
Proportional Algorithms:
Apportionment

Piotr Skowron

University of Warsaw

Model: Apportionment

1.We have political parties: .m P1, P2, …, Pm

Model: Apportionment

1.We have political parties: . 

2.We have voters. Each voter votes for exactly one party. 

(of course,).

m P1, P2, …, Pm

n
m

∑
i=1

ni = n

Model: Apportionment

1.We have political parties: . 

2.We have voters. Each voter votes for exactly one party. 

Let denote the number of votes cast on party (o 

f course,).

m P1, P2, …, Pm

n

ni Pi
m

∑
i=1

ni = n

Model: Apportionment

1.We have political parties: . 

2.We have voters. Each voter votes for exactly one party. 

Let denote the number of votes cast on party  

(of course,).

m P1, P2, …, Pm

n

ni Pi
m

∑
i=1

ni = n

Model: Apportionment

1.We have political parties: . 

2.We have voters. Each voter votes for exactly one party. 

Let denote the number of votes cast on party  

(of course,). 

3.We have parliamentary seats and we need to distribute them 

among the parties.

m P1, P2, …, Pm

n

ni Pi
m

∑
i=1

ni = n

k

Model: Apportionment

1.We have political parties: . 

2.We have voters. Each voter votes for exactly one party. 

Let denote the number of votes cast on party  

(of course,). 

3.We have parliamentary seats and we need to distribute them 

among the parties. (In most cases we want to do it proportionally!)

m P1, P2, …, Pm

n

ni Pi
m

∑
i=1

ni = n

k

Apportionment: example applications

1.Parliamentary elections.

2.Distributing seats in European Parliament between countries based

on their population.

3.Distributing the numbers of electoral votes between the states in

the USA, based on their population.

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats ? ? ? ?

number of seats: .k = 10
Example 1:

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats 1 2 2 5

number of seats: .k = 10
Example 1:

✓

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats 1 2 2 5

number of seats: .k = 10
Example 1:

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

#seats ? ? ? ?

Example 2:

?

✓

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats 1 2 2 5

number of seats: .k = 10
Example 1:

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

#seats 0.6 0.7 3.9 4.8

Example 2:

Not  
integral

✓

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats 1 2 2 5

number of seats: .k = 10
Example 1:

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

#seats 0 1 4 5

Example 2:

?

✓

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats 1 2 2 5

number of seats: .k = 10
Example 1:

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

#seats 1 1 4 4

Example 2:

?

✓

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats 1 2 2 5

number of seats: .k = 10
Example 1:

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

#seats 0 0 4 6

Example 2:

?

✓

Apportionment: two examples

Party 1 Party 2 Party 3 Party 4

#votes 10 20 20 50

#seats 1 2 2 5

number of seats: .k = 10
Example 1:

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

#seats 0 0 4 6

Example 2:

?

✓

Different apportionment methods will give different results!

Apportionment: two examples

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

Apportionment: two examples

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota: party should at least seats.Pi ⌊k ⋅
ni

n ⌋

Apportionment: two examples

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

lower quota: party should at least seats.Pi ⌊k ⋅
ni

n ⌋

Apportionment: two examples

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

upper quota 1 1 4 5

lower quota: party should at least seats.Pi ⌊k ⋅
ni

n ⌋
upper quota: party should at most seats.Pi ⌈k ⋅

ni

n ⌉

1. First, assign to each party its lower quota.

2. Next, sort the parties by the remainders and assign the remaining

seats to the parties with the heist remainders. 

k ⋅
ni

n
− ⌊k ⋅

ni

n ⌋

The largest remainder method

(aka the Hamilton method or the Hare–Niemeyer method)

1. First, assign to each party its lower quota.

2. Next, sort the parties by the remainders and assign the remaining

seats to the parties with the heist remainders.  

k ⋅
ni

n
− ⌊k ⋅

ni

n ⌋

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

remainder 0.6 0.7 0.9 0.8

The largest remainder method

(aka the Hamilton method or the Hare–Niemeyer method)

1. First, assign to each party its lower quota.

2. Next, sort the parties by the remainders and assign the remaining

seats to the parties with the heist remainders.  

k ⋅
ni

n
− ⌊k ⋅

ni

n ⌋

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

remainder 0.6 0.7 0.9 0.8
#seats 0 1 4 5

The largest remainder method

(aka the Hamilton method or the Hare–Niemeyer method)

The largest remainder method

(aka the Hamilton method or the Hare–Niemeyer method)

1. First, assign to each party its lower quota.

2. Next, sort the parties by the remainders and assign the remaining

seats to the parties with the heist remainders.  

k ⋅
ni

n
− ⌊k ⋅

ni

n ⌋

number of seats: .k = 10

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

lower quota 0 0 3 4

remainder 0.6 0.7 0.9 0.8
#seats 0 1 4 5

The largest remainder method satisfies lower and upper quota.

