Proportional Algorithmes:

Apportionment
Piotr Skowron
University of Warsaw

........................

Model: Apportionment

1.We have m political parties: P, P,, ..., P

m.

Model: Apportionment

1.We have m political parties: P, P,, ..., P

m.

2.We have n voters. Each voter votes for exactly one party.

Model: Apportionment

1.We have m political parties: P, P,, ..., P

m.

2.We have n voters. Each voter votes for exactly one party.

Let 77, denote the number of votes cast on party P,

Model: Apportionment

1.We have m political parties: P, P,, ..., P

m.

2.We have n voters. Each voter votes for exactly one party.
Let 77, denote the number of votes cast on party P,

m
(of course, Z n;
i=1

Model: Apportionment

1.We have m political parties: P, P,, ..., P

m.

2.We have n voters. Each voter votes for exactly one party.
Let 77, denote the number of votes cast on party P,

m
(of course, Z n;
i=1

3.We have k parliamentary seats and we need to distribute them

among the parties.

Model: Apportionment

1.We have m political parties: P, P,, ..., P

m.

2.We have n voters. Each voter votes for exactly one party.
Let 77, denote the number of votes cast on party P,

m
(of course, Z n;
i=1

3.We have k parliamentary seats and we need to distribute them

among the parties. (In most cases we want to do it proportionally!)

Apportionment: example applications

1.Parliamentary elections.

2. Distributing seats in European Parliament between countries based

on their population.

3.Distributing the numbers of electoral votes between the states in

the USA, based on their population.

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4
#votes 10 20 20 50

#seats ? ? ? ?

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50 /
#seats 1 2 2 5

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4
#votes 10 20 20 50
#seats 1 2 2 5
Example 2:

Party 1

Party 2

Party 3

Party 4

#votes

39

#seats

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4
#votes 10 20 20 50
#seats 1 2 2 5
Example 2:

Party 1 Party 2 Party 3 Party 4
#votes 6 7 39 48
#seats 0.6 0.7 3.9 4.8

Not
integral

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4
#votes 10 20 20 50
#seats 1 2 2 5
Example 2:

Party 1 Party 2 Party 3 Party 4
#votes 6 7 39 48
#seats 0 1 4 5

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4
#votes 10 20 20 50
#seats 1 2 2 5
Example 2:

Party 1 Party 2 Party 3 Party 4
#votes 6 7 39 48
#seats 1 1 4 4

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4
#votes 10 20 20 50
#seats 1 2 2 5
Example 2:

Party 1 Party 2 Party 3 Party 4
#votes 6 7 39 48
#seats 0 0 4 6

Apportionment: two examples

number of seats: kK = 10.

Example 1:

Party 1 Party 2 Party 3 Party 4
#votes 10 20 20 50
#seats 1 2 2 5
Example 2:

Party 1 Party 2 Party 3 Party 4
#votes 6 7 39 48
#seats 0 0 4 6

v/

Different apportionment methods will give different results!

Apportionment: two examples

number of seats: kK = 10.

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

Apportionment: two examples

number of seats: kK = 10.

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota: party P; should at least {k : EJ seats.
n

Apportionment: two examples

number of seats: kK = 10.

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

lower quota: party P; should at least {k : EJ seats.
n

Apportionment: two examples

number of seats: kK = 10.

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

upper quota 1 1 4 5

lower quota: party P; should at least |- seats.

3| =
l

seats.

SRS
|

upper quota: party P; should at most |-

The largest remainder method

(aka the Hamilton method or the Hare-Niemeyer method)

fl. First, assign to each party its lower quota.

2. Next, sort the parties by the remainders - 2 —

\ seats to the parties with the heist remainders.

n

\

{k-ﬁJ and assign the remaining
n

J

The largest remainder method

(aka the Hamilton method or the Hare-Niemeyer method)

ﬁ First, assign to each party its lower quota. \

2. Next, sort the parties by the remainders k- 2 — {k-ﬁJ and assign the remaining
n n

\ seats to the parties with the heist remainders. J

number of seats: kK = 10.

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

remainder 0.6 0.7 0.9 0.8

The largest remainder method

(aka the Hamilton method or the Hare-Niemeyer method)

ﬁ First, assign to each party its lower quota.

