Proportional Algorithms: Approval-Based Committee Elections

Piotr Skowron University of Warsaw

Model: Approval-Based Elections

We have n = 8 voters, m = 9 candidates.

We have n = 8 voters, m = 9 candidates.

Assume the committee size to be elected is k = 4.

Assume the committee size to be elected is k = 4.

Context: electing a representative body

Assume the committee size to be elected is k = 4.

Which committee should be selected?

In this context the committee should be proportional.

But what does it mean and how could we achieve that?

Proportionality on the example of party-list systems.

Each voter casts one vote for a single party. Our goal is to select a committee of size k = 4:

- Party 1 gets 40 votes.
- Party 2 gets 20 votes.
- Party 3 gets 20 votes.

How should the parliament look like?

Proportionality on the example of party-list systems.

Each voter casts one vote for a single party. Our goal is to select a committee of size k = 4:

- Party 1 gets 40 votes.
- Party 2 gets 20 votes.
- Party 3 gets 20 votes.

How should the parliament look like?

- Party 1 should get 2 seats.
- Party 2 should get 1 seat.
- Party 3 should get 1 seat.

Assume the committee size to be elected is k = 4.

Assume the committee size to be elected is k = 4.

Assume the committee size to be elected is k = 4.

How to define proportionality for more complex preferences?

How to define proportionality for more complex preferences?

Let's move back in time to the end of the 19th century?

Let's move back in time to the end of the 19th century?

Thorvald N. Thiele

Edvard Phragmén

Assume voter v approves t members

of a committee W. Then v gives to

W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 嶺

Points per voter:

 v_1 :

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 🐧

Points per voter:

 $v_1: 1+\frac{1}{2}$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 嶺

Points per voter:

 v_1

$$: 1 + \frac{1}{2} v_2 : 1 + \frac{1}{2}$$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 嶺

Points per voter:

$$v_1: 1 + \frac{1}{2} \qquad v_2: 1 + \frac{1}{2} \\ v_3: 1 + \frac{1}{2} + \frac{1}{3}$$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 嶺

Points per voter:

$$v_1: 1 + \frac{1}{2}$$
 $v_2: 1 + \frac{1}{2}$
 $v_3: 1 + \frac{1}{2} + \frac{1}{3}$
 $v_4: 1 + \frac{1}{2}$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🛣 🍒

Points per voter:

 $v_1: 1 + \frac{1}{2} \qquad v_2 \\ v_3: 1 + \frac{1}{2} + \frac{1}{3} \qquad v_4 \\ v_5: 1 + \frac{1}{2}$

$$r_2: 1 + \frac{1}{2}$$

 $r_4: 1 + \frac{1}{2}$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒

Points per voter:

 $v_1: 1 + \frac{1}{2}$ $v_2: 1 + \frac{1}{2}$
 $v_3: 1 + \frac{1}{2} + \frac{1}{3}$ $v_4: 1 + \frac{1}{2}$
 $v_5: 1 + \frac{1}{2}$ $v_6: 0$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 🐧

Points per voter:

 $v_1: 1 + \frac{1}{2}$ $v_2: 1 + \frac{1}{2}$
 $v_3: 1 + \frac{1}{2} + \frac{1}{3}$ $v_4: 1$
 $v_5: 1 + \frac{1}{2}$ $v_6: 0$
 $v_7: 0$

$$v_2: 1 + \frac{1}{2}$$

 $v_4: 1 + \frac{1}{2}$
 $v_6: 0$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🛣 🍒

Points per voter:

 $v_1: 1 + \frac{1}{2}$ $v_2: 1$ $v_3: 1 + \frac{1}{2} + \frac{1}{3}$ $v_4: 1$ $v_5: 1 + \frac{1}{2}$ $v_6: 0$ $v_7: 0$ $v_8: 1$

$$r_{2}: 1 + \frac{1}{2}$$

 $r_{4}: 1 + \frac{1}{2}$
 $r_{6}: 0$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 🐧

Points per voter:

$v_1: 1 + \frac{1}{2}$	$v_2: 1 + \frac{1}{2}$
$v_3: 1 + \frac{1}{2} + \frac{1}{3}$	$v_4: 1 + \frac{1}{2}$
$v_5: 1 + \frac{1}{2}$	$v_6: 0$
$v_7: 0$	v ₈ : 1

Sum of points = $8 + \frac{5}{6}$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$ E.g., consider a committee 🛣 Poil Committee with the highest score wins the election. \mathcal{V}_1 $v_3: 1 + \frac{1}{2} + \frac{1}{3}$ $v_4: 1+\frac{1}{2}$ $v_5: 1 + \frac{1}{2}$ $v_6: 0$ $v_7: 0$ $v_8: 1$

Sum of points = $8 + \frac{5}{6}$

• Voters earn money with the constant speed (\$1 per time unit).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters *S* who all have *n* dollars in total and who all approve a not-yet selected candidate *c*, do:

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters *S* who all have *n* dollars in total and who all approve a not-yet selected candidate *c*, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	c_2		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>c</i> ₇	<i>C</i> ₈	<i>C</i> ₉
v_1	v_2	v_3	v_4	V_5	v_6

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters *S* who all have *n* dollars in total and who all approve a not-yet selected candidate *c*, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

$$k = 12$$

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	c_2		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>C</i> ₇	<i>C</i> ₈	<i>c</i> ₉
v_1	v_2	v_3	v_4	v_5	v_6

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters *S* who all have *n* dollars in total and who all approve a not-yet selected candidate *c*, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

$$k = 12$$

$$c_{4} \quad c_{5} \quad c_{6}$$

$$c_{3} \quad c_{13} \quad c_{14} \quad c_{15}$$

$$c_{2} \quad c_{10} \quad c_{11} \quad c_{12}$$

$$c_{1} \quad c_{7} \quad c_{8} \quad c_{9}$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5} \quad v_{6}$$

$$t_{0} = 0$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5} \quad v_{6}$$
- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters *S* who all have *n* dollars in total and who all approve a not-yet selected candidate *c*, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters *S* who all have *n* dollars in total and who all approve a not-yet selected candidate *c*, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters *S* who all have *n* dollars in total and who all approve a not-yet selected candidate *c*, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

k = 12	$t_4 = 12$								
<i>C</i> ₄ <i>C</i> ₅ <i>C</i> ₆	$c_4 c_5 c_6 c_{10} c_{11} c_{12}$								
$c_3 \qquad c_{13} c_{14} c_{15}$	$t_3 = 6$ c_3								
$c_2 \qquad c_{10} c_{11} c_{12}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$c_1 \qquad c_7 c_8 c_9$	$\begin{array}{c} t_1 = 2 \\ t_2 = 0 \end{array} \qquad \qquad$								
$v_1 v_2 v_3 v_4 v_5 v_6$	$v_0 = 0$ v_1 v_2 v_3 v_4 v_5 v_6								

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 - 1. Add *c* to the committee.
 - 2. Make voters from S pay for c (resetting their budget to 0).

						t = 12								
k = 12							$l_4 = 12$							
			1						<i>c</i> ₄	<i>c</i> ₅	<i>c</i> ₆	<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆												
	$c_3 c_{13} c_{14} c_{15}$				$l_3 = 0$	$l_3 = 6$ C_3								
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂		$t_2 = 4$		<i>C</i> ₂			<i>C</i> ₇	<i>c</i> ₈	<i>C</i> 9
	<i>c</i> ₁		<i>c</i> ₇	<i>C</i> ₈	<i>C</i> 9		$l_1 = 2$ $t_1 = 0$			<i>c</i> ₁				
v_1	v_2	v_3	v_4	v_5	v_6		$\iota_0 = 0$		v_1	v_2	v_3	v_4	v_5	v_6

Which of the two rules is better?

Which of the two rules is better?

• Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.

Which of the two rules is better?

- Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.
- Historically PAV was preferred since it appeared simpler.

Which of the two rules is better?

- Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.
- Historically PAV was preferred since it appeared simpler.
- Current research suggest that PAV is better in terms of proportionality.

Two Arguments in Favour of PAV

First Argument: Axioms for Cohesive Groups

For k = 4 these voters should approve (on average) 1 candidate in the selected committee.

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Definition: Each group with at least ln/kvoters who approve at least l same candidates should have on average at least l representatives in the elected committee.

For k = 4 these voters should approve (on average) 2 candidates in the selected committee.

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?

$$\begin{array}{lll} v_{1} \colon \{a,d\} & v_{7} \colon \{b,c\} \\ v_{2} \colon \{a\} & v_{8} \colon \{c\} \\ v_{3} \colon \{a\} & v_{9} \colon \{c\} & n = 12 \\ v_{4} \colon \{a,b\} & v_{10} \colon \{c,d\} & k = 3 \\ v_{5} \colon \{b\} & v_{11} \colon \{d\} \\ v_{6} \colon \{b\} & v_{12} \colon \{d\} \end{array}$$

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least $\ell - 1$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least $\ell - 1$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!

Phragmén's Rule would satisfy it only if we replaced $\ell - 1$ with $(\ell - 1)/2$.

Two Arguments in Favour of PAV

Second Argument: Axiomatic Extensions of Apportionment Methods

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size k = 4.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size k = 4.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size k = 4.

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Continuity

Some basic axiomatic properties: Continuity

Some basic axiomatic properties: Continuity

Then, there exists (possibly very large) value z such that:

Axiomatic Characterisations

Theorem: Proportional Approval Voting is the only ABC ranking rule that satisfies symmetry, consistency, continuity and D'Hondt proportionality.

[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.
Axiomatic Characterisations

Theorem: Proportional Approval Voting symmetry, consistency, continuity and D'Hondt proportionality.

[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

Axiomatic Characterisations

Theorem: Proportional Approval Voting

D'Hondt

proportionality.

[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

k = 12

c_4 c_5 c_6		C_4 C_5 C_6		
<i>c</i> ₃	c_{13} c_{14} c_{15}	<i>c</i> ₃	<i>c</i> ₁₃ <i>c</i> ₁₄	<i>C</i> ₁
<i>c</i> ₂	c_{10} c_{11} c_{12}	<i>c</i> ₂	<i>c</i> ₁₀ <i>c</i> ₁₁	<i>C</i> ₁
<i>c</i> ₁	c_7 c_8 c_9	c_1	<i>c</i> ₇ <i>c</i> ₈	С
v_1 v_2 v_3	$v_4 v_5 v_6$	v_1 v_2 v_3	<i>v</i> ₄ <i>v</i> ₅	$\overline{\mathcal{V}}$

Phragmén's Rule

Thiele's Rule (PAV)

k = 12

 C_4

 C_5

 C_3

 C_2

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>c</i> ₇	<i>C</i> ₈	<i>C</i> ₉

$$v_1 v_2 v_3 v_4 v_5 v_6$$

Phragmén's Rule

 c_{13}

*c*₁₀

*c*₁₄

*c*₁₁

*C*₁₅

*c*₁₂

 C_6

Thiele's Rule (PAV)

Proportionality with respect to power

Proportionality with respect to welfare

k = 12

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>C</i> ₇	<i>C</i> ₈	<i>C</i> ₉

$$v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6$$

Phragmén's Rule

C_4	c_5	c_6			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>c</i> ₇	<i>C</i> ₈	<i>C</i> ₉
v_1	v_2	v_3	v_4	v_5	v_6

Thiele's Rule (PAV)

Proportionality with respect to power

- priceability,
- laminar proportionality

Proportionality with respect to welfare

Pigou-DaltonEJR

k = 12

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>c</i> ₇	<i>c</i> ₈	<i>C</i> ₉

$$v_1 v_2 v_3 v_4 v_5 v_6$$

Phragmén's Rule

<i>c</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>c</i> ₇	<i>C</i> ₈	<i>C</i> 9
v_1	v_2	v_3	v_4	v_5	v_6

