
Artur Czumaj
DIMAP and Department of Computer Science

University of Warwick

Modern Parallel Algorithms

Lecture 2

Warszawa, November 2022

Basic primitives for MPC algorithms

• Communication primitives

– broadcasting, communication gathering, …

• Basic data primitives

– sum computation, prefix-sums, sorting, …

• Simulations

– PRAM simulations, BSP simulations

– Distributed CONGESTED CLIQUE and LOCAL simulations

Broadcasting

• There is a single machine (say, 𝑀1) having some 𝑁 words of data stored in
its local memory (and hence 𝑁 ≤ 𝑠)

• Goal: inform all machines in the system about this data

• If 𝑁 ⋅ 𝑀 − 1 ≤ 𝑠 then the task is trivial

• Otherwise, if 𝑁 ≪ 𝑠 then easily 𝑂(log(1+𝑠/𝑁)𝑀) rounds

• Otherwise, if 𝑁 ∼ 𝑠 or 𝑁 ≥ 𝑠 then 𝑂(log𝑠𝑀) rounds

Broadcasting can be done in 𝑂(log𝑠𝑀) rounds

What does it mean when 𝑁 ≥ 𝑠?
It’s when 𝑁/𝑠 machines stores the input data and
goal is to broadcast data to blocks of 𝑁/𝑠 machines

Basic primitives for MPC algorithms

• Communication primitives

– broadcasting, communication gathering, …

• Basic data primitives

– sum computation, prefix-sums, sorting, …

• Simulations

– PRAM simulations, BSP simulations

– Distributed CONGESTED CLIQUE and LOCAL simulations

Basic data manipulation primitives

• Filtering:

– input: 𝑁 objects 𝑥1, . . . , 𝑥𝑁 and a predicate function 𝑓

– output: a sequence of all objects 𝑥𝑖 for which 𝑓(𝑥𝑖) = 𝑡𝑟𝑢𝑒

• Predecessor:

– input: 𝑁 objects 𝑥1 . . . , 𝑥𝑁 , each associated with a 0-1 value

– output: a sequence 𝑦1 . . . , 𝑦𝑁 such that 𝑦𝑗 is the last object 𝑥𝑗′ with 𝑗′ < 𝑗 which

has associate value of 1

• Prefix sums:

– input: 𝑁 objects 𝑥1, . . . , 𝑥𝑁 and there is an associate operator⊕

– output: a sequence 𝑦1, . . . , 𝑦𝑁 such that 𝑦𝑗 =⊕𝑖=1
𝑗
𝑥𝑖

Basic data manipulation primitives

• Sorting:

– input: 𝑁 objects 𝑥1 . . . , 𝑥𝑁 and there is a comparison function ≲ to compare any
two objects (to define the total order of the input objects)

– output: the input objects rearranged in sorted order with respect to ≲

• Duplicate removal:

– input: 𝑁 objects

– output: set of all input objects after removing duplicates (each input object
appears exactly once in the output)

• Colored summation:

– input: a sequence of 𝑁 colored numbers

– output: for each color, sum of numbers of that color

• Sorting:

– input: 𝑁 objects 𝑥1 . . . , 𝑥𝑁 and there is a comparison function ≲ to compare any
two objects (to define the total order of the input objects)

– output: the input objects rearranged in sorted order with respect to ≲

• Duplicate removal:

– input: 𝑁 objects

– output: set of all input objects after removing duplicates (each input object
appears exactly once in the output)

• Colored summation:

– input: a sequence of 𝑁 colored numbers

– output: for each color, sum of numbers of that color

Basic data manipulation primitives

Theorem: Let 0 < 𝛿 < 1. The following problems can be solved
deterministically in 𝑂(1/𝛿) rounds on an MPC with local space

𝑠 = 𝑂 𝑁𝛿 and linear global space 𝑂(𝑁):

(i) summation, (ii) filtering, (iii) predecessor, (iv) prefix sums, (v)
sorting, (vi) duplicate removal, (vii) colored summation.

Basic data manipulation primitives

Theorem: Let 0 < 𝛿 < 1. The following problems can be solved
deterministically in 𝑂(1/𝛿) rounds on an MPC with local space

𝑠 = 𝑂 𝑁𝛿 and linear global space 𝑂(𝑁):

(i) summation, (ii) filtering, (iii) predecessor, (iv) prefix sums, (v)
sorting, (vi) duplicate removal, (vii) colored summation.

