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Context: electing a representative body



Which committee should be selected?

In this context the committee should be proportional. 
 
But what does it mean and how could we achieve that?

Back to the example!

Assume the committee size to be elected is .k = 4
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Proportionality on the example of party-list 
systems.

Each voter casts one vote for a single party. 
Our goal is to select a committee of size : 

• Party 1 gets 40 votes. 
• Party 2 gets 20 votes. 
• Party 3 gets 20 votes. 

How should the parliament look like?
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Proportionality on the example of party-list 
systems.

Each voter casts one vote for a single party. 
Our goal is to select a committee of size : 

• Party 1 gets 40 votes. 
• Party 2 gets 20 votes. 
• Party 3 gets 20 votes. 

How should the parliament look like? 

• Party 1 should get 2 seats. 
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• Party 3 should get 1 seat. 
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PAV versus Phragmén’s Rule

Which of the two rules is better?

• Both Thiele and Phragmén argued that their rules are 
proportional by how they behave on party-list profiles. 

• Historically PAV was preferred since it appeared 
simpler. 

• Current research suggest that PAV is better in terms of 
proportionality.
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First Argument: Axioms for Cohesive Groups 
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Second Argument: Axiomatic Extensions of 
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PAV versus Phragmén’s Rule
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Two New Notions of 
Proportionality 

 
Fair distribution of power 

 
(failed by PAV)



Laminar Proportionality: Examples

It describes how the rule should behave on 
certain well-behaved profiles
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Laminar Proportionality: Definition
We say that a profile  is laminar if: 

1.  is unanimous, or 
2. There exists a unanimously approved candidate c, and  

(P \ {c}, k-1) is laminar, or 
3. There are two disjoint laminar instances (P1, k1) and (P2, k2) 

with |P1|/k1 = |P2|/k2 such that P = P1 + P2 and k = k1 + k2

(P, k)
P
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Laminar Proportionality: Definition
We say that a profile  is laminar if: 
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Laminar Proportionality: Definition

We say that a rule is laminar proportional if it behaves well 
on laminar profiles. 

We say that a profile  is laminar if: 

1.  is unanimous, or 

2. There exists a unanimously approved candidate , and  
,  is laminar, or 

3. There are two disjoint laminar instances  and  
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Priceability

A price system is a pair , where  is a price, and for 

each voter , there is a payment function  such that: 

1. A voter can only pay for candidates she approves of), 

2. A voter can spend at most one dollar. 

We say that a price system ps = (p, {pi}i∈[n]) supports a committee W if 
the following hold:  

1. For each elected candidate, the sum of the payments to this candidate 
equals the price p.  

2. No candidate outside of the committee gets any payment.  

3. There exists no unelected candidate whose supporters, in total, have a 
remaining unspent budget of more than p  

 

ps = (p, {pi}i∈[n]) p > 0
i ∈ [n] pi : C → [0,1]
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Core: Definition

We say that a committee  is in the core if there exists no group of 
voters  and a subset of candidates  such that: 

1.  , and 

2.  Each voter in  prefers  to .
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Theorem: PAV gives the best possible 
Approximation of the core subject to 
Satisfying the Pigou-Dalton principle!



Open questions:

• Does there always exist a committee in the core? 

• Does there always exist a Pareto-optimal priceable committee? 
 

• What is the best possible core-approximation among 
welfarist rules?



Beyond proportionality: 
diversity 

(extreme form of degressive 
proportionality)



Proportional Approval Voting (Thiele)

Points per voter: 
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v3 : 1+ 1
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v7 : 0 v8 : 1

Sum of points = 8+ 5
6

E.g., consider a committee
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Assume voter  approves  members 
of a committee . Then  gives to 

 the following number of points:
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Approval Chamberlin-Courant rule
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PAV for Euclidean Preferences
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