

Modern Parallel Algorithms

Lecture 3

Artur Czumaj

DIMAP and Department of Computer Science University of Warwick

Warszawa, November 2022

Sorting

- We discussed sorting for small values of *N* (with respect to *s*)
- One can do "similarly" for arbitrary N and s: to sort in $O(\log_s N)$ rounds
- This can be done even deterministically!

Corollary: Sorting of *N* numbers on an MPC with local space $s = N^{\delta}$ and linear total space O(N) can be done deterministically in O(1) rounds

PRAM: sorting lower bound of $\Omega(\log N)$ time (with any poly(N) number of processors)

Example: Sorting A O(1)-rounds deterministic sorting for $s = O(n^{\delta})$

Input: distinct numbers x_1, \ldots, x_N ; machine M_i stores $x_{(i-1)\cdot s+1}, \ldots, x_{i\cdot s}, 1 \le i \le \mathfrak{m} = \frac{N}{s}$ **Output:** machine M_i stores $x_{\pi((i-1)\cdot\mathfrak{s}+1)}, \ldots, x_{\pi(i\cdot\mathfrak{s})}, 1 \leq i \leq \frac{N}{\mathfrak{s}}$, where π is an N-permutation such that $x_{\pi(1)} < x_{\pi(2)} < \cdots \leq x_{\pi(N)}$

1 Partition the input (arbitrarily) into $\mathfrak{s}^{1/3}$ groups of the same size

▶ each group has $\frac{N}{\epsilon^{1/3}}$ elements and has allocated $\frac{\mathfrak{m}}{\epsilon^{1/3}}$ machines

3 Recursively sort each group

4 In each group take as *pivots* all elements with ranks $j \cdot \mathfrak{s}^{2/3}$ for $1 \leq j \leq \frac{N}{\mathfrak{s}}$

the set of $\frac{N}{\sigma^{2/3}}$ pivots from all groups form a 5-pivot 5 //

6 Each group sends all its pivots to the first group

7 First group recursively sort all $\frac{N}{\epsilon^{2/3}}$ pivots; denote the pivots^a as $p_0 < p_1 < \cdots < p_{1+N/\epsilon^{2/3}}$.

8 Distribute the sorted order of all pivots to each group

▶ machines in the first group send relative ranks of all pivots to every group

10 Partition all input elements in each group into sets $\Pi_j^{\langle i \rangle}$, with $1 \leq i \leq s^{1/3}$, $0 \leq j \leq \frac{N}{s^{2/3}}$,

where $\Pi_i^{\langle i \rangle} := \{x \text{ input from group } i : p_j < x \le p_{j+1}\}$

11 Each group i sends the sizes of all sets $\prod_{j=1}^{\langle i \rangle}$ to the $\frac{\mathfrak{m}}{\mathfrak{s}^{1/3}}$ machines in the first group

12 Machines in the first group compute the rank of each pivot $rank(p_j) = \sum_{k=0}^{j-1} \sum_{i=1}^{s^{1/3}} |\Pi_i^{\langle i \rangle}|$ 13 Machines from the first group send ranks of all pivots to all groups

14 Machines in the first group allocate pivots to $2\mathfrak{s}^{1/3}$ groups with $\frac{\mathfrak{m}}{\mathfrak{s}^{1/3}}$ machines each, so that

▶ the *j*-th smallest pivot p_i is allocated to group $\tau(j)$ 15

16
$$\blacktriangleright \tau(0) \leq \tau(1) \leq \cdots \leq \tau(\frac{N}{\mathfrak{s}^{1/3}})$$

▶ if group k is allocated to pivots j, \ldots, j' then $\sum_{r=j}^{j'} \sum_{i=1}^{s^{1/3}} |\Pi_r^{\langle i \rangle}| \leq \frac{N}{s^{1/3}}$ 17 18 Machines in the first group distribute all values $\tau(0), \ldots, \tau(\frac{N}{r^{2/3}})$ to all groups

19 Each group *i*, for every $0 \le j \le \frac{N}{\epsilon^{1/3}}$, sends $\prod_{i=1}^{\langle i \rangle}$ to group $\tau(j)$

20 Each group k $(1 \le k \le 2\mathfrak{s}^{1/3})$ recursively sorts all elements in sets $\bigcup_{j:\tau(j)=k} \bigcup_{i=1}^{\mathfrak{s}^{1/3}} \prod_{j}^{\langle i \rangle}$

21 Each group k determines the rank of its t-th largest element to be $t + \sum_{j:\tau(j) < k} \sum_{i=1}^{s^{1/3}} |\Pi_{\ell}^{\langle i \rangle}|$

22 Each machine, for each its element with rank ρ , sends that element and its rank to $M_{1,\rho/\pi}$

m – number of machines used $\mathfrak{m} = O(N/\mathfrak{s})$

Number of rounds is constant for any positive constant δ It's not $O(\log_{S} N)$ though

^aWe assume that the 0-th smallest pivot is $p_0 = -\infty$ and the $(\frac{N}{s^{2/3}}+1)$ -st smallest pivot is $p_{1+N/s^{2/3}} = +\infty$.

PRAM Simulations

- Why do we care?
- There are many PRAM algorithms + some textbooks (was even in CLRS)

PRAM Simulations

Theorem: Let ALG be an CRCW PRAM algorithm that runs in *T* steps using *P* processors and *Q* memory cells.

Then one can simulate ALG in $O(T \log_s P)$ rounds on an MPC with local space *s* and $M = O(\frac{P+Q}{s})$ machines.

PRAM Simulations

- PRAM simulations yield many MPC algorithms
 - We have a great library of PRAM algorithms for graph problems, for computational geometry problems, etc
 - For example, linear programming (for constant-dimension) can be solved in O(1) rounds on an MPC with local space $s = O(N^{\delta})$
- Main interest in the algorithmic community:
 - can we do better?

BSP Simulations

• Similar results

Congested clique

• Is almost equivalent to MPC with s = O(n)

MPC for graphs

Input: Edges of an *m*-edge graph on *n* vertices

MPC algorithms for graphs low-local-memory setting $s = O(n^{\delta})$

- PRAM simulation:
 - any *t*-steps PRAM algorithm can be simulated in *O(t)* rounds on MPC with low-local space
- Basic primitive:
 - sorting of *N* numbers on MPC with $s = O(n^{\delta})$ on M = O(N/s)machines can be done deterministically in O(1) rounds
- Basic "obstacle":
 - 1-vs-2-cycles conjecture:
 - distinguishing between a cycle on *n* vertices and two cycles on n/2 vertices requires $\Omega(\log n)$ rounds on an MPC with $s = O(n^{\delta})$

- Basic "obstacle":
 - 1-vs-2-cycles conjecture:
 - distinguishing between a cycle on *n* vertices and two cycles on n/2 vertices requires $\Omega(\log n)$ rounds on an MPC with $s = O(n^{\delta})$

MPC algorithms for graphs low-local-memory setting $s = O(n^{\delta})$

- PRAM simulation:
 - any *t*-steps PRAM algorithm can be simulated in *O(t)* rounds on MPC with low-local space
- Basic primitive:
 - sorting of *N* numbers on MPC with $s = O(n^{\delta})$ on M = O(N/s)machines can be done deterministically in O(1) rounds
- Basic "obstacle":
 - 1-vs-2-cycles conjecture:
 - distinguishing between a cycle on *n* vertices and two cycles on n/2 vertices requires $\Omega(\log n)$ rounds on an MPC with $s = O(n^{\delta})$

What can be done:

- PRAM simulations yields many MPC algorithms
- Main interest in the algorithmic community:
 - can we do better?

Most fundamental graph problem:

- is graph *G* connected?
- determine all connected components

Most fundamental graph problem:

- is graph *G* connected?
- determine all connected components

- Input: graph G = (V, E)
 - n = |V|, m = |E|
- Determine all connected components of *G*
 - Compute $cc: V \rightarrow \mathbb{N}$ that satisfies the following:
 - if $u, v \in V$ are connected then cc(u) = cc(v)
 - if $u, u \in V$ are not connected then $cc(u) \neq cc(v)$

- In the 90s, PRAM algorithms that solve the problem in $O(\log n)$ time
 - seems like the best we can hope for
 - extends to MPC
- 1-vs-2-cycles conjecture:
 - distinguishing between a cycle on *n* vertices and two cycles on n/2 vertices requires $\Omega(\log n)$ rounds on an MPC
 - we don't know how to prove such bound
 - proving it would imply some "hard" complexity bounds

O(log *n*)-rounds connectivity on low-space MPC

Basic graph connectivity Input: undirected graph G = (V, E)**Output:** for each $u \in V$, cc(u) is an ID of the connected component of u in G 1 mark every vertex $u \in V$ as *active* and label cc(u) := u2 while G has an edge $\{x, y\} \in E$ with $cc(x) \neq cc(y)$ do /* Invariant: if a vertex u is active then cc(u) = u; if u is non-active then 3 cc(u) = v for some active vertex v in the u's connected component */ for all active vertices $u \in V$ do in parallel call u a leader with probability $\frac{1}{2}$ 4 for all leaders $u \in V$ do in parallel mark all vertices in C_u as leaders 5 for all active non-leaders $u \in V$ do in parallel 6 if $\mathcal{N}(C_u)$ contains a leader then 7 find the smallest (with respect to the ID) leader vertex $v \in \mathcal{N}(C_u)$ 8 mark *u* non-active 9 relabel each vertex with label cc(u) by cc(v)10 end 11 /* Invariant: if a vertex u is active then cc(u) = u; if u is non-active 12 then cc(u) = v for some active vertex v in the u's connected component */ end 13 14 end

 $N(C_u)$ – neighbors of vertices in C_u

- In the 90s, PRAM algorithms that solve the problem in $O(\log n)$ time
 - seems like the best we can hope for
 - extends to MPC
- What about graphs with low diameter?
 - *D* = maximum diameter of any connected component
 - many "practical" graphs have low diameter
 - (often $D = O(\log n)$, for example for "random graphs")

MPC algorithm: in $O(\log D + \log \log n)$ rounds using O((n + m)/s) machines (optimal utilization)

MPC algorithm: in $O(\log D + \log \log n)$ rounds using O((n + m)/s) machines (optimal utilization)

Using matrix multiplication approach (computing transitive closure) we can solve the problem in $O(\log D)$ rounds using $O(n^3)$ machines

Main result: connectivity can be solved in (about) the same number of rounds with optimal number of machines

- Why can we do $O(\log D)$ rounds?
- If enough total space (or # machines) then it's "trivial"
- Let *A* be an adjacency matrix; *I* identity $n \times n$ matrix
 - $(A + I)^{D}$ determines all connected components!
 - $(A + I)^{D}[i, j] \neq 0$ iff *i* and *j* are in the same connected component
 - in fact $(A + I)^t [i, j] \neq 0$ iff *i* and *j* are at distance at most *t*

- Let *A* be an adjacency matrix; *I* identity $n \times n$ matrix
 - $(A + I)^{D}$ determines all connected components!
 - $(A + I)^{D}[i, j] \neq 0$ iff *i* and *j* are in the same connected component
- Since a square of a matrix can be computed in a constant number of rounds →

deterministic O(log D) rounds MPC algorithm

- Let *A* be an adjacency matrix; *I* identity $n \times n$ matrix
 - $(A + I)^{D}$ determines all connected components!
 - $(A + I)^{D}[i, j] \neq 0$ iff *i* and *j* are in the same connected component
- Since a square of a matrix can be computed in a constant number of rounds →

deterministic O(log D) rounds MPC algorithm

Requires a lot of global space (~ #machines) – $\Omega(n^3)$

- A tool to reduce total space to O(n + m)
- Standard idea:
 - Take the input graph
 - Contract some edges to make the graph smaller while maintaining connectivity
 - Repeat until the graph fits on a single machine

- A tool to reduce total space to O(n + m)
- Standard idea:
 - Take the input graph
 - Contract some edges to make the graph smaller while maintaining connectivity
 - Repeat until the graph fits on a single machine

Once we have smaller graph – we can use more space per vertex/edge! We will use extra space to "enlarge" the graph

- Key trick:
- Dominating set **Q**:
 - Every vertex u is either in Q or has a neighbour in Q
- Idea:
 - Find a small dominating set Q
 - Contract each vertex to a neighbour ("leader") in Q
 - Reduces number of vertices to |Q|

- Key trick:
- Dominating set **Q**:
 - Every vertex u is either in Q or has a neighbour in Q
- Idea:
 - Find a small dominating set Q
 - Contract each vertex to a neighbour ("leader") in Q
 - Reduces number of vertices to |Q|
- If *minimum degree* is *d* then one can "easily" find a dominating set of size $n \log n/d$
 - put a vertex to Q with probability $2 \cdot \log n/d$

This d will be going up in every iteration of the loop

- Take input graph *G*
- Reduce number of vertices to $n/\log^2 n$
- → if we have linear total space, then each vertex has "space" for log² n vertices in its connected component
- "Expand" degree of each vertex to $\log^2 n$ (or d = whatever extra space per vertex is available)
- Find a small dominating set (of size $n / \log^3 n \operatorname{or} \frac{n}{d \cdot \log n}$)
- Contract all vertices to the dominating set
- Repeat until entire graph fits a single machine

Expand degree to $\geq d$:

- If vertex is in connected component with > d vertices \rightarrow connect it to $\ge d$ vertices in its connected component
- else → detect entire connected component

- Take input graph *G*
- Reduce number of vertices to $n/\log^2 n$
- → if we have linear total space, then each vertex has "space" for log² *n* vertices in its connected component
- "Expand" degree of each vertex to $\log^2 n$ (or d = whatever extra space per vertex is available)
- Find a small dominating set (of size $n / \log^3 n$ or $\frac{n}{d \cdot \log n}$)
- Contract all vertices to the dominating set
- Repeat until entire graph fits a single machine
- $O(\log \log n)$ rounds will suffice!

- Take input graph G
- Reduce number of vertices to $n/\log^2 n$
- → if we have linear total space, then each vertex has "space" for log² *n* vertices in its connected component
- "Expand" degree of each vertex to $\log^2 n$ (or d = whatever extra space per vertex is available)
- Find a small dominating set (of size $n / \log^3 n$ or $\frac{n}{d \cdot \log n}$)
- Contract all vertices to the dominating set
- Repeat until entire graph fits a single machine
- *O*(log log *n*) rounds will suffice!

• Take input graph *G*

Can be performed in $O(\log \log n)$ rounds!

- Reduce number of vertices to $n/\log^2 n$
- → if we have linear total space, then each vertex has "space" for log² *n* vertices in its connected component
- "Expand" degree of each vertex to $\log^2 n$ (or d = whatever extra space per vertex is available)
- Find a small dominating set (of size $n / \log^3 n$ or $\frac{n}{d \cdot \log n}$)
- Contract all vertices to the dominating set
- Repeat until entire graph fits a single machine
- *O*(log log *n*) rounds will suffice!

Expansion can be performed in $O(\log D)$ rounds!

- Take input graph *G*
- Reduce number of vertices to $n/\log^2 n$
- → if we have linear total space, then each vertex has "space" for log² n vertices in its connected component
- "Expand" degree of each vertex to $\log^2 n$ (or d = whatever extra space per vertex is available)
- Find a small dominating set (of size $n / \log^3 n$ or $\frac{n}{d \cdot \log n}$)
- Contract all vertices to the dominating set
- Repeat until entire graph fits a single machine

O(log log
 O(log log D log log n) rounds on an MPC

Theorem: One can determine connected components in $O(\log D + \log \log n)$ rounds on an MPC

- Take input graph *G*
- Reduce number of vertices to $n/\log^2 n$
- → if we have linear total space, then each vertex has "space" for log² n vertices in its connected component
- "Expand" degree
- Find a small domi
- These algorithms are *randomized*:
 - Reduction to $n/\log^2 n$ vertices is randomized ertex is available)
 - Finding a small dominating set is randomized
- Contract all vertices to the dominating set

Repeat until entire graph fits a single machine

Theorem: One can determine connected components in $O(\log D \log \log n)$ rounds on an MPC

• $O(\log \log (O(\log D \log \log n) rounds on an MPC)$

Theorem: One can determine connected components in $O(\log D + \log \log n)$ rounds on an MPC

- Take input graph *G*
- Reduce number of vertices to $n/\log^2 n$
- → if we have linear total space, then each vertex has "space" for log² *n* vertices in its connected component
- "Expand" degree of each vertex to $\log^2 n$ (or d = whatever extra space per vertex is available)
- Find a small dominating set (of size $n / \log^3 n$ or $\frac{n}{d \cdot \log n}$)
- Contract all vertices to the dominating set
- Repeat until entire graph fits a single machine
- *O*(log log *n*) rounds will suffice!

Reduction to $n / \log^2 n$ vertices

- In a constant number of rounds reduce to n/2 vertices
 - Not very difficult
- Central step:
 - Find a matching of size O(N) on a path of length N
 - Easy using randomization:
 - remove each edge with probability $\frac{1}{2}$
 - a constant fraction of edges will become isolated \rightarrow form a matching of size O(N)

remove each edge with prob. 1/2

Reduction to $n / \log^2 n$ vertices

- In a constant number of rounds reduce to n/2 vertices
 - Not very difficult with randomization

- Central step:
 - Find a matching of size O(N) on a path of length N
 - Easy using randomization:
 - remove each edge with probability ¹/₂
 - a constant fraction of edges will become isolated \rightarrow form a matching of size O(N)

Reduction to $n / \log^2 n$ vertices

- In a constant number of rounds reduce to n/2 vertices
 - Not very difficult with randomization

- Central step:
 - Find a matching of size O(N) on a path of length N
 - Easy using randomization:
 - remove each edge with probability ¹/₂
 - a constant fraction of edges will become isolated \rightarrow form a matching of size O(N)

We can do it deterministically in a constant number of rounds!

• Matching algorithm relies on **3-wise independent random variables** (random choices for the edges)

Random variables are **k-wise independent** on if any **k** of them are independent

remove each edge with prob. 1/2

- Matching algorithm relies on **3-wise independent random variables** (random choices for the edges)
- There are families of 3-wise independent random hash functions of size $O(n^3)$
- Take such a family \mathcal{H}
- There is some $h \in \mathcal{H}$ that corresponds to a matching of linear size
- We can find one such *h* ∈ *H* in a constant number of rounds on an MPC (with total linear space)

- We can find one such $h^* \in \mathcal{H}$ in a constant number of rounds on an MPC (with total linear space)
- $|\mathcal{H}| \leq n^3 \twoheadrightarrow \mathcal{H}$ is represented using $3 \log n$ bits

For us: *F* = size of the matching generated by randomly chosen edges

Method of conditional probabilities by Erdös and Selfridge (1973) and Raghavan (1988):

Find $h^* \in \mathcal{H}$ by a sequence of repeatedly refining \mathcal{H} into smaller subsets, $\mathcal{H} = H_0 \supseteq H_1 \supseteq \cdots$, until we end up with a one element set defining h^* .

The way of refining \mathcal{H} is led by not decreasing (or not increasing) the conditional expectation of some target function F on \mathcal{H} , that is, to ensure that $E_{h\in H_{i+1}}[F(h)] \ge E_{h\in H_i}[F(h)]$

Main difficulty: to efficiently compute conditional expectations, and to bound the number of iterations needed to find a one element subset of \mathcal{H} .

- We can find one such $h^* \in \mathcal{H}$ in a constant number of rounds on an MPC (with total linear space)
- $|\mathcal{H}| \leq n^3 \rightarrow \mathcal{H}$ is represented using $3 \log n$ bits
- Split the bits into chunks of size $t = \log_2 s = \delta \log_2 n = O(\log n)$, such that $2^t = s$ words fits into a single machine
- We run in $3 \log n/t = 3 \log_s n = 3/\delta$ phases:
 - phase *i* determines bits $(i 1) \cdot t + 1, \dots, i \cdot t$ of h^*

- We can find one such $h^* \in \mathcal{H}$ in a constant number of rounds on an MPC (with total linear space)
- |ℋ| ≤ n³ → ℋ is represented using 3 log n bits
 1001101 1010101 0011110 1101100
 Split the bits into chunks of size t = log₂ s = δ log₂ n = O(log n), such
 - that $2^t = s$ words fits into a single machine
- We run in $3 \log n/t = 3 \log_s n = 3/\delta$ phases:

– phase *i* determines bits $(i - 1) \cdot t + 1, \dots, i \cdot t$ of h^*

For that, at the beginning of phase *i*:

• each machine knows the bits of the first i - 1 parts of h^* (that is, prefix of $(i - 1)t = (i - 1)\log_2 s$ bits).

Next, each machine considers extension of the current bits by all possible seeds of length $t = \log_2 s$.

Since 2^t = s fits local memory, this operation can be performed on every machine individually.

For every possible $\log s$ -bit extension of h^* :

every machine computes locally the expected cost of the target function *F* (which is the size of the matching) with this seed, producing *s* different values for the target function, one for each partial seed

Then, one aggregates these values from all machines and chooses the $\log s$ bit extension of h^* which maximizes the target function (matching size) using the method of conditional probabilities.

Method of conditional probabilities Intermeter in the second second

• If we sum this up, then we obtain the following:

Theorem: In a constant number of MPC-rounds, one can deterministically find a linear-size matching on a path

Deterministically finding a small dominating set

- Similar approach
- Using significantly more sophisticated machinery of ε-approximate
 O(log n)-wise independent hash functions
- \square ε -approximate $O(\log n)$ -wise independent hash functions:
 - \succ requires ε to be tiny $\rightarrow O(\log n)$ -bits representation
 - requires the use of strong concentration bounds for (slightly) biased random variables
 - MPC computation more tricky (since the progress function F is more complex)

Theorem: One can determine connected components in $O(\log D \log \log n)$ rounds on an MPC

Theorem: One can determine connected components in $O(\log D + \log \log n)$ rounds on an MPC

Theorem: These algorithms can be derandomized without any asymptotic loss: deterministically in $O(\log D + \log \log n)$ rounds

Algorithm/approach for connectivity can be applied to other related problems:

- Find a spanning tree
- Biconnected components
- Minimum spanning forest
- Shortest paths

In $O(\log D \cdot \log \log_{m/n} n)$ rounds we can compute a *rooted spanning forest* of *G*

If we have more machines $(say, (O(n + m))^{1+\gamma}/s)$, then we can solve this task in $O(\log D \cdot \log(\frac{\log n}{2+\gamma \log n}))$ rounds

• when $\gamma = \Omega(1)$ then it's just $O(\log D)$ rounds

Minimum spanning forest with more machines – in $O(\log D_{MFS})$ rounds, where D_{MFS} = diameter of a minimum spanning forest

Some more related research

- Recent advances
 - approximating maximum matching,
 - maximal independent set,
 - graph $(\Delta + 1)$ -coloring
 - random walks (and PageRanking)
- Some of these bounds use similar techniques

Final thoughts

- Fundamental study of MPC computation necessary to understand modern parallel computing
 - To develop tools for fast parallel algorithms
- One can design efficient deterministic MPC algorithms
- MPC can do more than PRAM
 - even with low space
 - even deterministically

THANK YOU!