2. Next, sort the parties by the remainders & - 2% —

n

\ seats to the parties with the heist remainders.

~

{k-ﬁJ and assign the remaining
n

J

number of seats: kK = 10.

Party 1 Party 2 Party 3 Party 4
#votes 6 7 39 48
lower quota 0 0 3 4
remainder 0.6 0.7 0.9 0.8
#seats 0 1 4 5

The largest remainder method

(aka the Hamilton method or the Hare-Niemeyer method)

ﬁ First, assign to each party its lower quota.

2. Next, sort the parties by the remainders & - 2% —

n

\ seats to the parties with the heist remainders.

~

{k-ﬁJ and assign the remaining
n

number of seats: kK = 10.

Party 1 Party 2 Party 3
#votes 6 7 39 48
lower quota 0 0 3 4
remainder 0.6 0.7 0.9 0.8
#seats 0 1 4 S

The largest remainder method satisfies lower and upper quota.

House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party
should get at least the same number of seats as before the increase.

House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party
should get at least the same number of seats as before the increase.

Alabama paradox: the largest remainder method fails house monotonicity

Party 2 Party 3
#votes 6 6 2
value k-— for k = 10 4.286 4.286 1.429
n

#seats kK = 10 4 4 2

House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party
should get at least the same number of seats as before the increase.

Alabama paradox: the largest remainder method fails house monotonicity

Party 2 Party 3
#votes 6 6 2
value k-~ for k = 10 4.286 4.286 1.429
#seats k = 10 4 4 2
value k% fork =11 4.714 4.714 1.571
#seats k =11 5 5 1

House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats k then each party
should get at least the same number of seats as before the increase.

Alabama paradox: the largest remainder method fails house monotonicity

Party 2 Party 3
#votes 6 6 2
value k-~ for k = 10 4.286 4.286 1.429
#seats k = 10 4 4 2
value k% fork =11 4.714 4.714 1.571
#seats k =11 5 5 1

Population monotonicity and yet another paradox

(opulation monotonicity: if there exists two parties, P; and P;, such that the number of\

votes for P; increases with a higher rate than the number of votes for Pj (i.e., %> %, where

J

n;and nj’ are the new numbers of votes for P; and Pj, respectively), and if the number of

gats assigned to P] increases, then the number of seats assigned to P, cannot decrease.j

Population monotonicity and yet another paradox

(opulation monotonicity: if there exists two parties, P; and P;, such that the number of\

votes for P; increases with a higher rate than the number of votes for Pj (i.e., %> %, where

J

n;and nj’ are the new numbers of votes for P, and Pj, respectively), and if the number of

gats assigned to P] increases, then the number of seats assigned to P, cannot decrease.j

Population paradox: the largest remainder method fails population monotonicity

Population monotonicity and yet another paradox

(opulation monotonicity: if there exists two parties, P, and Pj, such that the number of\

votes for P, increases with a higher rate than the number of votes for Pj (i.e., 2> "—f, where
i N

n;and nj’ are the new numbers of votes for P; and Pj, respectively), and if the number of
Qats assigned to P] increases, then the number of seats assigned to P, cannot decrease)

Population paradox: the largest remainder method fails population monotonicity

number of seats: kK = 22

Party 1 Party 2 Party 3 Party4 Party 5

value k - i 2.35 4.89 6.12 7.30 9.34

n

#seats 3 5 6 7 9

Population monotonicity and yet another paradox

(opulation monotonicity: if there exists two parties, P, and Pj, such that the number of\

votes for P, increases with a higher rate than the number of votes for Pj (i.e., i> %, where

n; j

n;and nj’ are the new numbers of votes for P; and Pj, respectively), and if the number of
Qats assigned to P] increases, then the number of seats assigned to P, cannot decrease)

Population paradox: the largest remainder method fails population monotonicity

number of seats: kK = 22

Party 1 Party 2 Party 3 Party4 Party 5

value k % 2.35 4.89 6.12 7.30 9.34
#seats 3 5 6 7 9
n.
value k- = 6.12 7.30
n
#seats 2 5 6 7

Population monotonicity and yet another paradox

(opulation monotonicity: if there exists two parties, P, and Pj, such that the number of\

votes for P, increases with a higher rate than the number of votes for Pj (i.e., i> %, where

n; j

n;and nj’ are the new numbers of votes for P; and Pj, respectively), and if the number of
Qats assigned to P] increases, then the number of seats assigned to P, cannot decrease)

Population paradox: the largest remainder method fails population monotonicity

number of seats: kK = 22

Party 1 Party 2 Party 3 Party4 Party 5

value k % 2.35 4.89 6.12 7.30 9.34
#seats 3 5 6 7 9
n.
value k- = 6.12 7.30
n
#seats 6 7

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to
n;

si(r)+1 '

party P; until iteration r. In iteration r we assign one seat to the party P; which maximises

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to
h;

s(r)y+1

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

number of seats: kK = 10

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7/ 39 48
p—
I #votes/2 3 3.5 19.5 24
“.: #votes/3 2 2.33 13 16
-
§ #votes/ 4 1.5 1.75 9.75 12
e #votes/5 1.2 1.4 7.8 9.6
| -
)}
-g #votes/6 1 1.17 6.5 8.0
= #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

- #votes 6 7/ 39 48
‘F #votes/2 3 3.5 19.5 24
" #votes/3 2 2.33 13 16
§3 #votes/4 1.5 1.75 9.75 12
"é #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
2 #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
" #votes/3 2 2.33 13 16
§3 #votes/4 1.5 1.75 9.75 12
"é #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
2 #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
" #votes/3 2 2.33 13 16

§3 #votes/4 1.5 1.75 9.75 12

"é #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
2 #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
" #votes/3 2 2.33 13 16

§3 #votes/4 1.5 1.75 9.75 12

"é #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
2 #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
p—

I #votes/2 3 3.5 19.5 24
" #votes/3 2 2.33 13 16
v
§ #votes/ 4 1.5 1.75 9.75 12
e #votes/5 1.2 1.4 7.8 9.6
)}

-g #votes/6 1 1.17 6.5 8.0

= #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
; #votes/3 2 2.33 13 16
§ #votes/4 1.5 1.75 9.75 12

"é #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
2 #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
p—

I #votes/2 3 3.5 19.5 24
=2

}1’: #votes/3 2 2.33 13 16
O #votes/4 1.5 1.75 9.75 12
wn

e #votes/5 1.2 1.4 7.8 9.6
)}

-g #votes/6 1 1.17 6.5 8.0
= #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
; #votes/3 2 2.33 13 16
5 #votes/4 1.5 1.75 9.75 12
"é #votes/5 1.2 1.4 7.8 9.6
é #votes/6 : 1.17 6.5 8.0
2 #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
; #votes/3 2 2.33 13 16
5 #votes/4 1.5 1.75 9.75 12
S #votes/5 1.2 1.4 7.8 9.6
é #votes/6 ! 1.17 6.5 8.0
= #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4

o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
; #votes/3 2 2.33 13 16
5 #votes/4 1.5 1.75 9.75 12
S #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
= #votes/7 0.86 1 5.57 6.86

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4
o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
; #votes/3 2 2.33 13 16
g; #votes/4 1.5 1.75 9.75 12
S #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
= #votes/7 0.86 1 5.57 6.86
#seats 0 0 4 6

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to
h;

si(r)+1 '

party P; until iteration r. In iteration r we assign one seat to the party P; which maximises

Gact: D’Hondt method satisfies lower quota.)

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

Party 1 Party 2 Party 3 Party 4
o #votes 6 7 39 48
‘F #votes/2 3 3.5 19.5 24
; #votes/3 2 2.33 13 16
g; #votes/4 1.5 1.75 9.75 12
S #votes/5 1.2 1.4 7.8 9.6
é #votes/6 1 1.17 6.5 8.0
= #votes/7 0.86 1 5.57 6.86
#seats 0 0 4 6

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

n;

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

s{(r) + 1

S

Party 1 Party 2 Party 3 Party 4 o

-

o #votes 6 7 39 48 S-

A)

I #votes/2 3 3.5 19.5 24 =y

~ =

}1’: #votes/3 2 2.33 13 16 %

© ©

0 #votes/4 1.5 1.75 9.75 12 _'-;
Y

@)

o . . .

