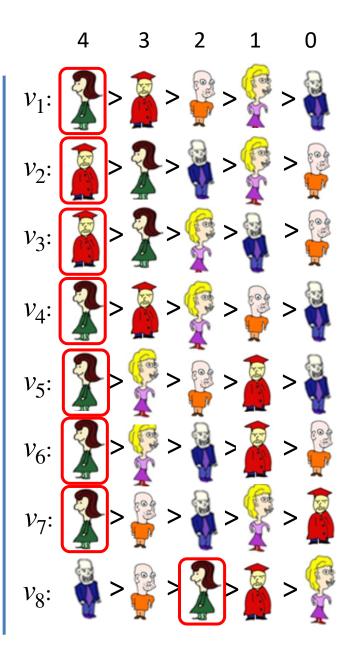


Define the score for a committee:

Find the **best** assignment of voters to committee members so that:

Each committee member is assigned to roughly n/k voters.

This would be a better assignment with score of 30.



Define the score for a committee:

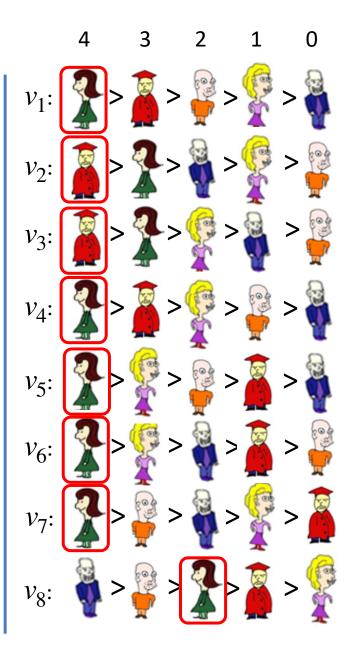
2

Find the **best** assignment of voters to committee members so that:

Each committee member is assigned to roughly n/k voters.

This would be a better assignment with score of 30.

But this assignment is unbalanced and so it is not valid!



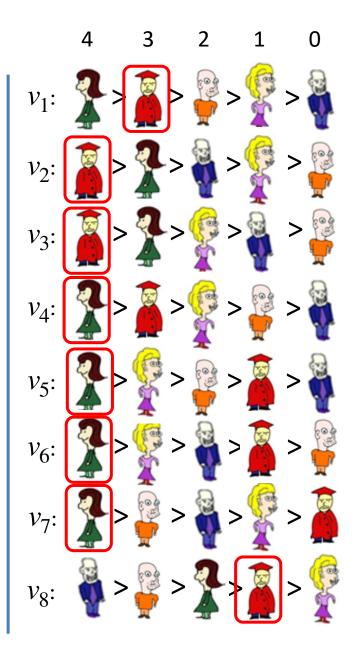
Define the score for a committee:

2

Find the **best** assignment of voters to committee members so that:

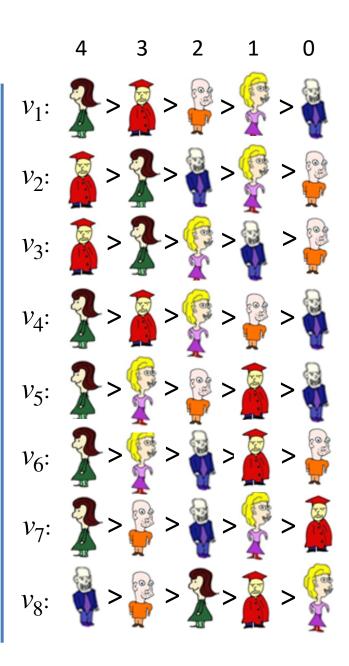
Each committee member is assigned to roughly n/k voters.

A committee with the best optimal valid assignment is winning.



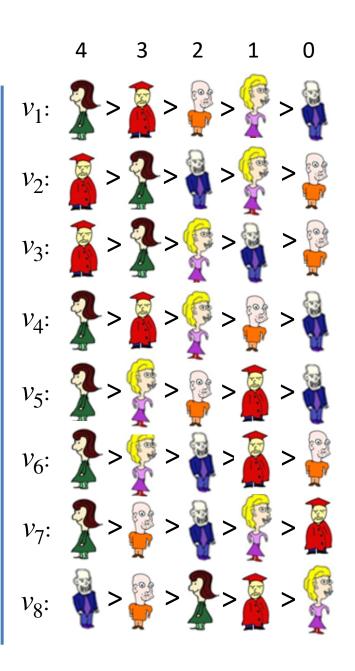
Repeat k times:

- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.



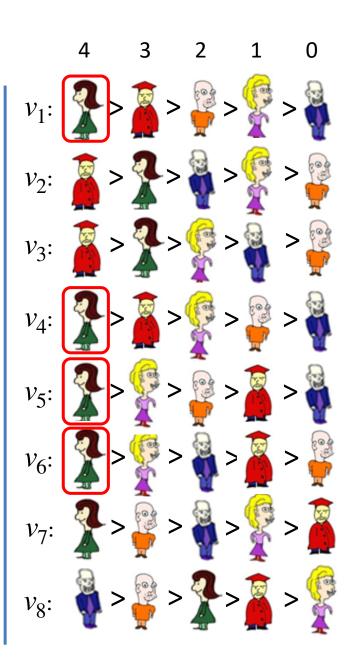
Repeat k times:

- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.



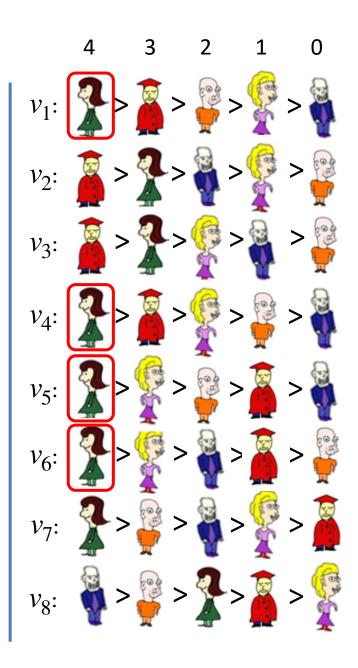
Repeat k times:

- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.



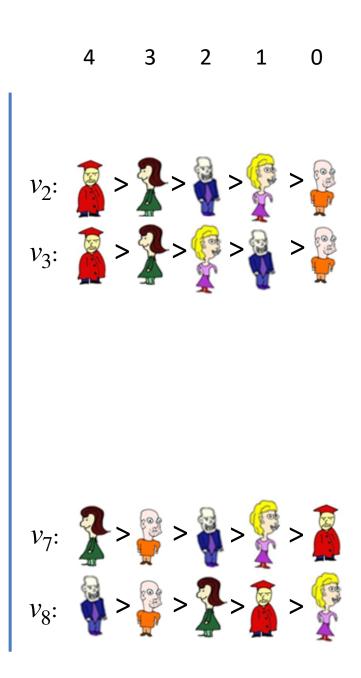
Repeat k times:

- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.



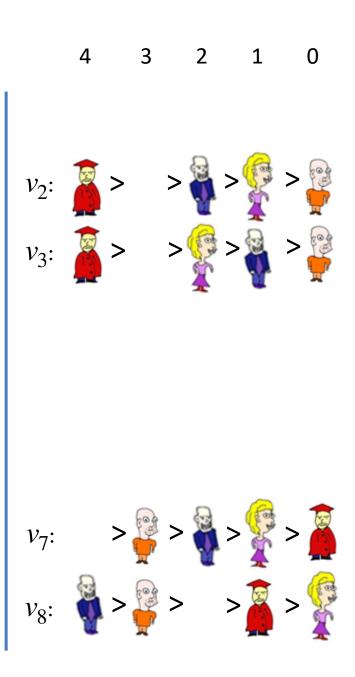
Repeat k times:

- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.



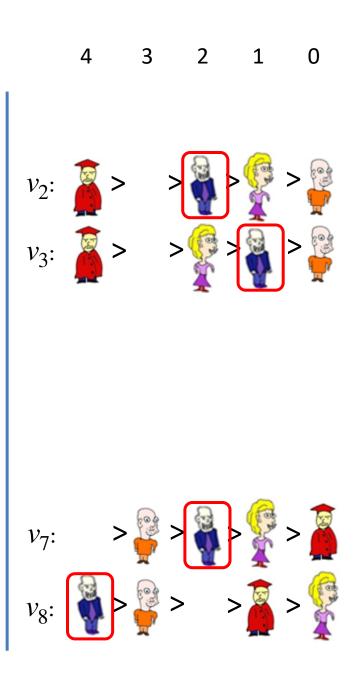
Repeat k times:

- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.



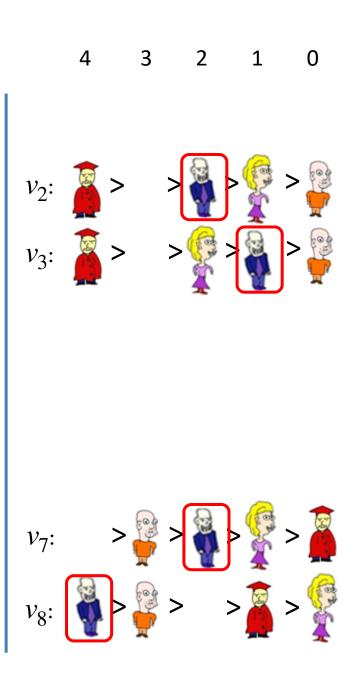
Repeat k times:

- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.

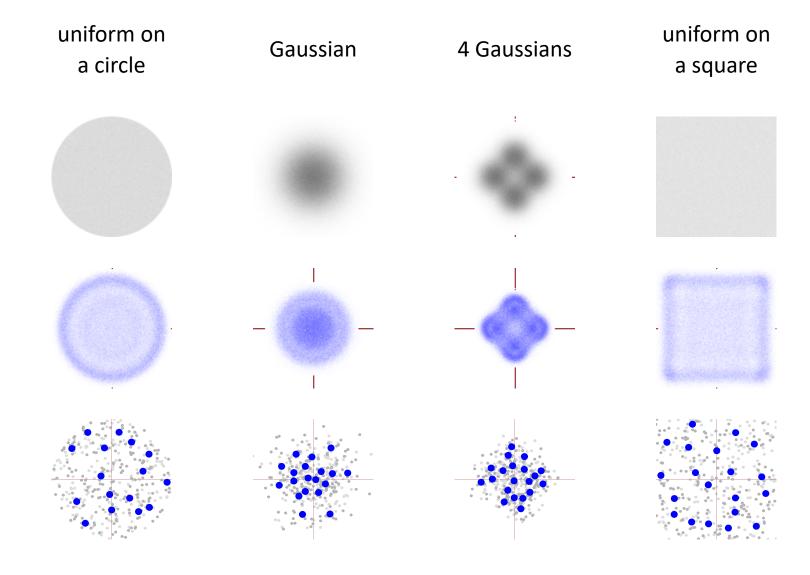


Repeat k times:

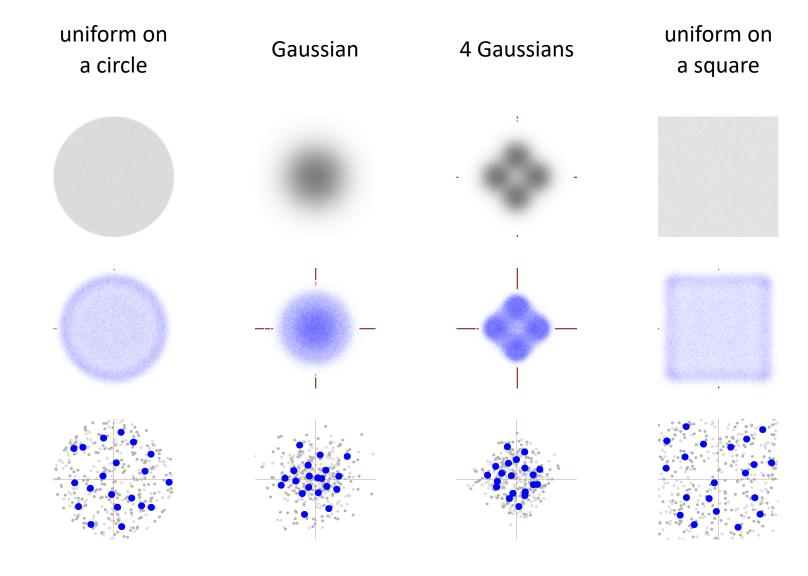
- Find a group G of n/k voters and a candidate c such that the score of voters from G from c is maximal.
- 2. Remove candidate c and the voters from G from the election.



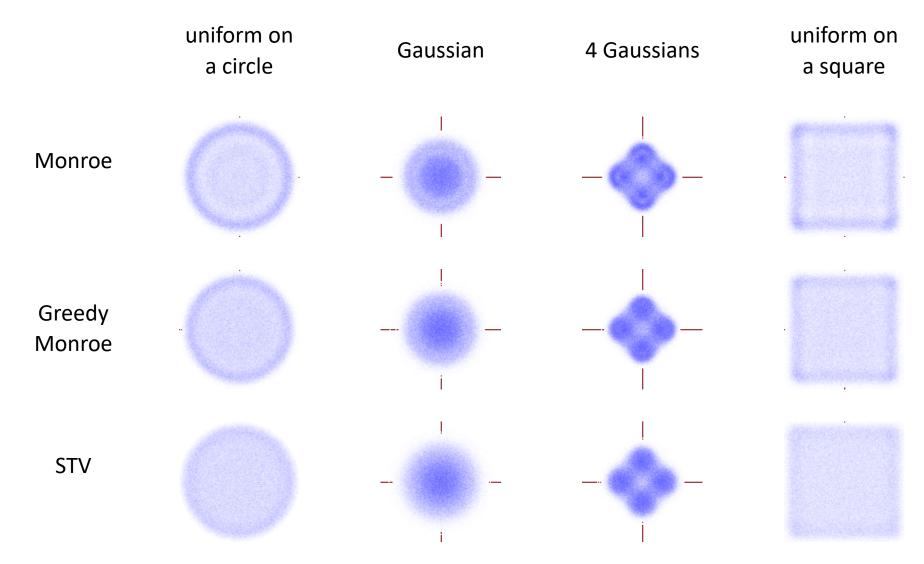
Monroe for 2-Euclidean Preferences

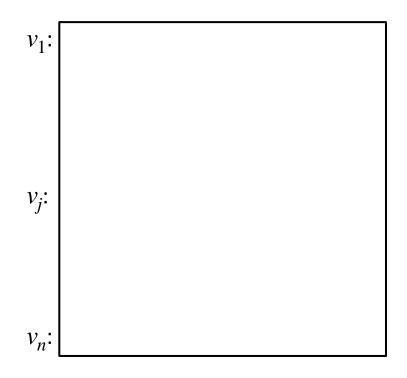


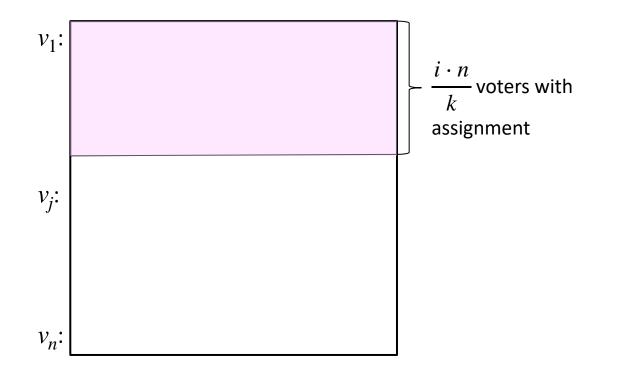
Greedy Monroe for 2-Euclidean Preferences

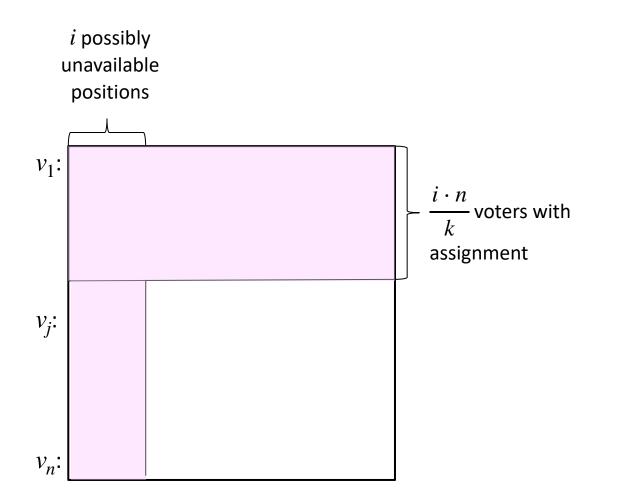


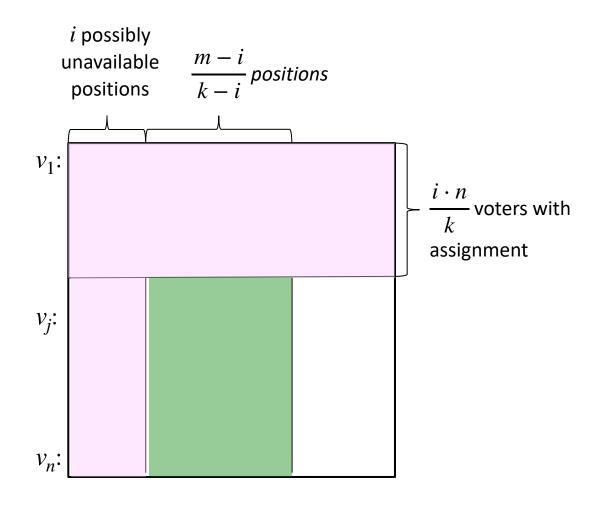
2-Euclidean Preferences: comparison



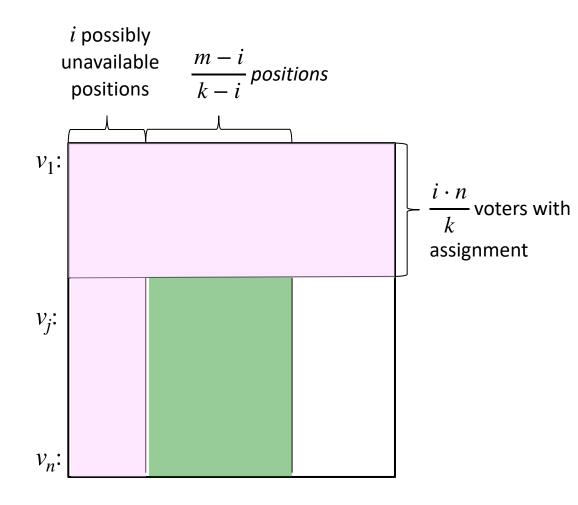






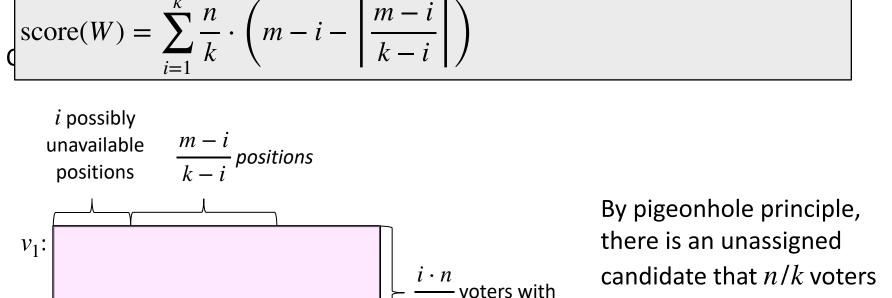


Consider the situation right after the i-th iteration



By pigeonhole principle, there is an unassigned candidate that n/k voters rank within the green area

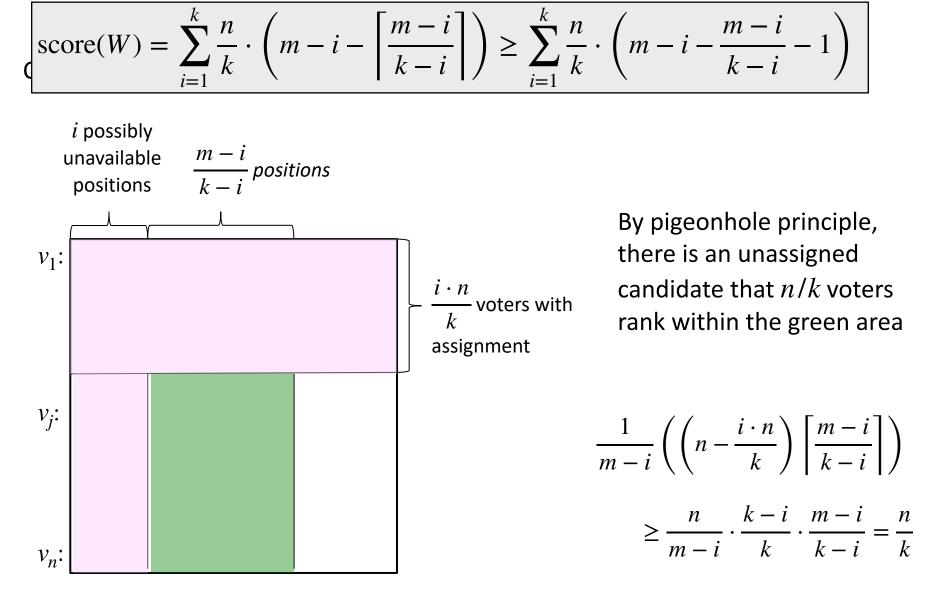
$$\frac{1}{m-i} \left(\left(n - \frac{i \cdot n}{k} \right) \left| \frac{m-i}{k-i} \right| \right)$$
$$\geq \frac{n}{m-i} \cdot \frac{k-i}{k} \cdot \frac{m-i}{k-i} = \frac{n}{k}$$

