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Basic primitives for MPC algorithms

• Communication primitives

– broadcasting, communication gathering, …

• Basic data primitives

– sum computation, prefix-sums, sorting, …

• Simulations

– PRAM simulations, BSP simulations

– Distributed CONGESTED CLIQUE and LOCAL simulations



Broadcasting

• There is a single machine (say, 𝑀1) having some 𝑁 words of data stored in 
its local memory (and hence 𝑁 ≤ 𝑠)

• Goal: inform all machines in the system about this data

• If 𝑁 ⋅ 𝑀 − 1 ≤ 𝑠 then the task is trivial

• Otherwise, if 𝑁 ≪ 𝑠 then easily 𝑂(log(1+𝑠/𝑁)𝑀) rounds

• Otherwise, if 𝑁 ∼ 𝑠 or 𝑁 ≥ 𝑠 then 𝑂(log𝑠𝑀) rounds

Broadcasting can be done in 𝑂(log𝑠𝑀) rounds

What does it mean when 𝑁 ≥ 𝑠?
It’s when 𝑁/𝑠 machines stores the input data and 
goal is to broadcast data to blocks of 𝑁/𝑠 machines
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Basic data manipulation primitives

• Filtering:

– input: 𝑁 objects 𝑥1, . . . , 𝑥𝑁 and a predicate function 𝑓

– output: a sequence of all objects 𝑥𝑖 for which 𝑓(𝑥𝑖) = 𝑡𝑟𝑢𝑒

• Predecessor:

– input: 𝑁 objects 𝑥1 . . . , 𝑥𝑁 , each associated with a 0-1 value

– output: a sequence 𝑦1 . . . , 𝑦𝑁 such that 𝑦𝑗 is the last object 𝑥𝑗′ with 𝑗′ < 𝑗 which 

has associate value of 1

• Prefix sums: 

– input: 𝑁 objects 𝑥1, . . . , 𝑥𝑁 and there is an associate operator⊕

– output: a sequence 𝑦1, . . . , 𝑦𝑁 such that 𝑦𝑗 =⊕𝑖=1
𝑗
𝑥𝑖



Basic data manipulation primitives

• Sorting: 

– input: 𝑁 objects 𝑥1 . . . , 𝑥𝑁 and there is a comparison function ≲ to compare any 
two objects (to define the total order of the input objects)

– output: the input objects rearranged in sorted order with respect to ≲

• Duplicate removal: 

– input: 𝑁 objects

– output: set of all input objects after removing duplicates (each input object 
appears exactly once in the output)

• Colored summation: 

– input: a sequence of 𝑁 colored numbers

– output: for each color, sum of numbers of that color
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Basic data manipulation primitives

Theorem: Let 0 < 𝛿 < 1. The following problems can be solved 
deterministically in 𝑂(1/𝛿) rounds on an MPC with local space 

𝑠 = 𝑂 𝑁𝛿 and linear global space 𝑂(𝑁):

(i) summation, (ii) filtering, (iii) predecessor, (iv) prefix sums, (v) 
sorting, (vi) duplicate removal, (vii) colored summation.
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Main paradigm: 𝑠-ary tree

𝑥1, 𝑥2,  , 𝑥𝑠

𝑥1 𝑥2 𝑥𝑠 

𝑥𝑠+1,  , 𝑥2𝑠

𝑥𝑠+1 𝑥2𝑠 

𝑥𝑁−𝑠+1,  , 𝑥𝑁
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𝑥1, 𝑥2,  , 𝑥𝑠 

𝑥 −𝑠 +1,  , 𝑥𝑁

𝑥1, 𝑥2,  , 𝑥𝑁
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All-prefix sum
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 𝑆1,2 = 0

 𝑆2,1 =  𝑆1,2   𝑆1,1 = 𝑥1    𝑥𝑠
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All-prefix sum



Sorting

• This is a FUNDAMENTAL primitive

• Sorting of 𝑁 numbers on a PRAM with 𝑝𝑜𝑙𝑦(𝑁) processors requires 
Ω(log𝑁) rounds.

• On MPC we can do it in constant number of rounds (if 𝑠 = 𝑁Θ(1))

• or in 𝑂(log𝑠𝑁) rounds in general

• We assume, without loss of generality, that all input numbers are distinct



Sorting

Let’s start with the basics:

Theorem: One can deterministically sort 𝑁 numbers in 𝑂(log𝑠 𝑁) rounds 
on an MPC with local space 𝑠 with total space O(𝑁2).

Can we achieve the same bound if total space is linear?



Sorting

Definition (𝑟-pivot):

Let  be any set of distinct reals. For any integer 𝑟, a subset  of  is called an 𝑟-
pivot if after ordering the elements from P as 𝑦1 <  < 𝑦ℎ, and setting 𝑦0 =
−∞ and 𝑦ℎ+1 =  ∞, then |{𝑥 ∈  ∶ 𝑦𝑖 < 𝑥 ≤ 𝑦𝑖+1}| ≤ 𝑟 for all 0 ≤ 𝑖 ≤ ℎ.

Definition (Pivot-net) 

Let  be any set of distinct reals. For any integer 𝑟 and any 𝑟-pivot  𝑦1 < 𝑦2 <
 < 𝑦ℎ, a pivot-net is a partition of  into ℎ  1 sets Π0, Π1 . . . , Πℎ such that Π𝑖 =
{𝑥 ∈  ∶ 𝑦𝑖 < 𝑥 ≤ 𝑦𝑖+1}, where we set 𝑦0 = −∞ and 𝑦ℎ+1 =  ∞.



Sorting
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Sorting

Random sampling based sorting

i. How large the pivot set  (obtained via random sampling) should be?

ii. With the pivot set  at hand, how to compute the corresponding pivot-
net on MPC?

iii. How to rearrange the pivot-net (elements from each Πi) on MPC 
machines for efficient MPC implementation in the recursive calls?



Sorting

Lemma. Let 0 < 𝑝 < 1 and 𝛼 > 0 be arbitrary, and let 𝑁 be sufficiently 
large. For any set of 𝑁 distinct reals, let us choose the pivot set  by selecting 
(independently at random) each of the 𝑁 input elements to  with 
probability 𝑝.

• If 𝑝 ≥  𝛼 ln 𝑁

𝑁
, then | | ≤ 2𝑝𝑁 with probability at least 1 − 𝑁−𝛼.

• With probability at least 1 − 𝑁−𝛼 set  is an 𝑟-pivot with 𝑟 = 𝛼+1 ln 𝑁

𝑝

One should read Lemma that if  is a random sample choosing each element 

with probability ℎ
𝑁

, then | | = 𝑂(ℎ) and  is an 𝑟-pivot set with 𝑟 = 𝑂(𝑁 log 𝑁
ℎ
), 

with high probability (assuming ℎ is not too small)



Sorting

First attempt: choose ℎ ≔ 𝑂(𝑁1/3 log2/3𝑁)

1. Choose a random pivot set  (with prob. 
ℎ

𝑁
)

2. Move  to a single machine (say, 𝑀1) and then broadcast it to all machines

3. Each machine 𝑀𝑖 determines its own pivot-net Π0
<i>,  , Πℎ

<𝑖> w.r.t.  

4. Each machine 𝑀𝑖 sends its set Πj
<i> to machine 𝑀𝑗

5. Each machine 𝑀𝑗 sorts the elements from Π𝑗 ≔ 𝑖Π𝑗ڂ
<𝑖>

6. Combine sorted sets Π0, Π1,  , Πℎ into a single sorted sequence
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<𝑖> w.r.t.  

4. Each machine 𝑀𝑖 sends its set Πj
<i> to machine 𝑀𝑗

5. Each machine 𝑀𝑗 sorts the elements from Π𝑗 ≔ 𝑖Π𝑗ڂ
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6. Combine sorted sets Π0, Π1,  , Πℎ into a single sorted sequence

Second attempt: choose a better ℎ and revise algorithm



Sorting
𝔪 – number of machines used
𝔪 = 𝑂( Τ𝑁 𝔰)
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Sorting

• One can do “similarly” for arbitrary 𝑁 and 𝑠: to sort in 𝑂(log𝑠 𝑁) rounds

• This can be done even deterministically!

Corollary: Sorting of 𝑁 numbers on an MPC with local space 𝑠 = 𝑁𝛿 and 
linear total space 𝑂(𝑁) can be done deterministically in 𝑂(1) rounds

PRAM: sorting lower bound of Ω(log𝑁) time (with any poly(𝑁) number of 
processors)