> #votes/5 1.2 1.4 7.8 9.6 <

- #votes/6 1 1.17 6.5 8.0 =

= #votes/7 0.86 1 5.57 6.86 -

c

#seats 0 0 4 6 :E

fa

D’Hondt method

(aka the Jefferson method or the Hagenbach-Bischoff method)

In each iteration we assign one seat to one party. Let s5;,(r) denote the number of seats assigned to

party P; until iteration r. In iteration r we assign one seat to the party P, which maximises

n;

s{(r) + 1

number of seats: kK = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6
#votes/6 1 1.17 6.5 8.0
#votes/7 0.86 1 5.57 6.86
#seats 0 0 4

D’Hondt method fails upper quota
It favours large parties.

Balinski and Young impossibility theorem (1983)

There exists no method of apportionment that satisfies population
monotonicity, lower and upper quota.

Since the apportionment methods are only

about rounding, what’s the whole deal about?

Komitet wyborczy!36I37]

I Prawo i Sprawiedliwosé
KKW Koalicja Obywatelska PO .N iPL Zieloni
I Sojusz Lewicy Demokratycznej
I Polskie Stronnictwo Ludowe
I Konfederacja Wolnos¢€ i Niepodlegtosé
I KWW Mniejszos¢ Niemiecka

Liczba
8 051 935
5 060 355
2319 946
1 578 523
1 256 953
32 094

Glosy

%
43,59
27,40
12,56
8,55
6,81
0,17

Mandaty
Liczba +/-
235 -
134 | v 320
49 | A 499
30 A4
1 —

1 —

Since the apportionment methods are only
about rounding, what’s the whole deal about?

Komitet wyborczy!36137] Glosy SN
Liczba % +/—- Liczba +/- %
I Prawo i Sprawiedliwosé 8051935 | 43,59 A 6,01 235 - | 51,09
KKW Koalicja Obywatelska PO .N iPL Zieloni | 5060355 27,40 V420 134 w32l 2913
I Sojusz Lewicy Demokratycznej 2319946 12,56 4 5,01 49 4 499 10,65
I Polskie Stronnictwo Ludowe 1578 523 8,55 A 3,42 30 A 14 6,52
I Konfederacja Wolnosé i Niepodlegtosé 1 256 953 6,81 — 1 — 2,39
I KWW Mniejszosé Niemiecka 32094 0,17 | Vo001 1 -| 0,22

Proportionality with respect to party
affiliation and geographic district.

D’Hondt method used independently in districts

P1 P2
votes 450 550
seats 4 6
k=10

district 1

Proportionality with respect to party
affiliation and geographic district.

D’Hondt method used independently in districts

P1 P2 P1 P2
votes 450 550 votes 450 550
seats 4 6 seats 4 6
k=10 k=10
district 1 district 10

Proportionality with respect to party
affiliation and geographic district.

D’Hondt method used independently in districts

P1 P2 P1 P2
votes 450 550 votes 450 550
seats 4 6 seats 4 6
k=10 k=10
district 1 district 10

seats 160 240

D’Hondt method used independently in districts

P1 P2 P1 P2
votes 450 550 votes 450 550
seats 4 6 seats 4 6
k=10 k=10
district 1 district 10

seats 160 240

lower quota 180 220

Are we fated to disproportionality?

Are we fated to disproportionality?

NO!

Are we fated to disproportionality?

NO!

Bi-apportionment

Are we fated to disproportionality?

NO!

Novel committee
Election methods

Bi-apportionment

Input:

1. A matrix (vl-j) e N4 where Vij is the number of votes cast on pary i in district j

m
d i — I
2. A vector (hj) € N with 2 h; = k;
i=1
here hj is the number of seats we should assign to district ;.

Bi-apportionment
Input:

1. A matrix (vl-j) e N4 where Vij is the number of votes cast on pary i in district j

2. A vector (hj) e N? with 2 hj = k;

i=1
here hj is the number of seats we should assign to district ;.

3. From (v;;) we compute the vector (s;) € N where s; is the number of seats that

should be given to party i (we can compute that using an apportionment method).

Bi-apportionment

Input:

1. A matrix (v;;) € N4 where v.. is the number of votes cast on pary I in district j
1j ij J

2. A vector (hj) e N with 2 hj = k;

i=1
here hj is the number of seats we should assign to district ;.

