

Modern Parallel Algorithms

Lecture 2

Artur Czumaj

DIMAP and Department of Computer Science University of Warwick

Warszawa, November 2022

Basic primitives for MPC algorithms

- Communication primitives
 - broadcasting, communication gathering, ...
- Basic data primitives
 - sum computation, prefix-sums, sorting, ...
- Simulations
 - PRAM simulations, BSP simulations
 - Distributed CONGESTED CLIQUE and LOCAL simulations

Broadcasting

- There is a single machine (say, M_1) having some N words of data stored in its local memory (and hence $N \leq s$)
- Goal: inform all machines in the system about this data

• If *N* •

Broadcasting can be done in $O(\log_s M)$ rounds

- Otherwise, if $N \ll s$ then easily $O(\log_{(1+s/N)} M)$ rounds
- Otherwise, if $N \sim s$ or $N \geq s$ then $O(\log_s M)$ rounds

What does it mean when $N \ge s$? It's when $\lfloor N/s \rfloor$ machines stores the input data and goal is to broadcast data to blocks of $\lfloor N/s \rfloor$ machines

Basic primitives for MPC algorithms

- Communication primitives
 - broadcasting, communication gathering, ...
- Basic data primitives
 - sum computation, prefix-sums, sorting, ...
- Simulations
 - PRAM simulations, BSP simulations
 - Distributed CONGESTED CLIQUE and LOCAL simulations

- Filtering:
 - input: *N* objects x_1, \ldots, x_N and a predicate function *f*
 - output: a sequence of all objects x_i for which $f(x_i) = true$
- Predecessor:
 - input: *N* objects $x_1 \dots, x_N$, each associated with a 0-1 value
 - output: a sequence $y_1 \dots, y_N$ such that y_j is the last object $x_{j'}$ with j' < j which has associate value of 1
- Prefix sums:
 - input: *N* objects x_1, \ldots, x_N and there is an associate operator \bigoplus
 - output: a sequence y_1, \ldots, y_N such that $y_j = \bigoplus_{i=1}^j x_i$

- Sorting:
 - input: *N* objects $x_1 \dots, x_N$ and there is a comparison function \leq to compare any two objects (to define the total order of the input objects)
 - output: the input objects rearranged in sorted order with respect to \leq
- Duplicate removal:
 - input: *N* objects
 - output: set of all input objects after removing duplicates (each input object appears exactly once in the output)
- Colored summation:
 - input: a sequence of *N* colored numbers
 - output: for each color, sum of numbers of that color

• Sorting:

Theorem: Let $0 < \delta < 1$. The following problems can be solved deterministically in $O(1/\delta)$ rounds on an MPC with local space $s = O(N^{\delta})$ and linear global space O(N): (i) summation, (ii) filtering, (iii) predecessor, (iv) prefix sums, (v) sorting, (vi) duplicate removal, (vii) colored summation.

- Colored summation:
 - input: a sequence of *N* colored numbers
 - output: for each color, sum of numbers of that color

Theorem: Let $0 < \delta < 1$. The following problems can be solved deterministically in $O(1/\delta)$ rounds on an MPC with local space $s = O(N^{\delta})$ and linear global space O(N): (i) summation, (ii) filtering, (iii) predecessor, (iv) prefix sums, (v) sorting, (vi) duplicate removal, (vii) colored summation.

