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Sorting

e We discussed sorting for small values of N (with respect to s)
e One can do “similarly” for arbitrary N and s: to sortin O(log; N) rounds

e This can be done even deterministically!

Corollary: Sorting of N numbers on an MPC with local space s = N° and
linear total space O(N) can be done deterministically in O(1) rounds

PRAM: sorting lower bound of Q(log N) time (with any poly(N) number of
processors)



Example: |Sorting
A O(1)-rounds deterministic sorting for s = 0(n?®)

I : distinet N i ; stores a(; Ty, 1<i<m=1L .
nput: distinet numbers x4, ...,z y; machine M; stores z(;_1ys41,. .., %is, 1 <4 < = m — number of machines used

Output: machine M; stores @ ((;_1ys11), -+ > Ta(is) 1 S0 < -]By, where 7 is an m= 0(N/s)
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N-permutation such that z.(;y < zr@2) <+ < Ty

Partition the input (arbitrarily) into Petie groups of the same size
» each group has 51% elements and has allocated 51% machines

Recursively sort each group

In each group take as pivots all elements with ranks j 5213 for 1 < j < %

7
Aol the set of 52% pivots from all groups form a s-pivot It's not O(IOgs N) though

Number of rounds is constant for any positive constant &

Each group sends all its pivots to the first group
First group recursively sort all E%Vg pivots; denote the pivots® as po < p1 < -+ < py, N/s2/3
Distribute the sorted order of all pivots to each group

» machines in the first group send relative ranks of all pivots to every group

Partition all input elements in each group into sets H§i>, with 1 <4 < 51/3, 0<5< %,
() ’

;' = {z input from group 7 : p; < 2 Lo
Each group ¢ sends the sizes of all setg T to the 51% machines in the first group

i/}
Machines in the first group compute the rank of each pivot rank(p;) = ch;% Zflz/f ]H?\

Machines from the first group send ranks of all pivots to all groups
1/3

where I1

Machines in the first group allocate pivots to 2s*/° groups with 51% machines each, so that

» the j-th smallest pivot p; is allocated to group 7(7)

() <r() <. < T(El%)

» if group k is allocated to pivots 7,...,7 then Zi;j zf;/f \Hf«i>| & 5%%
Machines in the first group distribute all values 7(0), ..., 7( 52%) to all groups
! to group 7(7)
Each group k (1 < k < 2s/3) recursively sorts all elements in sets Uj:T(j):k Ufiz/f I

Each group 4, for every 0 < 5 < 51%, sends Hf
(&
/)

1/3

|
1 4
Each machine, for each its element with rank e, sends that element and its rank to M|/

Each group k determines the rank of its ¢-th largest element to be £t + > ek ¥

“We assume that the O-th smallest pivot is pg = —co0 and the 52%%—1)—51; smallest pivot is py 4 n/e2/8 = +00.



PRAM Simulations

e Why do we care?

e There are many PRAM algorithms + some textbooks (was even in CLRS)
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PRAM Simulations

Theorem: Let ALG be an CRCW PRAM algorithm that runs in T steps using P
processors and Q memory cells.

Then one can simulate ALG in O(T log, P) rounds on an MPC with local
spacesand M = 0(@) machines.
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PRAM Simulations

PRAM simulations yield many MPC algorithms

= We have a great library of PRAM algorithms for graph problems, for
computational geometry problems, etc

* For example, linear programming (for constant-dimension) can be solved in
0(1) rounds on an MPC with local space s = O(N?)

Main interest in the algorithmic community:
- can we do better?
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BSP Simulations

e Similar results



Congested clique

e [salmost equivalent to MPC with s = O0(n)



MPC for graphs

Input: Edges of an m-edge graph on n vertices




MPC algorithms for graphs
low-local-memory setting s = 0(n?®)

e PRAM simulation:

— any t-steps PRAM algorithm can be simulated in O(t) rounds
on MPC with low-local space

e Basic primitive:

~ sorting of N numbers on MPC with s = 0(n®)on M = O(N/s)
machines can be done deterministically in O(1) rounds

e Basic “obstacle”:
— 1-vs-2-cycles conjecture:

e distinguishing between a cycle on n vertices and two
cycles on n/2 vertices requires (1(logn) rounds on an MPC
with s = 0(n%)



MPC algorithms for graphs
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machines can be done deterministically in O(1) rounds

e Basic “obstacle”:
— 1-vs-2-cycles conjecture:

e distinguishing between a cycle on n vertices and two
cycles on n/2 vertices requires (1(logn) rounds on an MPC
with s = 0(n%)



MPC algorithms for graphs
low-local-memory setting s = 0(n?®)

e PRAM simulation:

— any t-steps PRAM algorithm can be simulated in O(t) rounds
on MPC with low-local space

e Basic primitive:

~ sorting of N numbers on MPC with s = 0(n®)on M = O(N/s)
machines can be done deterministically in O(1) rounds

e Basic “obstacle”:
— 1-vs-2-cycles conjecture:

e distinguishing between a cycle on n vertices and two
cycles on n/2 vertices requires (1(logn) rounds on an MPC
with s = 0(n%)



MPC algorithms for graphs
low-local-memory setting

What can be done:

e PRAM simulations yields many MPC algorithms

e Main interest in the algorithmic community:
- can we do better?



MPC algorithms for graphs
low-local-memory setting

Most fundamental graph problem:
e isgraph G connected?
e determine all connected components




MPC algorithms for graphs
low-local-memory setting

Most fundamental graph problem:
e isgraph G connected?
e determine all connected components
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Connectivity

e Input: graph ¢ = (V,E)
-n=|V|[,m=|E|

e Determine all connected components of ¢

— Compute cc: V — N that satisfies the following:
e ifu, v € V are connected then cc(u) = cc(v)
e ifu,u € V are not connected then cc(u) # cc(v)

59




Connectivity

e In the 90s, PRAM algorithms that solve the problem in O (logn) time
= seems like the best we can hope for
= extends to MPC

e 1-vs-2-cycles conjecture:

- distinguishing between a cycle on n vertices and two cycles on n/2 vertices
requires ((logn) rounds on an MPC

— we don’t know how to prove such bound
— proving it would imply some “hard” complexity bounds



O (log n)-rounds connectivity on low-space MPC

Basic graph connectivity
Input: undirected graph G = (V, E)
Output: for each u € V, cc(u) is an ID of the connected component of  in G

[y

mark every vertex v € V' as active and label cc(u) = u

2 while G has an edge {z,y} € E with cc(z) # cc(y) do
3 /* Invariant: if a vertex u is active then cc(u) = uw; if w is non-active then
cc(u) = v for some active vertex v in the w’s connected component */
4 for all active vertices v € V do in parallel call v a leader with probability %
5 for all leaders v € V' do in parallel mark all vertices in C,, as leaders
6 for all active non-leaders v € V' do in parallel
7 if A (Cy) contains a leader then
8 find the smallest (with respect to the ID) leader vertex v € A (Cy,)
9 mark v non-active
10 relabel each vertex with label cc(u) by cc(v)
11 end
12 /* Invariant: if a vertex u is active then cc(u) =wu; if u is non-active
then cc(u) =v for some active vertex v in the u’s connected component */
13 end
14 end

C,— vertices v with cc(v) = u N(C,) — neighbors of vertices in C,,




Connectivity

e In the 90s, PRAM algorithms that solve the problem in O (logn) time
= seems like the best we can hope for
= extends to MPC

e What about graphs with low diameter?
= D = maximum diameter of any connected component

* many “practical” graphs have low diameter

= (often D = O(logn), for example for “random graphs”)



MPC algorithms for graphs
low-local-memory setting

MPC algorithm:
in O(log D + loglogn) rounds
using O((n + m)/s) machines (optimal utilization)



MPC algorithms for graphs
low-local-memory setting

MPC algorithm:
in O(log D + loglogn) rounds
using O((n + m)/s) machines (optimal utilization)

Using matrix multiplication approach (computing transitive closure) we can
solve the problem in O (log D) rounds using O (n®) machines

Main result: connectivity can be solved in (about) the same number of
rounds with optimal number of machines



Connectivity

e Why can we do O(log D) rounds?

) o

e [fenough total space (or # machines) then it’s “trivial”

e Let A be an adjacency matrix; I identity n X n matrix
- (A + )P determines all connected components!
- (A+ DPJi,j] # 0iffi and j are in the same connected component

- infact (A + )'[i,j] # 0iff i and j are at distance at most ¢



Connectivity

e Let A be an adjacency matrix; I identity n X n matrix
- (A + P determines all connected components!
- (A+ DPJi,j] # 0iffi and j are in the same connected component

e Since a square of a matrix can be computed in a constant number of
rounds =»

deterministic O (log D) rounds MPC algorithm



Connectivity

e Let A be an adjacency matrix; I identity n X n matrix
- (A + P determines all connected components!
- (A+ DPJi,j] # 0iffi and j are in the same connected component

e Since a square of a matrix can be computed in a constant number of
rounds =»

deterministic O (log D) rounds MPC algorithm

[ Requires a lot of global space (~ #machines) — Q(n?>) }




Connectivity

e A tool to reduce total space to O(n + m)

e Standard idea:
— Take the input graph
— Contract some edges to make the graph smaller while maintaining connectivity
— Repeat until the graph fits on a single machine



Connectivity via contractions
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Connectivity via contractions

11 and 12 are in the same connected component as 1
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Connectivity via contractions
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Connectivity via contractions
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Connectivity via contractions
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Connectivity via contractions

“leaders” ]




Connectivity via contractions
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Connectivity

e A tool to reduce total space to O(n + m)

e Standard idea:
— Take the input graph
— Contract some edges to make the graph smaller while maintaining connectivity
— Repeat until the graph fits on a single machine

4 N
Once we have smaller graph — we can use more

space per vertex/edge!
We will use extra space to “enlarge” the graph

= /




Connectivity via contractions

e Key trick:
e Dominating set Q:

— Every vertex u is either in Q or has a neighbour in Q
e [dea:

— Find a small dominating set Q

— Contract each vertex to a neighbour (“leader”) in Q
— Reduces number of vertices to |Q|



Connectivity via contractions

“leaders” ]




Connectivity via contractions

e Key trick:
e Dominating set Q:

— Every vertex u is either in Q or has a neighbour in Q
e [dea:

— Find a small dominating set Q

— Contract each vertex to a neighbour (“leader”) in Q
— Reduces number of vertices to |Q|

e | If minimum degree is d then one can “easily” find a dominating set
of size nlogn/d

— put a vertex to Q with probability 2 - logn/d




Connectivity via contractions

[ This d will be going up in every iteration of the loop ]

e Take input graph ¢
e Reduce number of vertices to n/log?n

o => if we have linear total space, then each vértex has “space” for log? n
vertices in its connected component

”» v
° "Expand degree of each vertex to lng N (or d = whatever extra space per vertex is available)

o Find a small dominating set (of size n/log> n - or d.l(’;‘g -)

e Contract all vertices to the dominating set
e Repeat until entire graph fits a single machine

Expand degree to = d:

» |f vertex is in connected component with > d vertices = connect it to = d vertices in its connected component
* else =» detect entire connected component



Connectivity via contractions

Take input graph ¢
Reduce number of vertices to n/log? n

=> if we have linear total space, then each vertex has “space” for log? n vertices in its connected
component

“Expand” degree of each vertex to log? n (or d = whatever extra space per vertex is available)

Find a small dominating set (of size n/log> n - or ann)
Contract all vertices to the dominating set

Repeat until entire graph fits a single machine

O (loglogn) rounds will suffice!



Start with N = n/logZn and d = log®n \
Reduceto N = Nlogn/d = n /log®n andd = log®n
Reduceto N = Nlogn/d = n/log®nandd = log®n
Reduceto N = Nlogn/d = n/log’nandd = log”n
Reduceto N = Nlogn/d = n/log!” nand d = log!’ n
Reduceto N = Nlogn/d =n/log33nandd = log33n

A . .

Take input graph ¢

Reduce number of vertices to n/ log“n

=> if we have linear total space, then each vertex has “space” for log? n vertices in its connected
component

“Expand” degree of each vertex to log? n (or d = whatever extra space per vertex is available)

Find a small dominating set (of size n/log> n - or ann)
Contract all vertices to the dominating set

Repeat until entire graph fits a single machine

O (loglogn) rounds will suffice!



Connectivity via contractions

[Can be performed in O (loglogn) rounds!]

Take input graph ¢
Reduce number of vertices to n/log? n

=> if we have linear total space, then each vertex has “space” for log? n vertices in its connected
component

“Expand” degree of each vertex to log? n (or d = whatever extra space per vertex is available)

of size n/log®>n - or 5———)

Find a small dominating s P
d-logn

Contract all vertices to the domiqating set

Repeat until entire graph fitsa single machine

O (loglogn) rounds will suffice!

[ Expansion can be performed in O(log D) rounds! ]




Connectivity via contractions

Take input graph ¢
Reduce number of vertices to n/log? n

=> if we have linear total space, then each vertex has “space” for log? n vertices in its connected
component

“Expand” degree of each vertex to log? n (or d = whatever extra space per vertex is available)

Find a small dominating set (of size n/log> n - or —d-lgg )

Contract all vertices to the dominating set

Repeat until entire graph fits a single machine

P
Theorem: One can determine connected components in
O(loglog  0(log D loglogn) rounds on an MPC

4

>
Theorem: One can determine connected components in
\0(logD + loglog n) rounds on an MPC




Connectivity via contractions

Take input graph ¢
Reduce number of vertices to n/log? n

=> if we have linear total space, then each vertex has “space” for log? n vertices in its connected

component _ . I
These algorithms are randomized:

e Reduction to n/log? n vertices is randomized

* Finding a small dominating set is randomized -
Contract all verticésvcourcaormmatg sco

“Expand” degree ertex is available)

Find a small domi

Repeat until entire graph fits a single machine

P
Theorem: One can determine connected components in
0(loglog{ 9 (log D loglogn) rounds on an MPC

4

>
Theorem: One can determine connected components in
K0(logD + loglogn) rounds on an MPC




Connectivity via contractions

Take input graph ¢
Reduce number of vertices to n/log? n

=> if we have linear total space, then each vertex has “space” for log? n vertices in its connected
component

“Expand” degree of each vertex to log? n (or d = whatever extra space per vertex is available)

Find a small dominating set (of size n/log>n - or ann)
Contract all vertices to the dominating set

Repeat until entire graph fits a single machine

O (loglogn) rounds will suffice!



Reduction to n /log? n vertices

e In a constant number of rounds reduce to n/2 vertices
— Not very difficult

e (Central step:
— Find a matching of size O(N) on a path of length N

— Easy using randomization:
 remove each edge with probability 2
e a constant fraction of edges will become isolated = form a matching of size O(N)



Matching on a path
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Matching on a path

remove each edge with prob. 1/2
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Matching on a path




Reduction to n /log? n vertices

e In a constant number of rounds reduce to n/2 vertices
— Not very difficult with randomization

e (Central step:
— Find a matching of size O(N) on a path of length N

— Easy using randomization:
 remove each edge with probability 2
e a constant fraction of edges will become isolated = form a matching of size O(N)



Reduction to n /log? n vertices

e In a constant number of rounds reduce to n/2 vertices
— Not very difficult with randomization

e (Central step:
— Find a matching of size O(N) on a path of length N

— Easy using randomization:
 remove each edge with probability 2
e a constant fraction of edges will become isolated = form a matching of size O(N)

[ We can do it deterministically in a constant number of rounds! }




Matching on a path

e Matching algorithm relies on 3-wise independent random variables
(random choices for the edges)

Random variables are k-wise independent on if any k of them are independent



Matching on a path
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Matching on a path

remove each edge with prob. 1/2
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Matching on a path




Matching on a path

Matching algorithm relies on 3-wise independent random variables
(random choices for the edges)

There are families of 3-wise independent random hash functions of
size 0 (n?)

Take such a family H

There is some h € H that corresponds to a matching of linear size

We can find one such h € H in a constant number of rounds on an
MPC (with total linear space)



Matching on a path

e We can find one such h* € H in a constant number of rounds on an
MPC (with total linear space)

o |H| < n3=> H isrepresented using 3 logn bits



Method of conditional probabilities

For us: F = size of the matching generated by randomly chosen edges J

Method of conditional probabilities by Erdos and Selfridge (1973) and Raghavan (1988):

Find h* € H by a sequence of repeatedly refining H into smaller subsets, H =
H, 2 H; 2 ---, until we end up with a one element set defining h".

The way of refining H is led by not decreasing (or not increasing) the
conditional expectation of some target function F on H, that is, to ensure that

Enen,, |F(h)] = Epen,[F ()]

Main difficulty: to efficiently compute conditional expectations, and to bound
the number of iterations needed to find a one element subset of H.



Method of conditional probabilities

We can find one such h* € H in a constant number of rounds on an
MPC (with total linear space)

|H| < n> = I is represented using 3 log n bits

Split the bits into chunks of size t = log, s = 6 log, n = O(logn), such
that 2° = s words fits into a single machine

Werunin 3logn/t = 3log,n = 3/6 phases:
— phasei determines bits (i —1) -t +1,..,i-tof h”



Method of conditional probabilities

We can find one such h* € H in a constant number of rounds on an
MPC (with total linear space)

|H| < n> = I is represented using 3 log n bits

[1001101110101011001111011101100-

Split the bits into chunks of size t = log, s = 6 log, n = O(logn), such
that 2° = s words fits into a single machine

Werunin 3logn/t = 3log,n = 3/6 phases:
— phasei determines bits (i —1) -t +1,..,i-tof h”



Method of conditional probabilities

For that, at the beginning of phase i:

e each machine knows the bits of the first i — 1 parts of h* (that is, prefix of
(i — 1t =(i—1)log, s bits).

Next, each machine considers extension of the current bits by all possible
seeds of length t = log, s.

e Since 2! = s fits local memory, this operation can be performed on every
machine individually.

1011101
[1001101110101011001111011101100




Method of conditional probabilities

For every possible log s-bit extension of h™:

e every machine computes locally the expected cost of the target function F
(which is the size of the matching) with this seed, producing s different
values for the target function, one for each partial seed

Then, one aggregates these values from all machines and chooses the log s-
bit extension of h* which maximizes the target function (matching size)
using the method of conditional probabilities.

1011101
[1001101110101011001111011101100




Method of conditional probabilities =
linear matching on a path

e [fwe sum this up, then we obtain the following:

Theorem: In a constant number of MPC-rounds, one can
deterministically find a linear-size matching on a path




Deterministically finding a small dominating set

e Similar approach

e Using significantly more sophisticated machinery of e-approximate
O (logn)-wise independent hash functions

J e-approximate O (log n)-wise independent hash functions:
» requires ¢ to be tiny = O(log n)-bits representation

» requires the use of strong concentration bounds for (slightly) biased
random variables

» MPC computation more tricky (since the progress function F is more
complex)



Connectivity via contractions

e )
Theorem: One can determine connected components in

\0 (log D loglogn) rounds on an MPC >

e )
Theorem: One can determine connected components in

\0(10gD + log log n) rounds on an MPC >

(. )

Theorem: These algorithms can be derandomized
without any asymptotic loss:
\deterministically in O(log D + loglogn) rounds

/




MPC algorithms for graphs
low-local-memory setting

Algorithm/approach for connectivity can be applied to other related
problems:

e Find a spanning tree

e Biconnected components
e Minimum spanning forest
e Shortest paths



MPC algorithms for graphs
low-local-memory setting

In O(log D - loglog,, » n) rounds we can compute a rooted spanning
forest of G

If we have more machines (say, (0(n + m))1+y /s), then we can solve
this task in O(log D - log(—282 —)) rounds

2+y lo

e wheny = (1) then it's just 0(log D) rounds

Minimum spanning forest with more machines - in O(log Dy rs) rounds,
where Dj,rs = diameter of a minimum spanning forest



Some more related research

e Recent advances
— approximating maximum matching,
— maximal independent set,
- graph (A + 1)-coloring
- random walks (and PageRanking)

e Some of these bounds use similar techniques



Final thoughts

e Fundamental study of MPC computation necessary to understand modern
parallel computing
— To develop tools for fast parallel algorithms

e One can design efficient deterministic MPC algorithms

e MPC can do more than PRAM
— even with low space
— even deterministically
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