3. From (v;;) we compute the vector (s;) € N where s; is the number of seats that

should be given to party i (we can compute that using an apportionment method).

Output:

A matrix (s;;) € N"7%4 where s;; is the number of seats given to party i in district j.

m

d
For each i it must hold that Z s;; = 5; and for each j we must have 2 s; = d.
j=1 i=1

Bi-apportionment: a two step procedure.
Input: (v;;) € N, (h) € N%, (s)) € N™.

Output: (s;;) € N,

The procedure:

1. First we find a possibly non-integral matrix (fl-]-) e @’fx‘l such that

d m
Zﬁ-j = s, for each 1 and Z Sij = d] for each j.
J=1 i=1

2.Next, we round (fl-j) to obtain (s;;).

Bi-apportionment: iterative proportional fitting
Input: (v;;) € N, (h) € N%, (s)) € N™.

. . Xd
Intermediate step: (f;;) € Q™.

Bi-apportionment: iterative proportional fitting
Input: (v;;) € N, (h) € N%, (s)) € N™.

. . Xd
Intermediate step: (f;;) € Q™.

Idea: rescale the matrix (vl-j) so that it satisfies constraints for rows and columns.

Bi-apportionment: iterative proportional fitting
Input: (v;;) € N, (h) € N%, (s)) € N™.

. . Xd
Intermediate step: (f;;) € Q™.

Idea: rescale the matrix (vl-j) so that it satisfies constraints for rows and columns.

Problem: it might not be possible to achieve that by rescaling the matrix by
a single constant.

Bi-apportionment: iterative proportional fitting
Input: (v;;) € N, (h) € N%, (s)) € N™.

. . Xd
Intermediate step: (f;;) € Q1.

Idea: rescale the matrix (vl-j) so that it satisfies constraints for rows and columns.

Problem: it might not be possible to achieve that by rescaling the matrix by
a single constant.

Solution: there exists a unique matrix of the form fl-j = ﬂivl-jyj. This matrix is called

the fair share matrix and is characterised by the axioms of exactness,
homogeneity, and uniformity.

Bi-apportionment: iterative proportional fitting
Input: (v;) € N, (h) € N, (s) € N™.

. . Xd
Intermediate step: (f;;) € Q™.

Idea: rescale the matrix (vl-j) so that it satisfies constraints for rows and columns.

Problem: it might not be possible to achieve that by rescaling the matrix by
a single constant.

Solution: there exists a unique matrix of the form fl-j = ﬂivl-jyj. This matrix is called

the fair share matrix and is characterised by the axioms of exactness,
homogeneity, and uniformity.

Iterative proportional fitting is an algorithm for computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

Converting (vl-j) to (fl-j).

Z target (s;)
40 30 20 10 100 150
35 50 100 75 260 300
30 80 70 120 300 400
20 30 40 50 140 150
) 125 190 230 255
target (h,) 200 300 400 100

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.
First rescale rows, then columns, then rows, etc.

Converting (vl-j) to (fl-j).

Z target (s,)
60.00 45.00 30.00 15.00 150.00 150
40.38 57.69 115.38 86.54 300.00 300
40.00 106.67 93.33 160.00 400.00 400
21.43 32.14 42.86 53.57 150.00 150
Y | 161.81 | 24150 | 28158 | 315.11
target (h,) 200 300 400 100

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.
First rescale rows, then columns, then rows, etc.

Converting (vl-j) to (fl-j).

Z target (s;)
74.16 55.90 42.46 4.76 177.44 150
49.92 71.67 163.91 27.46 312.96 300
49.44 132.50 132.59 50.78 365.31 400
26.49 39.93 60.88 17.00 144.30 150
Y | 200.00 | 300.00 | 400.00 | 100.00
target (h,) 200 300 400 100

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.
First rescale rows, then columns, then rows, etc.

Converting (vl-j) to (fl-j).

and so on...

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.
First rescale rows, then columns, then rows, etc.

After three iterations:

Z target (s;)
64.61 46.28 35.42 3.83 150.13 150
49.95 68.15 156.49 25.37 299.96 300
56.70 144.40 145.06 53.76 399.92 400
28.74 41.18 63.03 17.03 149.99 150
Y | 200.00 | 300.00 | 400.00 | 100.00
target (h,) 200 300 400 100