Main paradigm: 𝑠-ary tree

𝑥1, 𝑥2, , 𝑥𝑠

𝑥1 𝑥2 𝑥𝑠

𝑥𝑠+1, , 𝑥2𝑠

𝑥𝑠+1 𝑥2𝑠

𝑥𝑁−𝑠+1, , 𝑥𝑁

𝑥𝑁−𝑠+1 𝑥𝑁

𝑥1, 𝑥2, , 𝑥𝑠

𝑥1, 𝑥2, , 𝑥𝑠

𝑥 −𝑠 +1, , 𝑥𝑁

𝑥1, 𝑥2, , 𝑥𝑁

Level 0

Level 1

Level 2

Level L

node 1
(at level 1)

node 2
(at level 1)

node
𝑁

𝑠

(at level 1)

Summing N elements

𝑥1, 𝑥2, , 𝑥𝑠

𝑥1 𝑥2 𝑥𝑠

𝑥𝑠+1, , 𝑥2𝑠

𝑥𝑠+1 𝑥2𝑠

𝑥𝑁−𝑠+1, , 𝑥𝑁

𝑥𝑁−𝑠+1 𝑥𝑁

𝑥1, 𝑥2, , 𝑥𝑠

𝑥1, 𝑥2, , 𝑥𝑠

𝑥𝑁−𝑠 +1, , 𝑥𝑁

𝑥1, 𝑥2, , 𝑥𝑁

Level 0

Level 1

Level 2

Level L

node 1
(at level 1)

node 2
(at level 1)

node
𝑁

𝑠

(at level 1)

 𝑆1,2 = 𝑥1 𝑥𝑠

 𝑆2,1 = 𝑥𝑠+1 𝑥2𝑠

 𝑆1, = 𝑥1 𝑥𝑁

 𝑆1,3 = 𝑆1,2 𝑆2,2 𝑆𝑠,2 = 𝑥1 𝑥𝑠

Summing 𝑁 elements

All-prefix sum

𝑥1, 𝑥2, , 𝑥𝑠

𝑥1 𝑥2 𝑥𝑠

𝑥𝑠+1, , 𝑥2𝑠

𝑥𝑠+1 𝑥2𝑠

𝑥𝑁−𝑠+1, , 𝑥𝑁

𝑥𝑁−𝑠+1 𝑥𝑁

𝑥1, 𝑥2, , 𝑥𝑠

𝑥1, 𝑥2, , 𝑥𝑠

𝑥𝑁−𝑠 +1, , 𝑥𝑁

𝑥1, 𝑥2, , 𝑥𝑁

Level 0

Level 1

Level 2

Level L

node 1
(at level 1)

node 2
(at level 1)

node
𝑁

𝑠

(at level 1)

 𝑆1,2 = 𝑥1 𝑥𝑠

 𝑆2,1 = 𝑥𝑠+1 𝑥2𝑠

 𝑆1,2 = 0

 𝑆2,1 = 𝑆1,2 𝑆1,1 = 𝑥1 𝑥𝑠

 𝑆𝑁/𝑠 ,2 = 𝑥1 𝑥𝑁−𝑠

 𝑆1, = 𝑥1 𝑥𝑁

 𝑆1, = 0

 𝑆1,3 = 𝑆1,2 𝑆2,2 𝑆𝑠,2 = 𝑥1 𝑥𝑠

All-prefix sum

Sorting

• This is a FUNDAMENTAL primitive

• Sorting of 𝑁 numbers on a PRAM with 𝑝𝑜𝑙𝑦(𝑁) processors requires
Ω(log𝑁) rounds.

• On MPC we can do it in constant number of rounds (if 𝑠 = 𝑁Θ(1))

• or in 𝑂(log𝑠𝑁) rounds in general

• We assume, without loss of generality, that all input numbers are distinct

Sorting

Let’s start with the basics:

Theorem: One can deterministically sort 𝑁 numbers in 𝑂(log𝑠 𝑁) rounds
on an MPC with local space 𝑠 with total space O(𝑁2).

Can we achieve the same bound if total space is linear?

