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Let  denote the number of votes cast on party   

(of course, ). 

3.We have  parliamentary seats and we need to distribute them 

among the parties. (In most cases we want to do it proportionally!)
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Apportionment: example applications

1.Parliamentary elections.


2.Distributing seats in European Parliament between countries based 

on their population.


3.Distributing the numbers of electoral votes between the states in 

the USA, based on their population.
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Different apportionment methods will give different results!
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Apportionment: two examples

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

upper quota 1 1 4 5

lower quota: party  should at least  seats.Pi ⌊k ⋅
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n ⌋
upper quota: party  should at most  seats.Pi ⌈k ⋅
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1. First, assign to each party its lower quota.


2. Next, sort the parties by the remainders  and assign the remaining 

seats to the parties with the heist remainders.  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number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

remainder 0.6 0.7 0.9 0.8
#seats 0 1 4 5

The largest remainder method satisfies lower and upper quota.
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Population monotonicity and yet another paradox
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votes for  increases with a higher rate than the number of votes for  (i.e., , where 

 and  are the new numbers of votes for  and , respectively), and if the number of 
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Baliński and Young impossibility theorem (1983)

There exists no method of apportionment that satisfies population 
monotonicity, lower and upper quota.
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D’Hondt method used independently in districts
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Bi-apportionment

Input: 

1. A matrix  where  is the number of votes cast on pary  in district 


2. A vector  with ;  

here  is the number of seats we should assign to district .


(vij) ∈ ℕm×d vij i j

(hj) ∈ ℕd
m

∑
i=1

hj = k
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Bi-apportionment

Input: 

1. A matrix  where  is the number of votes cast on pary  in district 


2. A vector  with ;  

here  is the number of seats we should assign to district . 

3. From  we compute the vector  where  is the number of seats that 

should be given to party  (we can compute that using an apportionment method).


Output:


A matrix  where  is the number of seats given to party  in district . 
 

For each  it must hold that  and for each  we must have .


(vij) ∈ ℕm×d vij i j

(hj) ∈ ℕd
m

∑
i=1

hj = k

hj j

(vij) (si) ∈ ℕm si
i

(sij) ∈ ℕm×d sij i j

i
d

∑
j=1

sij = si j
m

∑
i=1

sij = dj



Bi-apportionment: a two step procedure.

Input: , , .


Output: .


The procedure:


1.First we find a possibly non-integral matrix  such that 

  for each  and  for each . 

 

2.Next, we round  to obtain .

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

(sij) ∈ ℕm×d

( fij) ∈ ℚm×d
+

d

∑
j=1

fij = si i
m

∑
i=1

sij = dj j

( fij) (sij)
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Input: , , .


Intermediate step: .


Idea: rescale the matrix  so that it satisfies constraints for rows and columns.


Problem: it might not be possible to achieve that by rescaling the matrix by

               a single constant.


Solution: there exists a unique matrix of the form . This matrix is called

               the fair share matrix and is characterised by the axioms of exactness,

               homogeneity, and uniformity.
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Bi-apportionment: iterative proportional fitting

Input: , , .


Intermediate step: .


Idea: rescale the matrix  so that it satisfies constraints for rows and columns.


Problem: it might not be possible to achieve that by rescaling the matrix by

               a single constant.


Solution: there exists a unique matrix of the form . This matrix is called

               the fair share matrix and is characterised by the axioms of exactness,

               homogeneity, and uniformity.


Iterative proportional fitting is an algorithm for  computing the fair share matrix.

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

( fij) ∈ ℚm×d
+

(vij)

fij = λivijγj

First rescale rows, then columns, then rows, etc.



Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for  computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

40 30 20 10 100 150

35 50 100 75 260 300

30 80 70 120 300 400

20 30 40 50 140 150

125 190 230 255

200 300 400 100

∑∑∑∑

∑

target ( )si

target ( )hi

Converting  to .(vij) ( fij)



Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for  computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

60.00 45.00 30.00 15.00 150.00 150

40.38 57.69 115.38 86.54 300.00 300

40.00 106.67 93.33 160.00 400.00 400

21.43 32.14 42.86 53.57 150.00 150

161.81 241.50 281.58 315.11

200 300 400 100

∑∑∑∑

∑

target ( )si

target ( )hi

Converting  to .(vij) ( fij)



Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for  computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

74.16 55.90 42.46 4.76 177.44 150

49.92 71.67 163.91 27.46 312.96 300

49.44 132.50 132.59 50.78 365.31 400

26.49 39.93 60.88 17.00 144.30 150

200.00 300.00 400.00 100.00

200 300 400 100

∑∑∑∑

∑

target ( )si

target ( )hi

Converting  to .(vij) ( fij)



Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for  computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

Converting  to .(vij) ( fij)

and so on…



Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for  computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

64.61 46.28 35.42 3.83 150.13 150

49.95 68.15 156.49 25.37 299.96 300

56.70 144.40 145.06 53.76 399.92 400

28.74 41.18 63.03 17.03 149.99 150

200.00 300.00 400.00 100.00

200 300 400 100

∑∑∑∑

∑

target ( )si

target ( )hi

After three iterations:


