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Single Transferrable Vote (STV):

1. If there exists a candidate ranked first by at 

least  voters, take this candidate to the 
committee, remove this candidate from the 
election, and remove some of her  
supporters (voters who rank her first).


2. Otherwise, remove the candidate with the 
lowest plurality score.
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STV for 2-Euclidean Preferences
uniform on 

a circle
Gaussian 4 Gaussians uniform on 
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STV and Proportionality for Solid Coalitions
Proportionality for Solid Coalitions (PSC). An outcome  satisfies PSC if for 
each , each subset of voters  with  and each subset 
of candidates  such that  for all , it holds that:
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STV and monotonicity

Consider STV in this example:


• Candidate A will be eliminated first.
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Monotonicity: if a voter pushes a winning candidate up in her ranking, then


                      this candidate should still be winning.
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                      this candidate should still be winning.


STV is non-monotonic!
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Open question: Is there a rule that satisfies proportionality for solid 
coalitions and monotonicity?

STV and monotonicity
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We achieve: 1 – (k-1)/2(m-1) – Hk/k fract ion of maximum possible satisfaction!



Okay, but is it really a good result?

• Polish parliamentary elections:

– k = 460, m = 6000

– We reach about 96% of maximal possible satisfaction


– On the avarage, every voter is represented by someone this 
voter prefers to 96% of the candidates


• Problems?

– … the system assumes that each voter would rank 6000 

candidates!!


– There are workarounds ☺


