THE UNIVERSITY ‘OF

(.. WARWICK

. COMPUTER SCIENCE

Modern Parallel Algorithms

Lecture 2

Artur Czuma;j

DIMAP and Department of Computer Science
University of Warwick

Warszawa, November 2022

Basic primitives for MPC algorithms

e Communication primitives

- broadcasting, communication gathering, ...
e Basic data primitives
— sum computation, prefix-sums, sorting, ...

e Simulations

— PRAM simulations, BSP simulations
— Distributed CONGESTED CLIQUE and LOCAL simulations

Broadcasting

There is a single machine (say, M;) having some N words of data stored in
its local memory (and hence N < s)

Goal: inform all machines in the system about this data

iy . (Broadcasting can be done in O(log; M) rounds

Otherwise, if N < s then easily O(log+s/n) M) rounds

Otherwise, if N ~ s or N = s then O(log; M) rounds

What does it mean when N > s?
It’s when [N /s| machines stores the input data and

goal is to broadcast data to blocks of [N /s| machines

Basic primitives for MPC algorithms

e Communication primitives

- broadcasting, communication gathering, ...
e Basic data primitives
— sum computation, prefix-sums, sorting, ...

e Simulations

— PRAM simulations, BSP simulations
— Distributed CONGESTED CLIQUE and LOCAL simulations

Basic data manipulation primitives

e Filtering:
— input: N objects x4,..., xy and a predicate function f

— output: a sequence of all objects x; for which f(x;) = true

e Predecessor:
— input: N objects x; ..., xy, each associated with a 0-1 value

- output: a sequence y; ..., yy such that y; is the last object x;, with j* < j which
has associate value of 1

e Prefix sums:
— input: N objects x4,..., xy and there is an associate operator @

- output: a sequence y;,..., Yy such thaty; = @{zl X;

Basic data manipulation primitives

e Sorting:

— input: N objects x; ..., xy and there is a comparison function < to compare any
two objects (to define the total order of the input objects)

— output: the input objects rearranged in sorted order with respect to <
e Duplicate removal:
- input: N objects

— output: set of all input objects after removing duplicates (each input object
appears exactly once in the output)

e (Colored summation:
— input: a sequence of N colored numbers
— output: for each color, sum of numbers of that color

Basic data manipulation primitives

e Sorting:

/T
deterministically in O(1/6) rounds on an MPC with local space
S = O(N‘S) and linear global space O(N):

(i) summation, (ii) filtering, (iii) predecessor, (iv) prefix sums, (v)
\ sorting, (vi) duplicate removal, (vii) colored summation.

heorem: Let 0 < 6 < 1. The following problems can be solved B

/

e (Colored summation:
— input: a sequence of N colored numbers
— output: for each color, sum of numbers of that color

Basic data manipulation primitives

Theorem: Let 0 < 6 < 1. The following problems can be solved
deterministically in O(1/6) rounds on an MPC with local space

S = O(N‘S) and linear global space O(N):
(i) summation, (ii) filtering, (iii) predecessor, (iv) prefix sums, (v)
sorting, (vi) duplicate removal, (vii) colored summation.

Main paradigm: s-ary tree

X1, X,

A \\

N \\\\\\\\\
xl,xz,m,\\
node 1—> X4,X5, ..., X Xgiq) e, Xpg <€—node2

(at level 1)
e @ O

Xs+1 = X2s

(at level 1) ‘ I
X1

xn_sz_l_l, --.,xN

N
node? — > XN-s+1r - XN
(at level 1)

e @ @

XN-s+1 XN

Level L

Level 2

Level 1

Level O

Summing N elements

e Qe

<—node 2
(at level 1)

node 1

nodeX —
(at level 1) s

(at level 1)

Level L

Level 2

Level 1

Level O

Summing N elements

Input: numbers i, ..., zy; machine M;y stores @(;_1ys41,- - Tmin{is,N)
Output: machine M; j knows Zi\il o

1 L :=[log, N|

2 for{=1to L do

3 fori=1 to (Sﬂﬂ do in parallel

4 // Invariant: Machine M;, knows [S;,_1 for (i—1)s+ 1< j < min{is, fﬁ_—rf]}

, . min{is, [1]}

5 Machine M; , computes IS; := Zj=(z’—1)§—l—1 IS50-1

6 if £ < L then machine M;, sends I.5;; to machine M[%MH

7 end

8 end

All-prefix sum

PS,, =0 Level L
e Qe e e e e Qo
PSNIsi.z = X1 b R xn_s!
Level 2
PSzJ. = PSm + ISu =X1 + Xs
node 1 <—node 2 N —
node - Level 1

(at level 1) (at level 1)

(at level 1)

Level O

1
2
3
4

© W 9 o

10
11
12
13
14

15
16
17
18

19
20

21

22
23

All-prefix sum

Input: numbers zy, ..., zxN; machine M; 1 stores Z(i—1)s+1s- - Lmin{is,N)

Output: Sy,...,5y with S; = 23':1 z;; machine M; ; stores Si;_1y.511,- -+ Smin{is,N}

L :=[log, N|
for {=1to L do
fori=1 to [g} do in parallel
// Invariant: Machine M;,; knows IS;, 1 for (:—1)s+ 1< j < min{ss, [;I_—rﬂ}
e TN
Machine M; , computes I.S; ¢ := z?ilzfigl)?j” IS;0-1
if £ < L then machine M;, sends I.5;, to machine M[g] 011
end
end
PSip =0
for { = L. downto 1 do

fori=1to [;] do in parallel
// Invariant: Machine M;, knows PS;,
for j = (i — 1)s + 1 to min{is, (E_ZL_J} do ’
Machine M;, computes PS;, 1 := PS;y+ Eg;li_l)gﬂ ISp—1
if £> 1 then machine M;, sends P.S;,_1 to machine M;, 4
end
end
end
for i = 1 to [¥] do in parallel
for 7 = (i—1)s+ 1 to min{is, N} do
Machine M; ; computes S; := PS;1 + Zzz(i_l)ﬁl xp,
end
end

Sorting

This isa FUNDAMENTAL primitive

Sorting of N numbers on a PRAM with poly(N) processors requires
((log N) rounds.

On MPC we can do it in constant number of rounds (if s = N®(1)
or in O(log; N) rounds in general

We assume, without loss of generality, that all input numbers are distinct

Sorting

Let’s start with the basics:

Theorem: One can deterministically sort N numbers in O (log; N) rounds
on an MPC with local space s with total space O(N?).

Can we achieve the same bound if total space is linear?

Sorting

Definition (r-pivot):
Let I be any set of distinct reals. For any integer r, a subset P of I is called an 7-

pivot if after ordering the elements from P as y; < --- < y;, and setting y, =
—coand y,,q = +o,then|{x € I: y; < x < y;41}| < rforall0 < i < h.

Definition (Pivot-net)
Let I be any set of distinct reals. For any integer r and any r-pivot P y; < y, <

-« < yp, apivot-netis a partition of I into h + 1 setsIly, I, ...,II; such thatIl; =
{x € I: y; <x <y;.1}, wherewesety, = —ooand y,,; = +oo.

Sorting

Skeleton of a parallel random sampling based sorting

1 Randomly sample x input elements (pivots) aq, ..., ax and send them to all machines

2 On each machine, locally split all input elements from that machines into x 4 1 intervals,
with the 7th interval containing all elements between the (¢ — 1)-st smallest sampled
element and the ¢-th smallest sampled element

3 On each machine, send all elements from 1ts ¢th interval to the ¢th machine

4 For every 1 <1 < x4+ 1: on the ¢th machine locally sort all elements received in the
previous step

Sorting

High-level description of pivot-based sorting

1 Find an r-pivot (for an appropriate value of r)
2 Find a corresponding pivot-net Ilg, I11,..., 11
3 Recursively sort each Ilp, 114, ..., Iy

Sorting

Random sampling based sorting
i. How large the pivot set P (obtained via random sampling) should be?

ii. With the pivot set P at hand, how to compute the corresponding pivot-
net on MPC?

iii. How to rearrange the pivot-net (elements from each II;) on MPC
machines for efficient MPC implementation in the recursive calls?

Sorting

Lemma. Let0 < p < landa > 0 be arbitrary, and let N be sufficiently
large. For any set of N distinct reals, let us choose the pivot set P by selecting
(independently at random) each of the N input elements to P with
probability p.

o Ifp > 222N then |P| < 2pN with probability atleast 1 — N ¢,

N

e With probability atleast1 — N™% set P is an r-pivot with r = [(““3 - N}

One should read Lemma that if P is a random sample choosing each element
with probability £, then |P| = O(h) and P is an r-pivot set with r = 0 (*=25),
W|th hlgh prObab|||ty (assuming h is not too small)

Sorting

First attempt: choose h := O(N'/310g?/3 N)

Choose a random pivot set P (with prob. %)

Move P to a single machine (say, M) and then broadcast it to all machines

Each machine M; determines its own pivot-net I15'7, ..., I3~ w.r.t. P

Each machine M; sends its set I[1=" to machine M;
L] J

Each machine M; sorts the elements from IT; = U; 1=~

A i e

Combine sorted sets II,, I14, ..., II; into a single sorted sequence

Sorting

First attempt: choose h := O(N'/310g?/3 N)