House monotonicity and Alabama paradox

House monotonicity: if we increase the number of seats then each party
should get at least the same number of seats as before the increase. 

k

House monotonicity and Alabama paradox

Party 1 Party 2 Party 3

6 6 2

4.286 4.286 1.429

4 4 2

House monotonicity: if we increase the number of seats then each party
should get at least the same number of seats as before the increase. 

k

Alabama paradox: the largest remainder method fails house monotonicity

value for k ⋅
ni

n
k = 10

#seats k = 10

#votes

House monotonicity and Alabama paradox

Party 1 Party 2 Party 3

6 6 2

4.286 4.286 1.429

4 4 2

4.714 4.714 1.571

5 5 1

House monotonicity: if we increase the number of seats then each party
should get at least the same number of seats as before the increase. 

k

Alabama paradox: the largest remainder method fails house monotonicity

value for k ⋅
ni

n
k = 10

#seats k = 10

#seats k = 11

#votes

value for k ⋅
ni

n
k = 11

House monotonicity and Alabama paradox

Party 1 Party 2 Party 3

6 6 2

4.286 4.286 1.429

4 4 2
4.714 4.714 1.571

5 5 1

House monotonicity: if we increase the number of seats then each party
should get at least the same number of seats as before the increase. 

k

Alabama paradox: the largest remainder method fails house monotonicity

value for k ⋅
ni

n
k = 10

#seats k = 10

#seats k = 11

#votes

value for k ⋅
ni

n
k = 11

Population monotonicity and yet another paradox

Population monotonicity: if there exists two parties, and , such that the number of

votes for increases with a higher rate than the number of votes for (i.e., , where

 and are the new numbers of votes for and , respectively), and if the number of
seats assigned to increases, then the number of seats assigned to cannot decrease.

Pi Pj

Pi Pj
n′￼i
ni

>
n′￼j

nj

n′￼i n′￼j Pi Pj
Pj Pi

Population monotonicity and yet another paradox

Population monotonicity: if there exists two parties, and , such that the number of

votes for increases with a higher rate than the number of votes for (i.e., , where

 and are the new numbers of votes for and , respectively), and if the number of
seats assigned to increases, then the number of seats assigned to cannot decrease.

Pi Pj

Pi Pj
n′￼i
ni

>
n′￼j

nj

n′￼i n′￼j Pi Pj
Pj Pi

Population paradox: the largest remainder method fails population monotonicity

Population monotonicity and yet another paradox

Population monotonicity: if there exists two parties, and , such that the number of

votes for increases with a higher rate than the number of votes for (i.e., , where

 and are the new numbers of votes for and , respectively), and if the number of
seats assigned to increases, then the number of seats assigned to cannot decrease.

Pi Pj

Pi Pj
n′￼i
ni

>
n′￼j

nj

n′￼i n′￼j Pi Pj
Pj Pi

Population paradox: the largest remainder method fails population monotonicity

Party 1 Party 2 Party 3 Party 4 Party 5

2.35 4.89 6.12 7.30 9.34

3 5 6 7 9

value k ⋅
ni

n

#seats

number of seats: k = 22

Population monotonicity and yet another paradox

Population monotonicity: if there exists two parties, and , such that the number of

votes for increases with a higher rate than the number of votes for (i.e., , where

 and are the new numbers of votes for and , respectively), and if the number of
seats assigned to increases, then the number of seats assigned to cannot decrease.

Pi Pj

Pi Pj
n′￼i
ni

>
n′￼j

nj

n′￼i n′￼j Pi Pj
Pj Pi

Population paradox: the largest remainder method fails population monotonicity

Party 1 Party 2 Party 3 Party 4 Party 5

2.35 4.89 6.12 7.30 9.34

3 5 6 7 9

2.4 4.77 6.12 7.30 9.41

2 5 6 7 10

value k ⋅
ni

n

#seats

#seats

value k ⋅
ni

n

number of seats: k = 22

Population monotonicity and yet another paradox

Population monotonicity: if there exists two parties, and , such that the number of

votes for increases with a higher rate than the number of votes for (i.e., , where

 and are the new numbers of votes for and , respectively), and if the number of
seats assigned to increases, then the number of seats assigned to cannot decrease.

Pi Pj

Pi Pj
n′￼i
ni

>
n′￼j

nj

n′￼i n′￼j Pi Pj
Pj Pi

Population paradox: the largest remainder method fails population monotonicity

Party 1 Party 2 Party 3 Party 4 Party 5

2.35 4.89 6.12 7.30 9.34

3 5 6 7 9

2.4 4.77 6.12 7.30 9.41

2 5 6 7 10

value k ⋅
ni

n

#seats

#seats

value k ⋅
ni

n

number of seats: k = 22

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48

#votes/2 3 3.5 19.5 24

#votes/3 2 2.33 13 16

#votes/4 1.5 1.75 9.75 12

#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24

#votes/3 2 2.33 13 16

#votes/4 1.5 1.75 9.75 12

#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24

#votes/3 2 2.33 13 16

#votes/4 1.5 1.75 9.75 12

#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16

#votes/4 1.5 1.75 9.75 12

#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16

#votes/4 1.5 1.75 9.75 12

#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12

#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12

#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6

#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6
#votes/6 1 1.17 6.5 8.0

#votes/7 0.86 1 5.57 6.86nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6
#votes/6 1 1.17 6.5 8.0
#votes/7 0.86 1 5.57 6.86nu

m
be

r
of

 s
ea

ts
:

k
=

10
In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6
#votes/6 1 1.17 6.5 8.0
#votes/7 0.86 1 5.57 6.86

#seats 0 0 4 6

nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

Fact: D’Hondt method satisfies lower quota.

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6
#votes/6 1 1.17 6.5 8.0
#votes/7 0.86 1 5.57 6.86

#seats 0 0 4 6

nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6
#votes/6 1 1.17 6.5 8.0
#votes/7 0.86 1 5.57 6.86

#seats 0 0 4 6

nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D
’H

on
dt

 m
et

ho
d

fa
ils

 u
pp

er
 q

uo
ta

D’Hondt method

(aka the Jefferson method or the Hagenbach–Bischoff method)

Party 1 Party 2 Party 3 Party 4

#votes 6 7 39 48
#votes/2 3 3.5 19.5 24
#votes/3 2 2.33 13 16
#votes/4 1.5 1.75 9.75 12
#votes/5 1.2 1.4 7.8 9.6
#votes/6 1 1.17 6.5 8.0
#votes/7 0.86 1 5.57 6.86

#seats 0 0 4 6

nu
m

be
r

of
 s

ea
ts

:
k

=
10

In each iteration we assign one seat to one party. Let denote the number of seats assigned to

party until iteration . In iteration we assign one seat to the party which maximises . 

si(r)
Pi r r Pi

ni

si(r) + 1

D
’H

on
dt

 m
et

ho
d

fa
ils

 u
pp

er
 q

uo
ta

 
It

 f
av

ou
rs

 la
rg

e
pa

rt
ie

s.

Baliński and Young impossibility theorem (1983)

There exists no method of apportionment that satisfies population
monotonicity, lower and upper quota.

Since the apportionment methods are only
about rounding, what’s the whole deal about?

Since the apportionment methods are only
about rounding, what’s the whole deal about?

Proportionality with respect to party
affiliation and geographic district.

D’Hondt method used independently in districts

Proportionality with respect to party
affiliation and geographic district.

P1 P2

votes 450 550

seats 4 6

k = 10

district 1

P1 P2

votes 450 550

seats 4 6

k = 10

district 1

P1 P2

votes 450 550

seats 4 6

k = 10

district 10

…

Proportionality with respect to party
affiliation and geographic district.

D’Hondt method used independently in districts

P1 P2

seats 160 240

P1 P2

votes 450 550

seats 4 6

k = 10

district 1

P1 P2

votes 450 550

seats 4 6

k = 10

district 10

…

D’Hondt method used independently in districts

P1 P2

seats 160 240

lower quota 180 220

P1 P2

votes 450 550

seats 4 6

k = 10

district 1

P1 P2

votes 450 550

seats 4 6

k = 10

district 10

…

D’Hondt method used independently in districts

Are we fated to disproportionality?

NO!

Are we fated to disproportionality?

NO!

Bi-apportionment
Novel committee

election methods

Are we fated to disproportionality?

NO!

Bi-apportionment Novel committee

Election methods

Are we fated to disproportionality?

Bi-apportionment

Input: 

1. A matrix where is the number of votes cast on pary in district

2. A vector with ;  

here is the number of seats we should assign to district .

(vij) ∈ ℕm×d vij i j

(hj) ∈ ℕd
m

∑
i=1

hj = k

hj j

Bi-apportionment

Input: 

1. A matrix where is the number of votes cast on pary in district

2. A vector with ;  

here is the number of seats we should assign to district . 

3. From we compute the vector where is the number of seats that

should be given to party (we can compute that using an apportionment method).

(vij) ∈ ℕm×d vij i j

(hj) ∈ ℕd
m

∑
i=1

hj = k

hj j

(vij) (si) ∈ ℕm si
i

Bi-apportionment

Input: 

1. A matrix where is the number of votes cast on pary in district

2. A vector with ;  

here is the number of seats we should assign to district . 

3. From we compute the vector where is the number of seats that

should be given to party (we can compute that using an apportionment method).

Output:

A matrix where is the number of seats given to party in district . 
 

For each it must hold that and for each we must have .

(vij) ∈ ℕm×d vij i j

(hj) ∈ ℕd
m

∑
i=1

hj = k

hj j

(vij) (si) ∈ ℕm si
i

(sij) ∈ ℕm×d sij i j

i
d

∑
j=1

sij = si j
m

∑
i=1

sij = dj

Bi-apportionment: a two step procedure.

Input: , , .

Output: .

The procedure:

1.First we find a possibly non-integral matrix such that 

 for each and for each . 

 

2.Next, we round to obtain .

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

(sij) ∈ ℕm×d

(fij) ∈ ℚm×d
+

d

∑
j=1

fij = si i
m

∑
i=1

sij = dj j

(fij) (sij)

Bi-apportionment: iterative proportional fitting

Input: , , .

Intermediate step: .

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

(fij) ∈ ℚm×d
+

Bi-apportionment: iterative proportional fitting

Input: , , .

Intermediate step: .

Idea: rescale the matrix so that it satisfies constraints for rows and columns.

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

(fij) ∈ ℚm×d
+

(vij)

Bi-apportionment: iterative proportional fitting

Input: , , .

Intermediate step: .

Idea: rescale the matrix so that it satisfies constraints for rows and columns.

Problem: it might not be possible to achieve that by rescaling the matrix by

 a single constant.

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

(fij) ∈ ℚm×d
+

(vij)

Bi-apportionment: iterative proportional fitting

Input: , , .

Intermediate step: .

Idea: rescale the matrix so that it satisfies constraints for rows and columns.

Problem: it might not be possible to achieve that by rescaling the matrix by

 a single constant.

Solution: there exists a unique matrix of the form . This matrix is called

 the fair share matrix and is characterised by the axioms of exactness,

 homogeneity, and uniformity.

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

(fij) ∈ ℚm×d
+

(vij)

fij = λivijγj

Bi-apportionment: iterative proportional fitting

Input: , , .

Intermediate step: .

Idea: rescale the matrix so that it satisfies constraints for rows and columns.

Problem: it might not be possible to achieve that by rescaling the matrix by

 a single constant.

Solution: there exists a unique matrix of the form . This matrix is called

 the fair share matrix and is characterised by the axioms of exactness,

 homogeneity, and uniformity.

Iterative proportional fitting is an algorithm for computing the fair share matrix.

(vij) ∈ ℕm×d (hj) ∈ ℕd (si) ∈ ℕm

(fij) ∈ ℚm×d
+

(vij)

fij = λivijγj

First rescale rows, then columns, then rows, etc.

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

40 30 20 10 100 150

35 50 100 75 260 300

30 80 70 120 300 400

20 30 40 50 140 150

125 190 230 255

200 300 400 100

∑∑∑∑

∑

target ()si

target ()hi

Converting to .(vij) (fij)

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

60.00 45.00 30.00 15.00 150.00 150

40.38 57.69 115.38 86.54 300.00 300

40.00 106.67 93.33 160.00 400.00 400

21.43 32.14 42.86 53.57 150.00 150

161.81 241.50 281.58 315.11

200 300 400 100

∑∑∑∑

∑

target ()si

target ()hi

Converting to .(vij) (fij)

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

74.16 55.90 42.46 4.76 177.44 150

49.92 71.67 163.91 27.46 312.96 300

49.44 132.50 132.59 50.78 365.31 400

26.49 39.93 60.88 17.00 144.30 150

200.00 300.00 400.00 100.00

200 300 400 100

∑∑∑∑

∑

target ()si

target ()hi

Converting to .(vij) (fij)

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

Converting to .(vij) (fij)

and so on…

Iterative proportional fitting: example

Iterative proportional fitting is an algorithm for computing the fair share matrix.

First rescale rows, then columns, then rows, etc.

64.61 46.28 35.42 3.83 150.13 150

49.95 68.15 156.49 25.37 299.96 300

56.70 144.40 145.06 53.76 399.92 400

28.74 41.18 63.03 17.03 149.99 150

200.00 300.00 400.00 100.00

200 300 400 100

∑∑∑∑

∑

target ()si

target ()hi

After three iterations:

