
Artur Czumaj
DIMAP and Department of Computer Science

University of Warwick

Modern Parallel Algorithms

Lecture 3

Warszawa, November 2022



Sorting

• We discussed sorting for small values of 𝑁 (with respect to 𝑠) 

• One can do “similarly” for arbitrary 𝑁 and 𝑠: to sort in 𝑂(log𝑠 𝑁) rounds

• This can be done even deterministically!

Corollary: Sorting of 𝑁 numbers on an MPC with local space 𝑠 = 𝑁𝛿 and 
linear total space 𝑂(𝑁) can be done deterministically in 𝑂(1) rounds

PRAM: sorting lower bound of Ω(log𝑁) time (with any poly(𝑁) number of 
processors)



Sorting

A O(1)-rounds deterministic sorting for 𝒔 = 𝑶(𝒏𝜹)
Example:

Number of rounds is constant for any positive constant 𝛿
It’s not 𝑂(log𝑠 𝑁) though

𝔪 – number of machines used
𝔪 = 𝑂( Τ𝑁 𝔰)



PRAM Simulations

• Why do we care?

• There are many PRAM algorithms + some textbooks (was even in CLRS)



PRAM Simulations

Theorem: Let ALG be an CRCW PRAM algorithm that runs in 𝑇 steps using  
processors and 𝑄 memory cells. 

Then one can simulate ALG in 𝑂(𝑇 log𝑠  ) rounds on an MPC with local 
space 𝑠 and 𝑀 = 𝑂(𝑃+𝑄

𝑠
)machines.



PRAM Simulations

• PRAM simulations yield many MPC algorithms

 We have a great library of PRAM algorithms for graph problems, for 
computational geometry problems, etc

 For example, linear programming (for constant-dimension) can be solved in 

𝑂(1) rounds on an MPC with local space 𝑠 = 𝑂(𝑁𝛿)

• Main interest in the algorithmic community:

– can we do better?



BSP Simulations

• Similar results



Congested clique

• Is almost equivalent to MPC with 𝑠 = 𝑂(𝑛)



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

MPC for graphs



MPC algorithms for graphs

low-local-memory setting 𝒔 = 𝑶(𝒏𝜹)

• PRAM simulation:

– any 𝑡-steps PRAM algorithm can be simulated in 𝑂(𝑡) rounds 
on MPC with low-local space

• Basic primitive:

– sorting of 𝑁 numbers on MPC with 𝑠 = 𝑂(𝑛𝛿) on 𝑀 = 𝑂(𝑁/𝑠)
machines can be done deterministically in 𝑂(1) rounds

• Basic “obstacle”:

– 1-vs-2-cycles conjecture: 

• distinguishing between a cycle on 𝑛 vertices and two 
cycles on 𝑛/2 vertices requires Ω(log 𝑛) rounds on an MPC 

with 𝑠 = 𝑂(𝑛𝛿)



MPC algorithms for graphs

low-local-memory setting 𝒔 = 𝑶(𝒏𝜹)

• PRAM simulation:

– any 𝑡-steps PRAM algorithm can be simulated in 𝑂(𝑡) rounds 
on MPC with low-local space

• Basic primitive:

– sorting of 𝑁 numbers on MPC with 𝑠 = 𝑂(𝑛𝛿) on 𝑀 = 𝑂(𝑁/𝑠)
machines can be done deterministically in 𝑂(1) rounds

• Basic “obstacle”:

– 1-vs-2-cycles conjecture: 

• distinguishing between a cycle on 𝑛 vertices and two 
cycles on 𝑛/2 vertices requires Ω(log 𝑛) rounds on an MPC 

with 𝑠 = 𝑂(𝑛𝛿)



MPC algorithms for graphs

low-local-memory setting 𝒔 = 𝑶(𝒏𝜹)

• PRAM simulation:

– any 𝑡-steps PRAM algorithm can be simulated in 𝑂(𝑡) rounds 
on MPC with low-local space

• Basic primitive:

– sorting of 𝑁 numbers on MPC with 𝑠 = 𝑂(𝑛𝛿) on 𝑀 = 𝑂(𝑁/𝑠)
machines can be done deterministically in 𝑂(1) rounds

• Basic “obstacle”:

– 1-vs-2-cycles conjecture: 

• distinguishing between a cycle on 𝑛 vertices and two 
cycles on 𝑛/2 vertices requires Ω(log 𝑛) rounds on an MPC 

with 𝑠 = 𝑂(𝑛𝛿)



MPC algorithms for graphs
low-local-memory setting

What can be done:

• PRAM simulations yields many MPC algorithms

• Main interest in the algorithmic community:

– can we do better?



MPC algorithms for graphs
low-local-memory setting

Most fundamental graph problem:

• is graph 𝐺 connected?

• determine all connected components



MPC algorithms for graphs
low-local-memory setting

Most fundamental graph problem:

• is graph 𝐺 connected?

• determine all connected components



Connectivity

• Input: graph 𝐺 = (𝑉, 𝐸)

– 𝑛 = |𝑉|, 𝑚 = |𝐸|

• Determine all connected components of 𝐺

– Compute 𝑐𝑐: 𝑉 ⟶ ℕ that satisfies the following:

• if 𝑢, 𝑣 ∈ 𝑉 are connected then 𝑐𝑐 𝑢 = 𝑐𝑐(𝑣)

• if 𝑢, 𝑢 ∈ 𝑉 are not connected then 𝑐𝑐 𝑢 ≠ 𝑐𝑐(𝑣)



Connectivity

• In the 90s, PRAM algorithms that solve the problem in 𝑂(log 𝑛) time

 seems like the best we can hope for

 extends to MPC

• 1-vs-2-cycles conjecture:

– distinguishing between a cycle on 𝑛 vertices and two cycles on 𝑛/2 vertices 
requires Ω(log 𝑛) rounds on an MPC

– we don’t know how to prove such bound

– proving it would imply some “hard” complexity bounds



𝑂(log 𝑛)-rounds connectivity on low-space MPC

𝑁(𝐶𝑢) – neighbors of vertices in 𝐶𝑢𝐶𝑢– vertices 𝑣 with 𝑐𝑐 𝑣 = 𝑢



Connectivity

• In the 90s, PRAM algorithms that solve the problem in 𝑂(log 𝑛) time

 seems like the best we can hope for

 extends to MPC

• What about graphs with low diameter?

 𝐷 = maximum diameter of any connected component

 many “practical” graphs have low diameter

 (often 𝐷 = 𝑂(log 𝑛), for example for “random graphs”)



MPC algorithms for graphs
low-local-memory setting

MPC algorithm: 

in 𝑂(log𝐷  log log 𝑛) rounds

using 𝑂((𝑛  𝑚)/𝑠)machines (optimal utilization)



MPC algorithms for graphs
low-local-memory setting

MPC algorithm: 

in 𝑂(log𝐷  log log 𝑛) rounds

using 𝑂((𝑛  𝑚)/𝑠)machines (optimal utilization)

Using matrix multiplication approach (computing transitive closure) we can 
solve the problem in 𝑂(log𝐷) rounds using 𝑂(𝑛3)machines

Main result: connectivity can be solved in (about) the same number of 
rounds with optimal number of machines



Connectivity

• Why can we do 𝑂(log𝐷) rounds?

• If enough total space (or # machines) then it’s “trivial”

• Let 𝐴 be an adjacency matrix;  identity 𝑛 × 𝑛matrix

– 𝐴   𝐷 determines all connected components!

– 𝐴   𝐷 𝑖, 𝑗 ≠ 0 iff 𝑖 and 𝑗 are in the same connected component

– in fact 𝐴   𝑡 𝑖, 𝑗 ≠ 0 iff 𝑖 and 𝑗 are at distance at most 𝑡



Connectivity

• Let 𝐴 be an adjacency matrix;  identity 𝑛 × 𝑛matrix

– 𝐴   𝐷 determines all connected components!

– 𝐴   𝐷 𝑖, 𝑗 ≠ 0 iff 𝑖 and 𝑗 are in the same connected component

• Since a square of a matrix can be computed in a constant number of 
rounds 

deterministic 𝑂(log𝐷) rounds MPC algorithm



Connectivity

• Let 𝐴 be an adjacency matrix;  identity 𝑛 × 𝑛matrix

– 𝐴   𝐷 determines all connected components!

– 𝐴   𝐷 𝑖, 𝑗 ≠ 0 iff 𝑖 and 𝑗 are in the same connected component

• Since a square of a matrix can be computed in a constant number of 
rounds 

deterministic 𝑂(log𝐷) rounds MPC algorithm

Requires a lot of global space (~ #machines) – Ω(𝑛3)



Connectivity

• A tool to reduce total space to 𝑂(𝑛  𝑚)

• Standard idea:

– Take the input graph

– Contract some edges to make the graph smaller while maintaining connectivity

– Repeat until the graph fits on a single machine



Connectivity via contractions

2

10

14

8

93

11

13

5

4

1

12

15

7

6



Connectivity via contractions

2

10

14

8

93

11

13

5

4

1

12

15

7

6

11 and 12 are in the same connected component as 1



Connectivity via contractions

2

10

14

8

93

11

13

5

4

1

12

15

7

6



Connectivity via contractions

2

10

14

8

93

11

13

5

4

1

12

15

7

6



Connectivity via contractions

2

10

14

8

93

11

13

5

4

1

12

15

7

6



Connectivity via contractions

2

10

14

8

93

11

13

5

4

1

12

15

7

6

“leaders”



Connectivity via contractions

10

14

8

9

11

13

5

4

12

15

7

6

415 2

3

1



Connectivity

• A tool to reduce total space to 𝑂(𝑛  𝑚)

• Standard idea:

– Take the input graph

– Contract some edges to make the graph smaller while maintaining connectivity

– Repeat until the graph fits on a single machine

Once we have smaller graph – we can use more 
space per vertex/edge!

We will use extra space to “enlarge” the graph



Connectivity via contractions

• Key trick:

• Dominating set 𝑄:

– Every vertex 𝑢 is either in 𝑄 or has a neighbour in 𝑄

• Idea:

– Find a small dominating set 𝑄

– Contract each vertex to a neighbour (“leader”) in 𝑄

– Reduces number of vertices to |𝑄|



2

10

14

8

93

11

13

5

4

1

12

15

7

6

“leaders”

Connectivity via contractions



Connectivity via contractions

• Key trick:

• Dominating set 𝑄:

– Every vertex 𝑢 is either in 𝑄 or has a neighbour in 𝑄

• Idea:

– Find a small dominating set 𝑄

– Contract each vertex to a neighbour (“leader”) in 𝑄

– Reduces number of vertices to |𝑄|

• If minimum degree is 𝑑 then one can “easily” find a dominating set 
of size 𝑛 log 𝑛/𝑑

– put a vertex to 𝑄 with probability 2 ⋅ log 𝑛/𝑑



Connectivity via contractions

• Take input graph 𝐺

• Reduce number of vertices to 𝑛/ log2 𝑛

•  if we have linear total space, then each vertex has “space” for log2 𝑛
vertices in its connected component

• “Expand” degree of each vertex to log2 𝑛 (or 𝑑 = whatever extra space per vertex is available)

• Find a small dominating set (of size 𝑛/ log3 𝑛 – or 𝑛

𝑑⋅log 𝑛
)

• Contract all vertices to the dominating set

• Repeat until entire graph fits a single machine

Expand degree to ≥ 𝑑: 
• If vertex is in connected component with > 𝑑 vertices  connect it to ≥ 𝑑 vertices in its connected component
• else  detect entire connected component

This 𝑑 will be going up in every iteration of the loop



Connectivity via contractions

• Take input graph 𝐺
• Reduce number of vertices to 𝑛/ log2 𝑛

•  if we have linear total space, then each vertex has “space” for log2 𝑛 vertices in its connected 
component

• “Expand” degree of each vertex to log2 𝑛 (or 𝑑 =whatever extra space per vertex is available)

• Find a small dominating set (of size 𝑛/ log3 𝑛 – or 𝑛
𝑑⋅log 𝑛

)

• Contract all vertices to the dominating set

• Repeat until entire graph fits a single machine

• 𝑂(log log 𝑛) rounds will suffice!



Connectivity via contractions

• Take input graph 𝐺
• Reduce number of vertices to 𝑛/ log2 𝑛

•  if we have linear total space, then each vertex has “space” for log2 𝑛 vertices in its connected 
component

• “Expand” degree of each vertex to log2 𝑛 (or 𝑑 =whatever extra space per vertex is available)

• Find a small dominating set (of size 𝑛/ log3 𝑛 – or 𝑛
𝑑⋅log 𝑛

)

• Contract all vertices to the dominating set

• Repeat until entire graph fits a single machine

• 𝑂(log log 𝑛) rounds will suffice!

• Start with 𝑁 = 𝑛/log2 𝑛 and 𝑑 = log2 𝑛
• Reduce to 𝑁 = 𝑁 log 𝑛/𝑑 = 𝑛 /log3 𝑛 and 𝑑 = log3 𝑛
• Reduce to 𝑁 = 𝑁 log 𝑛/𝑑 = 𝑛/ log5 𝑛 and 𝑑 = log5 𝑛
• Reduce to 𝑁 = 𝑁 log 𝑛/𝑑 = 𝑛/ log9 𝑛 and 𝑑 = log9 𝑛
• Reduce to 𝑁 = 𝑁 log 𝑛/𝑑 = 𝑛/ log17 𝑛 and 𝑑 = log17 𝑛
• Reduce to 𝑁 = 𝑁 log 𝑛/𝑑 = 𝑛/ log33 𝑛 and 𝑑 = log33 𝑛
• …



Connectivity via contractions

• Take input graph 𝐺
• Reduce number of vertices to 𝑛/ log2 𝑛

•  if we have linear total space, then each vertex has “space” for log2 𝑛 vertices in its connected 
component

• “Expand” degree of each vertex to log2 𝑛 (or 𝑑 =whatever extra space per vertex is available)

• Find a small dominating set (of size 𝑛/ log3 𝑛 – or 𝑛
𝑑⋅log 𝑛

)

• Contract all vertices to the dominating set

• Repeat until entire graph fits a single machine

• 𝑂(log log 𝑛) rounds will suffice!

Expansion can be performed in 𝑂(log𝐷) rounds!

Can be performed in 𝑂(log log 𝑛) rounds!



Connectivity via contractions

• Take input graph 𝐺
• Reduce number of vertices to 𝑛/ log2 𝑛

•  if we have linear total space, then each vertex has “space” for log2 𝑛 vertices in its connected 
component

• “Expand” degree of each vertex to log2 𝑛 (or 𝑑 =whatever extra space per vertex is available)

• Find a small dominating set (of size 𝑛/ log3 𝑛 – or 𝑛
𝑑⋅log 𝑛

)

• Contract all vertices to the dominating set

• Repeat until entire graph fits a single machine

• 𝑂(log log 𝑛) rounds will suffice!

Theorem: One can determine connected components in 
𝑂(log𝐷 log log 𝑛) rounds on an MPC

Theorem: One can determine connected components in 
𝑂(log𝐷  log log 𝑛) rounds on an MPC



Connectivity via contractions

• Take input graph 𝐺
• Reduce number of vertices to 𝑛/ log2 𝑛

•  if we have linear total space, then each vertex has “space” for log2 𝑛 vertices in its connected 
component

• “Expand” degree of each vertex to log2 𝑛 (or 𝑑 =whatever extra space per vertex is available)

• Find a small dominating set (of size 𝑛/ log3 𝑛 – or 𝑛
𝑑⋅log 𝑛

)

• Contract all vertices to the dominating set

• Repeat until entire graph fits a single machine

• 𝑂(log log 𝑛) rounds will suffice!

Theorem: One can determine connected components in 
𝑂(log𝐷 log log 𝑛) rounds on an MPC

Theorem: One can determine connected components in 
𝑂(log𝐷  log log 𝑛) rounds on an MPC

These algorithms are randomized:
• Reduction to 𝑛/ log2 𝑛 vertices is randomized
• Finding a small dominating set is randomized



Connectivity via contractions

• Take input graph 𝐺
• Reduce number of vertices to 𝑛/ log2 𝑛

•  if we have linear total space, then each vertex has “space” for log2 𝑛 vertices in its connected 
component

• “Expand” degree of each vertex to log2 𝑛 (or 𝑑 =whatever extra space per vertex is available)

• Find a small dominating set (of size 𝑛/ log3 𝑛 – or 𝑛
𝑑⋅log 𝑛

)

• Contract all vertices to the dominating set

• Repeat until entire graph fits a single machine

• 𝑂(log log 𝑛) rounds will suffice!



Reduction to 𝒏/log2 𝒏 vertices

• In a constant number of rounds reduce to 𝑛/2 vertices

– Not very difficult

• Central step:

– Find a matching of size 𝑂(𝑁) on a path of length 𝑁

– Easy using randomization:

• remove each edge with probability ½

• a constant fraction of edges will become isolated  form a matching of size 𝑂(𝑁)



Matching on a path



Matching on a path

remove each edge with prob. 1/2



Matching on a path



Reduction to 𝒏/log2 𝒏 vertices

• In a constant number of rounds reduce to 𝑛/2 vertices

– Not very difficult with randomization

• Central step:

– Find a matching of size 𝑂(𝑁) on a path of length 𝑁

– Easy using randomization:

• remove each edge with probability ½

• a constant fraction of edges will become isolated  form a matching of size 𝑂(𝑁)



Reduction to 𝒏/log2 𝒏 vertices

• In a constant number of rounds reduce to 𝑛/2 vertices

– Not very difficult with randomization

• Central step:

– Find a matching of size 𝑂(𝑁) on a path of length 𝑁

– Easy using randomization:

• remove each edge with probability ½

• a constant fraction of edges will become isolated  form a matching of size 𝑂(𝑁)

We can do it deterministically in a constant number of rounds!



Matching on a path

• Matching algorithm relies on 3-wise independent random variables
(random choices for the edges)

Random variables are k-wise independent on if any 𝑘 of them are independent



Matching on a path



Matching on a path

remove each edge with prob. 1/2



Matching on a path



Matching on a path

• Matching algorithm relies on 3-wise independent random variables
(random choices for the edges)

• There are families of 3-wise independent random hash functions of 
size 𝑂(𝑛3)

• Take such a family ℋ

• There is some ℎ ∈ ℋ that corresponds to a matching of linear size

• We can find one such ℎ ∈ ℋ in a constant number of rounds on an 
MPC (with total linear space)



Matching on a path

• We can find one such ℎ∗ ∈ ℋ in a constant number of rounds on an 
MPC (with total linear space)

• ℋ ≤ 𝑛3ℋ is represented using 3 log 𝑛 bits



Method of conditional probabilities

Method of conditional probabilities by Erdös and Selfridge (1973) and Raghavan (1988):

Find ℎ∗ ∈ ℋ by a sequence of repeatedly refining ℋ into smaller subsets, ℋ =
𝐻0 ⊇ 𝐻1 ⊇  , until we end up with a one element set defining ℎ∗.

The way of refining ℋ is led by not decreasing (or not increasing) the 
conditional expectation of some target function 𝐹 on ℋ, that is, to ensure that 

𝐸ℎ∈𝐻𝑖+1 𝐹(ℎ) ≥ 𝐸ℎ∈𝐻𝑖[𝐹(ℎ)]

Main difficulty: to efficiently compute conditional expectations, and to bound 
the number of iterations needed to find a one element subset of ℋ.

For us: 𝐹 = size of the matching generated by randomly chosen edges



Method of conditional probabilities

• We can find one such ℎ∗ ∈ ℋ in a constant number of rounds on an 
MPC (with total linear space)

• ℋ ≤ 𝑛3ℋ is represented using 3 log 𝑛 bits

• Split the bits into chunks of size 𝑡 = log2 𝑠 = 𝛿 log2 𝑛 = 𝑂(log 𝑛), such 
that 2𝑡 = 𝑠 words fits into a single machine

• We run in 3 log 𝑛/𝑡 = 3 log𝑠 𝑛 = 3/𝛿 phases:

– phase 𝑖 determines bits (𝑖 − 1) ⋅ 𝑡  1, , 𝑖 ⋅ 𝑡 of ℎ∗



Method of conditional probabilities

• We can find one such ℎ∗ ∈ ℋ in a constant number of rounds on an 
MPC (with total linear space)

• ℋ ≤ 𝑛3ℋ is represented using 3 log 𝑛 bits

• Split the bits into chunks of size 𝑡 = log2 𝑠 = 𝛿 log2 𝑛 = 𝑂(log 𝑛), such 
that 2𝑡 = 𝑠 words fits into a single machine

• We run in 3 log 𝑛/𝑡 = 3 log𝑠 𝑛 = 3/𝛿 phases:

– phase 𝑖 determines bits (𝑖 − 1) ⋅ 𝑡  1, , 𝑖 ⋅ 𝑡 of ℎ∗

1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0



Method of conditional probabilities

For that, at the beginning of phase 𝑖:

• each machine knows the bits of the first 𝑖 − 1 parts of ℎ∗ (that is, prefix of 
𝑖 − 1 𝑡 = (𝑖 − 1) log2 𝑠 bits).

Next, each machine considers extension of the current bits by all possible 
seeds of length 𝑡 = log2 𝑠.

• Since 2𝑡 = 𝑠 fits local memory, this operation can be performed on every 
machine individually. 

1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0

1 0 1 1 1 0 1



Method of conditional probabilities

For every possible log 𝑠-bit extension of ℎ∗:

• every machine computes locally the expected cost of the target function 𝐹
(which is the size of the matching) with this seed, producing 𝑠 different 
values for the target function, one for each partial seed

Then, one aggregates these values from all machines and chooses the log 𝑠-
bit extension of ℎ∗ which maximizes the target function (matching size) 
using the method of conditional probabilities.

1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0

1 0 1 1 1 0 1



Method of conditional probabilities 
linear matching on a path

• If we sum this up, then we obtain the following:

Theorem: In a constant number of MPC-rounds, one can 
deterministically find a linear-size matching on a path



Deterministically finding a small dominating set

• Similar approach

• Using significantly more sophisticated machinery of 𝜀-approximate 
𝑂(log 𝑛)-wise independent hash functions

 𝜀-approximate 𝑂(log 𝑛)-wise independent hash functions:

 requires 𝜀 to be tiny  𝑂(log 𝑛)-bits representation

 requires the use of strong concentration bounds for (slightly) biased 
random variables

MPC computation more tricky (since the progress function 𝐹 is more 
complex)



Connectivity via contractions

Theorem: One can determine connected components in 
𝑂(log𝐷 log log 𝑛) rounds on an MPC

Theorem: One can determine connected components in 
𝑂(log𝐷  log log 𝑛) rounds on an MPC

Theorem: These algorithms can be derandomized
without any asymptotic loss:
deterministically in 𝑂(log𝐷  log log 𝑛) rounds



MPC algorithms for graphs
low-local-memory setting

Algorithm/approach for connectivity can be applied to other related 
problems:

• Find a spanning tree

• Biconnected components

• Minimum spanning forest

• Shortest paths



MPC algorithms for graphs
low-local-memory setting

In 𝑂(log𝐷 ⋅ log log𝑚/ 𝑛) rounds we can compute a rooted spanning 

forest of 𝐺

If we have more machines (say, 𝑂 𝑛  𝑚
1+𝛾
/𝑠), then we can solve 

this task in 𝑂(log𝐷 ⋅ log( log 𝑛

 +𝛾 log 𝑛
)) rounds

• when 𝛾 = Ω(1) then it’s just 𝑂(log𝐷) rounds

Minimum spanning forest with more machines – in 𝑂(log𝐷𝑀𝐹𝑆) rounds, 
where 𝐷𝑀𝐹𝑆 = diameter of a minimum spanning forest



Some more related research

• Recent advances 

– approximating maximum matching,

– maximal independent set,

– graph (Δ  1)-coloring

– random walks (and PageRanking)

• Some of these bounds use similar techniques



Final thoughts

• Fundamental study of MPC computation necessary to understand modern 
parallel computing

– To develop tools for fast parallel algorithms

• One can design efficient deterministic MPC algorithms

• MPC can do more than PRAM

– even with low space

– even deterministically