Main paradigm: *s*-ary tree

Summing N elements

Summing N elements

```
Input: numbers x_1, \ldots, x_N; machine M_{i,1} stores x_{(i-1)\cdot s+1}, \ldots, x_{\min\{i\cdot s,N\}}
    Output: machine M_{1,L} knows \sum_{i=1}^{N} x_i
1 L := \lceil \log_{\mathfrak{s}} N \rceil
2 for \ell = 1 to L do
         for i = 1 to \left\lceil \frac{N}{s^{\ell}} \right\rceil do in parallel
3
                // Invariant: Machine M_{i,\ell} knows IS_{j,\ell-1} for (i-1)\mathfrak{s} + 1 \leq j \leq \min\{i\mathfrak{s}, \lceil \frac{N}{\mathfrak{s}^{\ell-1}} \rceil\}
4
               Machine M_{i,\ell} computes IS_{i,\ell} := \sum_{i=(i-1)\mathfrak{s}+1}^{\min\{i\mathfrak{s}, \lceil \frac{N}{\mathfrak{s}^{\ell-1}}\rceil\}} IS_{j,\ell-1}
5
               if \ell < L then machine M_{i,\ell} sends IS_{i,\ell} to machine M_{\lceil \frac{i}{2} \rceil, \ell+1}
6
           end
7
8 end
```

All-prefix sum

All-prefix sum

Input: numbers x_1, \ldots, x_N ; machine $M_{i,1}$ stores $x_{(i-1):\mathfrak{s}+1}, \ldots, x_{\min\{i:\mathfrak{s},N\}}$ **Output:** S_1, \ldots, S_N with $S_i = \sum_{j=1}^i x_j$; machine $M_{i,1}$ stores $S_{(i-1)\cdot \mathfrak{s}+1}, \ldots, S_{\min\{i\cdot \mathfrak{s},N\}}$ 1 $L := \lceil \log_{\mathfrak{s}} N \rceil$ 2 for $\ell = 1$ to L do for i = 1 to $\left\lceil \frac{N}{\epsilon^{\ell}} \right\rceil$ do in parallel 3 // Invariant: Machine $M_{i,\ell}$ knows $IS_{j,\ell-1}$ for $(i-1)\mathfrak{s} + 1 \leq j \leq \min\{i\mathfrak{s}, \lceil \frac{N}{\mathfrak{s}^{\ell-1}} \rceil\}$ 4 Machine $M_{i,\ell}$ computes $IS_{i,\ell} := \sum_{j=(i-1)s+1}^{\min\{is, \lceil \frac{N}{s^{\ell-1}} \rceil\}} IS_{j,\ell-1}$ 5 if $\ell < L$ then machine $M_{i,\ell}$ sends $IS_{i,\ell}$ to machine $M_{\lceil \frac{i}{\delta} \rceil, \ell+1}$ 6 7 end 8 end 9 $PS_{1,L} := 0$ 10 for $\ell = L$ downto 1 do for i = 1 to $\begin{bmatrix} n \\ \mathcal{L} \end{bmatrix}$ do in parallel 11 // Invariant: Machine $M_{i,\ell}$ knows $PS_{i,\ell}$ 12 for $j = (i-1)\mathfrak{s} + 1$ to min $\{i\mathfrak{s}, \lceil \frac{N}{\mathfrak{s}^{\ell-1}}\rceil\}$ do 13 Machine $M_{i,\ell}$ computes $PS_{j,\ell-1} := PS_{i,\ell} + \sum_{b=(i-1)s+1}^{j-1} IS_{b,\ell-1}$ 14 if $\ell > 1$ then machine $M_{i,\ell}$ sends $PS_{j,\ell-1}$ to machine $M_{j,\ell-1}$ 15 16 end end 17 18 end 19 for i = 1 to $\lceil \frac{N}{s} \rceil$ do in parallel for $j = (i-1)\mathfrak{s} + 1$ to min{ $i\mathfrak{s}, N$ } do $\mathbf{20}$ Machine $M_{i,1}$ computes $S_j := PS_{i,1} + \sum_{h=(i-1)s+1}^j x_h$ 21 end 22 23 end

- This is a FUNDAMENTAL primitive
- Sorting of *N* numbers on a PRAM with *poly(N)* processors requires Ω(log *N*) rounds.
- On MPC we can do it in constant number of rounds (if $s = N^{\Theta(1)}$)
- or in $O(\log_s N)$ rounds in general
- We assume, without loss of generality, that all input numbers are distinct

Let's start with the basics:

Theorem: One can deterministically sort *N* numbers in $O(\log_s N)$ rounds on an MPC with local space *s* with total space $O(N^2)$.

Can we achieve the same bound if total space is linear?

Definition (*r***-pivot**):

Let *I* be any set of distinct reals. For any integer *r*, a subset *P* of *I* is called an *r*-pivot if after ordering the elements from P as $y_1 < \cdots < y_h$, and setting $y_0 = -\infty$ and $y_{h+1} = +\infty$, then $|\{x \in I : y_i < x \leq y_{i+1}\}| \leq r$ for all $0 \leq i \leq h$.

Definition (Pivot-net)

Let *I* be any set of distinct reals. For any integer *r* and any *r*-pivot $P y_1 < y_2 < \cdots < y_h$, a pivot-net is a partition of *I* into h + 1 sets $\Pi_0, \Pi_1, \dots, \Pi_h$ such that $\Pi_i = \{x \in I : y_i < x \le y_{i+1}\}$, where we set $y_0 = -\infty$ and $y_{h+1} = +\infty$.

Skeleton of a parallel random sampling based sorting

- 1 Randomly sample κ input elements (pivots) a_1, \ldots, a_{κ} and send them to all machines
- 2 On each machine, locally split all input elements from that machines into $\kappa + 1$ intervals, with the *i*th interval containing all elements between the (i - 1)-st smallest sampled element and the *i*-th smallest sampled element
- 3 On each machine, send all elements from its ith interval to the ith machine
- 4 For every $1 \le i \le \kappa + 1$: on the *i*th machine locally sort all elements received in the previous step

High-level description of pivot-based sorting

- 1 Find an r-pivot (for an appropriate value of r)
- **2** Find a corresponding pivot-net $\Pi_0, \Pi_1, \ldots, \Pi_h$
- **3** Recursively sort each $\Pi_0, \Pi_1, \ldots, \Pi_h$

Random sampling based sorting

- i. How large the pivot set *P* (obtained via random sampling) should be?
- ii. With the pivot set *P* at hand, how to compute the corresponding pivotnet on MPC?
- iii. How to rearrange the pivot-net (elements from each Π_i) on MPC machines for efficient MPC implementation in the recursive calls?

Lemma. Let $0 and <math>\alpha > 0$ be arbitrary, and let *N* be sufficiently large. For any set of *N* distinct reals, let us choose the pivot set *P* by selecting (independently at random) each of the *N* input elements to *P* with probability *p*.

- If $p \ge \frac{3 \alpha \ln N}{N}$, then $|P| \le 2pN$ with probability at least $1 N^{-\alpha}$.
- With probability at least $1 N^{-\alpha}$ set *P* is an *r*-pivot with $r = \left| \frac{(\alpha+1) \ln N}{n} \right|$

One should read Lemma that if P is a random sample choosing each element with probability $\frac{h}{N'}$, then |P| = O(h) and P is an r-pivot set with $r = O(\frac{N \log N}{h})$, with high probability (assuming h is not too small)

First attempt: choose $h \coloneqq O(N^{1/3} \log^{2/3} N)$

- 1. Choose a random pivot set *P* (with prob. $\frac{h}{N}$)
- 2. Move *P* to a single machine (say, M_1) and then broadcast it to all machines
- 3. Each machine M_i determines its own pivot-net $\Pi_0^{\langle i \rangle}$, ..., $\Pi_h^{\langle i \rangle}$ w.r.t. *P*
- 4. Each machine M_i sends its set $\Pi_i^{\langle i \rangle}$ to machine M_i
- 5. Each machine M_j sorts the elements from $\Pi_j \coloneqq \bigcup_i \Pi_j^{\langle i \rangle}$
- 6. Combine sorted sets $\Pi_0, \Pi_1, ..., \Pi_h$ into a single sorted sequence

First attempt: choose $h \coloneqq O(N^{1/3} \log^{2/3} N)$

Second attempt: choose a better *h* and revise algorithm

- 1. Choose a random pivot set *P* (with prob. $\frac{h}{N}$)
- 2. Move *P* to a single machine (say, M_1) and then broadcast it to all machines
- 3. Each machine M_i determines its own pivot-net $\Pi_0^{\langle i \rangle}$, ..., $\Pi_h^{\langle i \rangle}$ w.r.t. *P*
- 4. Each machine M_i sends its set $\Pi_i^{\langle i \rangle}$ to machine M_i
- 5. Each machine M_i sorts the elements from $\Pi_i \coloneqq \bigcup_i \Pi_i^{\langle i \rangle}$
- 6. Combine sorted sets $\Pi_0, \Pi_1, ..., \Pi_h$ into a single sorted sequence

Randomized sorting of N numbers on an MPC with $N \leq$

m – number of machines used m = O(N/s)

Input: distinct numbers x_1, \ldots, x_N ; machine M_i stores $x_{(i-1)\cdot \mathfrak{s}+1}, \ldots, x_{i\cdot \mathfrak{s}}, 1 \leq i \leq \mathfrak{m}$ **Output:** machine M_i stores $x_{\pi((i-1)\cdot\mathfrak{s}+1)}, \ldots, x_{\pi(i\cdot\mathfrak{s})}, 1 \leq i \leq \mathfrak{m}$, where π is an *n*-permutation such that $x_{\pi(1)} < x_{\pi(2)} < \cdots \leq x_{\pi(N)}$ 1 Set $h = \Theta(\mathbf{m} \cdot \log N)$ 2 Partition the set $Q := \{0, 1, \dots, 2h\}$ into **m** sets Q_1, \dots, Q_m with $|Q_k| \leq \lfloor \frac{2h+1}{m} \rfloor$ for each k 3 Each machine goes through all its input elements and locally marks each as being in pivot set \mathcal{P} independently at random with probability $\frac{h}{N}$ 4 Each machine sends all its pivot elements to the first machine M_1 5 Machine M_1 broadcasts the entire set \mathcal{P} to all machines 6 Each machine M_j , for every $0 \le i \le |\mathcal{P}|$, locally determines set $\prod_i^{\langle j \rangle}$ of the elements from machine M_i that are in set Π_i 7 Each machine M_j , for every $0 \le i \le |\mathcal{P}|$, sends $|\Pi_i^{\langle j \rangle}|$ to M_k , where $k \in Q_j$ 8 Each machine M_j locally compute $|\Pi_k| := \sum_{j=1}^{\mathfrak{m}} |\Pi_k^{\langle j \rangle}|$ for all $k \in Q_j$ 9 Each machine M_i sends all its values $|\Pi_k|$ with $k \in Q_i$ to machine M_1 10 Machine M_1 locally assigns the sets $\Pi_0, \Pi_1, \ldots, \Pi_{|\mathcal{P}|}$ to $O(\frac{N}{s})$ machines so that (i) all objects from the same set Π_i , $0 \le i \le |\mathcal{P}|$, are assigned to the same machine $M_{\tau(i)}$, (*ii*) $\tau(0) \leq \tau(1) \leq \cdots \leq \tau(|\mathcal{P}|)$, and (*iii*) each machine receives at most \mathfrak{s} objects 11 Machine M_1 broadcasts numbers $\tau(0), \ldots, \tau(|\mathcal{P}|)$ and sizes $|\Pi_0|, \ldots, |\Pi_{|\mathcal{P}|}|$ to all machines 12 Each machine M_j sends all elements from each set $\Pi_i^{\langle j \rangle}$, $0 \leq i \leq |\mathcal{P}|$, to machine $M_{\tau(i)}$ **13** Each machine M_i : ► locally computes $shift(i) := \sum_{i:\tau(i) < i} |\Pi_j|$ 14

15 \blacktriangleright for any input element x on M_i , locally computes its rank $rank_i(x)$ on machine M_i