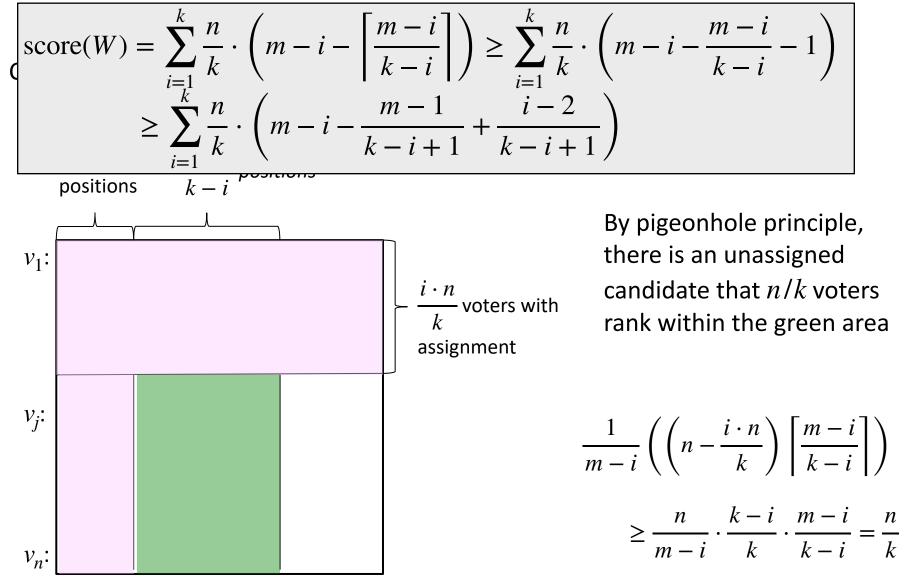


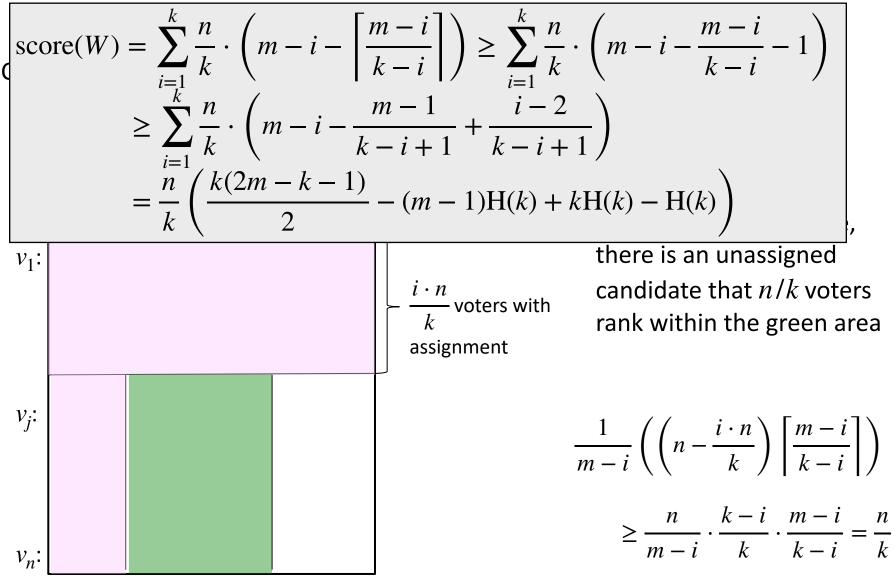
k assignment v_j : v_n :

rank within the green area

$$\frac{1}{m-i} \left(\left(n - \frac{i \cdot n}{k} \right) \left[\frac{m-i}{k-i} \right] \right)$$
$$\geq \frac{n}{m-i} \cdot \frac{k-i}{k} \cdot \frac{m-i}{k-i} = \frac{n}{k}$$







$$\begin{aligned} \sup_{\mathbf{q}} \operatorname{score}(W) &= \sum_{i=1}^{k} \frac{n}{k} \cdot \left(m - i - \left[\frac{m - i}{k - i} \right] \right) \geq \sum_{i=1}^{k} \frac{n}{k} \cdot \left(m - i - \frac{m - i}{k - i} - 1 \right) \\ &\geq \sum_{i=1}^{k} \frac{n}{k} \cdot \left(m - i - \frac{m - 1}{k - i + 1} + \frac{i - 2}{k - i + 1} \right) \\ &= \frac{n}{k} \left(\frac{k(2m - k - 1)}{2} - (m - 1) \operatorname{H}(k) + k \operatorname{H}(k) - \operatorname{H}(k) \right) \\ &= (m - 1)n \left(1 - \frac{k - 1}{2(m - 1)} - \frac{\operatorname{H}(k)}{k} + \frac{\operatorname{H}(k) - 1}{m - 1} - \frac{\operatorname{H}(k)}{k(m - 1)} \right) \\ &> (m - 1)n \left(1 - \frac{k - 1}{2(m - 1)} - \frac{\operatorname{H}(k)}{k} \right) \end{aligned}$$

$$\int_{a}^{k} \operatorname{score}(W) = \sum_{i=1}^{k} \frac{n}{k} \cdot \left(m - i - \left[\frac{m - i}{k - i}\right]\right) \ge \sum_{i=1}^{k} \frac{n}{k} \cdot \left(m - i - \frac{m - i}{k - i} - 1\right)$$

$$\ge \sum_{i=1}^{k} \frac{n}{k} \cdot \left(m - i - \frac{m - 1}{k - i + 1} + \frac{i - 2}{k - i + 1}\right)$$

$$= \frac{n}{k} \left(\frac{k(2m - k - 1)}{2} - (m - 1)H(k) + kH(k) - H(k)\right)$$

$$= (m - 1)n \left(1 - \frac{k - 1}{2(m - 1)} - \frac{H(k)}{k} + \frac{H(k) - 1}{m - 1} - \frac{H(k)}{k(m - 1)}\right)$$

$$> (m - 1)n \left(1 - \frac{k - 1}{2(m - 1)} - \frac{H(k)}{k}\right)$$
We achieve: $1 - (k - 1)/2(m - 1) - H_k/k$
fraction of maximum possible satisfaction!

Okay, but is it really a good result?