Sorting

Definition (𝑟-pivot):

Let be any set of distinct reals. For any integer 𝑟, a subset of is called an 𝑟-
pivot if after ordering the elements from P as 𝑦1 < < 𝑦ℎ, and setting 𝑦0 =
−∞ and 𝑦ℎ+1 = ∞, then |{𝑥 ∈ ∶ 𝑦𝑖 < 𝑥 ≤ 𝑦𝑖+1}| ≤ 𝑟 for all 0 ≤ 𝑖 ≤ ℎ.

Definition (Pivot-net)

Let be any set of distinct reals. For any integer 𝑟 and any 𝑟-pivot 𝑦1 < 𝑦2 <
 < 𝑦ℎ, a pivot-net is a partition of into ℎ 1 sets Π0, Π1 . . . , Πℎ such that Π𝑖 =
{𝑥 ∈ ∶ 𝑦𝑖 < 𝑥 ≤ 𝑦𝑖+1}, where we set 𝑦0 = −∞ and 𝑦ℎ+1 = ∞.

Sorting

Sorting

Sorting

Random sampling based sorting

i. How large the pivot set (obtained via random sampling) should be?

ii. With the pivot set at hand, how to compute the corresponding pivot-
net on MPC?

iii. How to rearrange the pivot-net (elements from each Πi) on MPC
machines for efficient MPC implementation in the recursive calls?

Sorting

Lemma. Let 0 < 𝑝 < 1 and 𝛼 > 0 be arbitrary, and let 𝑁 be sufficiently
large. For any set of 𝑁 distinct reals, let us choose the pivot set by selecting
(independently at random) each of the 𝑁 input elements to with
probability 𝑝.

• If 𝑝 ≥ 𝛼 ln 𝑁

𝑁
, then | | ≤ 2𝑝𝑁 with probability at least 1 − 𝑁−𝛼.

• With probability at least 1 − 𝑁−𝛼 set is an 𝑟-pivot with 𝑟 = 𝛼+1 ln 𝑁

𝑝

One should read Lemma that if is a random sample choosing each element

with probability ℎ
𝑁

, then | | = 𝑂(ℎ) and is an 𝑟-pivot set with 𝑟 = 𝑂(𝑁 log 𝑁
ℎ
),

with high probability (assuming ℎ is not too small)

Sorting

First attempt: choose ℎ ≔ 𝑂(𝑁1/3 log2/3𝑁)

1. Choose a random pivot set (with prob.
ℎ

𝑁
)

2. Move to a single machine (say, 𝑀1) and then broadcast it to all machines

3. Each machine 𝑀𝑖 determines its own pivot-net Π0
<i>, , Πℎ

<𝑖> w.r.t.

4. Each machine 𝑀𝑖 sends its set Πj
<i> to machine 𝑀𝑗

5. Each machine 𝑀𝑗 sorts the elements from Π𝑗 ≔ 𝑖Π𝑗ڂ
<𝑖>

6. Combine sorted sets Π0, Π1, , Πℎ into a single sorted sequence

Sorting

First attempt: choose ℎ ≔ 𝑂(𝑁1/3 log2/3𝑁)

1. Choose a random pivot set (with prob.
ℎ

𝑁
)

2. Move to a single machine (say, 𝑀1) and then broadcast it to all machines

3. Each machine 𝑀𝑖 determines its own pivot-net Π0
<i>, , Πℎ

<𝑖> w.r.t.

4. Each machine 𝑀𝑖 sends its set Πj
<i> to machine 𝑀𝑗

5. Each machine 𝑀𝑗 sorts the elements from Π𝑗 ≔ 𝑖Π𝑗ڂ
<𝑖>

6. Combine sorted sets Π0, Π1, , Πℎ into a single sorted sequence

Second attempt: choose a better ℎ and revise algorithm

Sorting
𝔪 – number of machines used
𝔪 = 𝑂(Τ𝑁 𝔰)

Sorting
𝔪 – number of machines used
𝔪 = 𝑂(Τ𝑁 𝔰)

Sorting

• One can do “similarly” for arbitrary 𝑁 and 𝑠: to sort in 𝑂(log𝑠 𝑁) rounds

• This can be done even deterministically!

Corollary: Sorting of 𝑁 numbers on an MPC with local space 𝑠 = 𝑁𝛿 and
linear total space 𝑂(𝑁) can be done deterministically in 𝑂(1) rounds

PRAM: sorting lower bound of Ω(log𝑁) time (with any poly(𝑁) number of
processors)