- 16 For any input element x on M_i , sets its global rank $rank(x) := rank_i(x) + shift(i)$
- 17 \blacktriangleright sends x (and its rank) to machine $M_{|rank(x)/s|}$

Randomized sorting of N numbers on an MPC with $N \leq O(\frac{s^2}{\log s})$

Input: distinct numbers x_1, \ldots, x_N ; machine M_i stores $x_{(i-1)\cdot\mathfrak{s}+1}, \ldots, x_{i\cdot\mathfrak{s}}, 1 \leq i \leq \mathfrak{m}$ Output: machine M_i stores $x_{\pi((i-1)\cdot\mathfrak{s}+1)}, \ldots, x_{\pi(i\cdot\mathfrak{s})}, 1 \leq i \leq \mathfrak{m}$, where π is an *n*-permutation such that $x_{\pi(1)} < x_{\pi(2)} < \cdots \leq x_{\pi(N)}$

1 Set $h = \Theta(\mathfrak{m} \cdot \log N)$

2 Partition the set $Q := \{0, 1, \dots, 2h\}$ into **m** sets Q_1, \dots, Q_m with $|Q_k| \leq \lceil \frac{2h+1}{m} \rceil$ for each k

3 Each machine goes through all its input elements and locally marks each as being in pivot set \mathcal{P} independently at random with probability $\frac{h}{N}$

4 Each machine sends all its pivot elements to the first machine M_1

5 Machine M_1 broadcasts the entire set \mathcal{P} to all machines

6 Each machine M_j , for every $0 \le i \le |\mathcal{P}|$, locally determines set $\Pi_i^{\langle j \rangle}$ of the elements from machine M_j that are in set Π_i

- 7 Each machine M_j , for every $0 \le i \le |\mathcal{P}|$, sends $|\Pi_i^{\langle j \rangle}|$ to M_k , where $k \in Q_j$
- **s** Each machine M_j locally compute $|\Pi_k| := \sum_{j=1}^{\mathfrak{m}} |\Pi_k^{\langle j \rangle}|$ for all $k \in Q_j$
- 9 Each machine M_j sends all its values $|\Pi_k|$ with $k \in Q_j$ to machine M_1
- 10 Machine M_1 locally assigns the sets $\Pi_0, \Pi_1, \ldots, \Pi_{|\mathcal{P}|}$ to $O(\frac{N}{\mathfrak{s}})$ machines so that (i) all objects from the same set $\Pi_i, 0 \leq i \leq |\mathcal{P}|$, are assigned to the same machine $M_{\tau(i)}$, (ii) $\tau(0) \leq \tau(1) \leq \cdots \leq \tau(|\mathcal{P}|)$, and (iii) each machine receives at most \mathfrak{s} objects

11 Machine M_1 broadcasts numbers $\tau(0), \ldots, \tau(|\mathcal{P}|)$ and sizes $|\Pi_0|, \ldots, |\Pi_{|\mathcal{P}|}|$ to all machines

12 Each machine M_j sends all elements from each set $\Pi_i^{\langle j \rangle}$, $0 \leq i \leq |\mathcal{P}|$, to machine $M_{\tau(i)}$ 13 Each machine M_i :

14 • locally computes $shift(i) := \sum_{j:\tau(j) < i} |\Pi_j|$

- 15 \blacktriangleright for any input element x on M_i , locally computes its rank $rank_i(x)$ on machine M_i
- 16 For any input element x on M_i , sets its global rank $rank(x) := rank_i(x) + shift(i)$
- 17 \blacktriangleright sends x (and its rank) to machine $M_{|rank(x)/s|}$

m – number of machines used m = O(N/s)

- One can do "similarly" for arbitrary N and s: to sort in $O(\log_s N)$ rounds
- This can be done even deterministically!

Corollary: Sorting of *N* numbers on an MPC with local space $s = N^{\delta}$ and linear total space O(N) can be done deterministically in O(1) rounds

PRAM: sorting lower bound of $\Omega(\log N)$ time (with any poly(N) number of processors)