[Second attempt: choose a better i and revise algorithm }

Choose a random pivot set P (with prob. %)

Move P to a single machine (say, M) and then broadcast it to all machines

Each machine M; determines its own pivot-net I15'7, ..., I3~ w.r.t. P

Each machine M; sends its set [I~'” to machine M;

Each machine M; sorts the elements from IT; = U; 1=~

A i e

Combine sorted sets II,, I14, ..., II; into a single sorted sequence

Sorting

m — number of machines used

]

Randomized sorting of /N numbers on an MPC with N < [m = 0(N/s)
Input: distinet numbers zy, ..., zxN; machine M; stores @;_1)s41, .-, Tig, L <2 <M
Output: machine M; stores @ ((;_1).s41), -+ -» Ta(is)y 1 =% < m, where 7 is an

n-permutation such that @,y < @) < < Zy(

Set h = O(m - log N)

Partition the set @ := {0,1,...,2h} into m sets @1, ..., Qm With |Qx| < f%} for each k&

Each machine goes through all its input elements and locally marks each asg being in pivot
set P independently at random with probability %

Each machine sends all its pivot elements to the first machine M,

Machine M; broadcasts the entire set P to all machines

4

Each machine Mj, for every 0 <4 < [P|, locally determines set II;”" of the elements from

machine M; that are in set II;
Each machine M, for every 0 <1 < [P, sends |H§7>] to My, where k € Q;
Each machine Mj locally compute [Ty,| := 373 |H§Cj>| for all k € Q;

9 Each machine M; sends all its values |II;| with £ € @; to machine M,

10

11

12
13
14
15
16
17

Machine M; locally assigns the sets Ilo, [14,...,IIjp| to O(g) machines so that (¢) all
objects from the same set II;, 0 <4 < |P|, are assigned to the same machine M5,
(1) 7(0) < 7(1) < --- < 7(|P|), and (i44) each machine receives at most s objects
Machine M; broadcasts numbers 7(0),...,7(|P|) and sizes [lo|, ..., [IIjp|| to all machines

Each machine M; sends all elements from each set Héj >, 0 < < [P|, to machine M)
Each machine M;:

> locally computes shift(i) == > ;.. ;< 11|
» for any input element = on M;, locally computes its rank rank;(z) on machine M;
» for any input element = on M;, sets its global rank rank(z) := rank;(x) + shift(i)

» sends z (and its rank) to machine M| ,.u(z)/s|

Sorting

m — number of machines used

]

Randomized sorting of N numbers on an MPC with N < O(kfgzg) [m = 0(N/5)
Input: distinet numbers zy, ..., zxN; machine M; stores @;_1)s41, .-, Tig, L <2 <M
Output: machine M; stores @ ((;_1).s41), -+ -» Ta(is)y 1 =% < m, where 7 is an

n-permutation such that @,y < @) < < Zy(

Set h = O(m - log N)

Partition the set @ := {0,1,...,2h} into m sets @1, ..., Qm With |Qx| < f%} for each k&

Each machine goes through all its input elements and locally marks each asg being in pivot
set P independently at random with probability %

Each machine sends all its pivot elements to the first machine M,

Machine M; broadcasts the entire set P to all machines

4

Each machine Mj, for every 0 <4 < [P|, locally determines set II;”" of the elements from

machine M; that are in set II;
Each machine M, for every 0 <1 < [P, sends |H§7>] to My, where k € Q;
Each machine Mj locally compute [Ty,| := 373 |H§Cj>| for all k € Q;

9 Each machine M; sends all its values |II;| with £ € @; to machine M,

10

11

12
13
14
15
16
17

Machine M; locally assigns the sets Ilo, [14,...,IIjp| to O(g) machines so that (¢) all
objects from the same set II;, 0 <4 < |P|, are assigned to the same machine M5,
(1) 7(0) < 7(1) < --- < 7(|P|), and (i44) each machine receives at most s objects
Machine M; broadcasts numbers 7(0),...,7(|P|) and sizes [lo|, ..., [IIjp|| to all machines

Each machine M; sends all elements from each set Héj >, 0 < < [P|, to machine M)
Each machine M;:

> locally computes shift(i) == > ;.. ;< 11|
» for any input element = on M;, locally computes its rank rank;(z) on machine M;
» for any input element = on M;, sets its global rank rank(z) := rank;(x) + shift(i)

» sends z (and its rank) to machine M| ,.u(z)/s|

Sorting

e One can do “similarly” for arbitrary N and s: to sortin O(log; N) rounds
e This can be done even deterministically!

Corollary: Sorting of N numbers on an MPC with local space s = N° and
linear total space O(N) can be done deterministically in O(1) rounds

PRAM: sorting lower bound of Q(log N) time (with any poly(N) number of
processors)