Thiele's Rule (PAV)

Proportionality with respect to power

priceability,laminar proportionality

Proportionality with respect to welfare

Pigou-DaltonEJR

Two New Notions of Proportionality

Fair distribution of power

(failed by PAV)

It describes how the rule should behave on certain well-behaved profiles

$$k = 8$$

<i>c</i> ₄	<i>c</i> ₈	<i>c</i> ₁₂
<i>c</i> ₃	<i>c</i> ₇	<i>c</i> ₁₁
<i>c</i> ₂	<i>c</i> ₆	<i>c</i> ₁₀
<i>c</i> ₁	<i>c</i> ₅	<i>C</i> 9
$v_1 v_2 v_3$	$v_4 v_5 v_6$	$v_7 v_8$

Party list profiles

$$k = 8$$

	<i>C</i> ₄			<i>C</i> ₈		C	12
	<i>c</i> ₃			<i>C</i> ₇		С	11
	<i>c</i> ₂			<i>c</i> ₆		C	10
	c_1			c_5		0	7 9
v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8

Party list profiles

$$k = 4$$

$$c_{8}$$

$$c_{4}$$

$$c_{7}$$

$$c_{3}$$

$$c_{6}$$

$$c_{2}$$

$$c_{5}$$

$$c_{1}$$

$$v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$$

Party lists with a common leader

Party lists with a common leader

	(C ₁₀				
		<i>C</i> 9		<i>c</i> ₁	7	
<i>c</i> ₆		<i>C</i> ₈		<i>c</i> ₁	6	
<i>C</i> ₅		<i>C</i> ₇		<i>c</i> ₁	5	
	<i>c</i> ₄			<i>c</i> ₁	4	<i>c</i> ₂₀
	<i>c</i> ₃			<i>c</i> ₁	3	<i>c</i> ₁₉
	<i>c</i> ₂			<i>c</i> ₁	2	<i>c</i> ₁₈
	c_1				<i>c</i> ₁₁	
$v_1 v_2 v_3$	v_4	v_5	v_6	v_7	v_8	v_9

Subdivided parties

				<i>c</i> ₁₀				
				<i>C</i> 9		<i>c</i> ₁	7	
	<i>c</i> ₆			<i>C</i> ₈		<i>c</i> ₁	6	
	<i>C</i> ₅		<i>C</i> ₇			<i>c</i> ₁	5	
		(<i>C</i> ₄			<i>c</i> ₁	4	<i>c</i> ₂₀
		(<i>C</i> 3			<i>c</i> ₁	3	<i>c</i> ₁₉
		(<i>c</i> ₂			<i>C</i> ₁	2	<i>c</i> ₁₈
		(c_1				<i>c</i> ₁₁	
v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9

Subdivided parties

We say that a profile (P, k) is laminar if:

1. *P* is unanimous, or

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or

$$k = 4$$

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or

$$k = 4$$

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or
- 3. There are two disjoint laminar instances (P_1, k_1) and (P_2, k_2) with $\frac{|P_1|}{k_1} = \frac{|P_2|}{k_2}$ such that $P = P_1 + P_2$ and $k = k_1 + k_2$

We say that a profile (P, k) is laminar if:

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or
- 3. There are two disjoint laminar instances (P_1, k_1) and (P_2, k_2) with $\frac{|P_1|}{k_1} = \frac{|P_2|}{k_2}$ such that $P = P_1 + P_2$ and $k = k_1 + k_2$

			N	— 1				_
	<i>c</i> ₆			<i>C</i> ₈		<i>c</i> ₁	4]
	<i>C</i> ₅			<i>C</i> ₇		<i>c</i> ₁	3	
		(² 4			<i>c</i> ₁	2	<i>c</i> ₁₇
		(C ₃			<i>c</i> ₁	1	<i>c</i> ₁₆
	c_2						0	<i>c</i> ₁₅
c_1							<i>C</i> 9	
v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9

k = 12

We say that a profile (P, k) is laminar if:

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or

3. There are two disjoint laminar instances (P_1, k_1) and (P_2, k_2) with $\frac{|P_1|}{k_1} = \frac{|P_2|}{k_2}$ such that $P = P_1 + P_2$ and $k = k_1 + k_2$ $k_1 = 8$ $k_{2} = 4$ C_6 C_8 c_{14} C_5 C_7 C_{13} c_{12} C_4 c_{17} *c*₁₁ C_{3} *c*₁₆ C_{10} c_{15} C_2 \mathcal{C}_1 $C_{\mathbf{Q}}$ v_4 v_1 v_2 $\mathcal{V}_{\mathbf{3}}$ v_5 v_6 \mathcal{V}_7 $\mathcal{V}_{\mathbf{X}}$ v_0

- 1. *P* is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or
- 3. There are two disjoint laminar instances (P_1, k_1) and (P_2, k_2) with $\frac{|P_1|}{k_1} = \frac{|P_2|}{k_2}$ such that $P = P_1 + P_2$ and $k = k_1 + k_2$

We say that a profile (P, k) is laminar if:

- 1. *P* is unanimous, or
- 2. There exists a unanimously approved candidate c, and $(P \setminus \{c\}, k-1)$ is laminar, or
- 3. There are two disjoint laminar instances (P_1, k_1) and (P_2, k_2) with $\frac{|P_1|}{k_1} = \frac{|P_2|}{k_2}$ such that $P = P_1 + P_2$ and $k = k_1 + k_2$

We say that a rule is laminar proportional if it behaves well on laminar profiles.

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i: C \to [0,1]$ such that:

- 1. A voter can only pay for candidates she approves of),
- 2. A voter can spend at most one dollar.

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i: C \to [0,1]$ such that:

1. A voter can only pay for candidates she approves of),

2. A voter can spend at most one dollar.

We say that a price system $ps = (p, \{p_i\}_{i \in [n]})$ supports a committee W if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price p.

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i: C \to [0,1]$ such that:

1. A voter can only pay for candidates she approves of),

2. A voter can spend at most one dollar.

We say that a price system $ps = (p, \{p_i\}_{i \in [n]})$ supports a committee W if the following hold:

- 1. For each elected candidate, the sum of the payments to this candidate equals the price p.
- 2. No candidate outside of the committee gets any payment.

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i: C \to [0,1]$ such that:

1. A voter can only pay for candidates she approves of),

2. A voter can spend at most one dollar.

We say that a price system $ps = (p, \{p_i\}_{i \in [n]})$ supports a committee W if the following hold:

- 1. For each elected candidate, the sum of the payments to this candidate equals the price p.
- 2. No candidate outside of the committee gets any payment.
- 3. There exists no unelected candidate whose supporters, in total, have a remaining unspent budget of more than p

The price is p = 0.5.

$$k = 12$$
 1. v_1 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_4 .

$$v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6$$

Phragmén's Rule

The price is p = 0.5.

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
	<i>c</i> ₃		<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
	<i>c</i> ₂		<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
	<i>c</i> ₁		<i>c</i> ₇	<i>C</i> ₈	<i>C</i> 9

k = 12

1.
$$v_1$$
 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_4 .
2. v_2 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_5 .
3. v_3 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_6 .

Phragmén's Rule

 $v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6$

The price is p = 0.5.

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
<i>c</i> ₃			<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
<i>c</i> ₂			<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
<i>c</i> ₁			<i>c</i> ₇	<i>C</i> ₈	<i>c</i> ₉

k = 12

1.
$$v_1$$
 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_4 .
2. v_2 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_5 .
3. v_3 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_6 .
4. v_4 pays $\frac{1}{2}$ for c_7 and c_{10} .

Phragmén's Rule

 $v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6$

The price is p = 0.5.

<i>c</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
<i>c</i> ₃			<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
<i>c</i> ₂			<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
<i>c</i> ₁			<i>c</i> ₇	<i>C</i> ₈	<i>C</i> ₉
v_1	v_2	v_3	v_4	v_5	v_6

k = 12

$$v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6 \quad v_5 \quad v_6 \quad v_5 \quad v_6 \quad v_6$$

Phragmén's Rule

1. v_1 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_4 . 2. v_2 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_5 . 3. v_3 pays $\frac{1}{6}$ for c_1 , c_2 and c_3 and $\frac{1}{2}$ for c_6 . **4.** v_4 pays $\frac{1}{2}$ for c_7 and c_{10} . 5. v_5 pays $\frac{1}{2}$ for c_8 and c_{11} . 6. v_6 pays $\frac{1}{2}$ for c_9 and c_{12} .

Core

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|T|}{k} \leq \frac{|S|}{n}$$
, and

2. Each voter in S prefers T to W.
We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|T|}{k} \leq \frac{|S|}{n}$$
, and

2. Each voter in S prefers T to W.

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|T|}{k} \leq \frac{|S|}{n}$$
, and

2. Each voter in S prefers T to W.

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|T|}{k} \leq \frac{|S|}{n}$$
, and

2. Each voter in S prefers T to W.

$$k = 12$$

*c*₁₃

 c_{10}

 C_7

 v_4

 $c_{14} | c_{15}$

 c_{12}

 C_9

 v_6

*c*₁₁

 C_8

 v_5

 C_6

 $\mathcal{V}_{\mathbf{3}}$

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|T|}{k} \leq \frac{|S|}{n}$$
, and

2. Each voter in S prefers T to W.

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

Not in the core!

- 1. $\frac{|T|}{k} \leq \frac{|S|}{n}$, and
- 2. Each voter in S prefers T to W.

Core contradicts the Pigou-Dalton principle!

<i>C</i> ₄	<i>C</i> ₅	<i>c</i> ₆			
<i>C</i> ₃			<i>c</i> ₁₃	<i>c</i> ₁₄	<i>c</i> ₁₅
<i>c</i> ₂			<i>c</i> ₁₀	<i>c</i> ₁₁	<i>c</i> ₁₂
<i>c</i> ₁			<i>c</i> ₇	<i>C</i> ₈	<i>C</i> 9
<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄	v_5	v_6

k = 12

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

2. Each voter in S prefers T to W.

Core contradicts the Pigou-Dalton principle!

Not in the core!

k = 12

Theorem: PAV gives the best possible Approximation of the core subject to Satisfying the Pigou-Dalton principle!

Open questions:

- Does there always exist a committee in the core?
- Does there always exist a Pareto-optimal priceable committee?
- What is the best possible core-approximation among welfarist rules?

Beyond proportionality: diversity (extreme form of degressive proportionality)

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points: $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 🐧

Points per voter:

$v_1: 1 + \frac{1}{2}$	$v_2: 1 + \frac{1}{2}$
$v_3: 1 + \frac{1}{2} + \frac{1}{3}$	$v_4: 1 + \frac{1}{2}$
$v_5: 1 + \frac{1}{2}$	$v_6: 0$
$v_7: 0$	v ₈ : 1

Sum of points = $8 + \frac{5}{6}$

Approval Chamberlin-Courant rule

Voter v gives to W one point if vapproves someone from W and zero points otherwise.

Approval Chamberlin-Courant rule

Voter v gives to W one point if vapproves someone from W and zero points otherwise.

E.g., consider a committee 🛣

Points per voter:

$v_1: 1$	<i>v</i> ₂ : 1
<i>v</i> ₃ : 1	<i>v</i> ₄ : 1
$v_5: 1$	v ₆ : 1
$v_7: 1$	v ₈ : 1

Sum of points = 8

Multiwinner AV for Euclidean Preferences

Approval Chamberlin—Courant for Euclidean Preferences

