
Artur Czumaj
DIMAP and Department of Computer Science

University of Warwick

Modern Parallel Algorithms

Warszawa, November 2022



Modern Parallel Algorithms
Content

What this course is about:

• Some brief (and possibly biased) view of modern design of (theoretical) 
parallel algorithms, focusing on central models

• Study of algorithms for the central model: 

Massive Parallel Computation

• Design of basic algorithms for MPC

• Design of more complex MPC algorithms for fundamental graph problems



Modern Parallel Algorithms
Admin

Admin:

• 3 lectures + 2 exercise sessions

• Slides – used to guide the discussion

• Details typically on the board

• I’m trying to be as interactive as possible

• Exam to be posted next week

• Solutions until late December



Parallel Models and Algorithms
Parallel computing – previous century

• Seriously started in the 80th

• Multiple processors – usually either connected by simple regular 
networks or with a very small number of processors

• Typically:

– tightly coupled regular networks,

– synchronous,

– with simple frequent communication



1980 – 95
PRAM

• Theoretical study of algorithms in the 80th mostly for PRAM

• PRAM = Parallel Random Access Machine

– Parallel version of PRAM

Processor 1

Processor p

Processor 3

Processor 2

Shared 
memory



Parallel Random Access Machine (PRAM)

• 𝑝 processors

• Large shared memory

• In a single step (synchronized)

– each processor reads, computes for 𝑂(1) time, writes

– EREW – exclusive read, exclusive write

– CRCW – concurrent read, concurrent write

• Complexity

– number of processors

– Time

• Class NC – efficient parallel algorithms (polylog time, polynomial processors)



Processor 1

Parallel Random Access Machine (PRAM)

• 𝑝 processors

• Large shared memory

• In a single step (synchronized)

– each processor reads, computes for 𝑂(1) time, writes

– EREW – exclusive read, exclusive write

– CRCW – concurrent read, concurrent write

• Complexity

– number of processors

– Time

• Class NC – efficient parallel algorithms (polylog time, polynomial processors)

Processor p

Processor 3

Processor 2

Shared 
memory



Parallel Random Access Machine (PRAM)

• Elegant model (most natural extension of RAM to parallel setting)

• Original hope – like RAM, will be realistic and is simple

• Focuses on inherent parallelism

• Natural complexity classes NC and RNC (randomized NC)

• Problems

– shared memory is unrealistic

– need log factors to translate to real machines



Late 90th and thereafter

• Late 90th: PRAM not realistic

• Assumes an arbitrarily large number of processors (like 𝑁 or 𝑁3)

• Ignores communication costs

– Attempt to deal with it: Valiant’s BSP (bulk synchronous parallel) model

• Programming is hard and machine specific

– Requires knowing the topology of the machine to get good performance

– Well beyond the capabilities of most programmers



Modern parallel computing

• Focuses on different paradigms

• Modern real-world parallel system, 

such as MapReduce, Hadoop, Spark, and Dryad



Modern parallel computing

• Focusing on many very powerful computers connected by a network



Modern parallel computing

• Focusing on many very powerful computers connected by a network



Model: Massively Parallel Computation (MPC)

The Massively Parallel Computation (MPC) model:

a theoretical abstraction of real-world parallel system, such as MapReduce, 
Hadoop, Spark, and Dryad

MPC is the de-facto standard for analyzing (theoretically) algorithms for 
large-scale parallel computing



Model: Massively Parallel Computation (MPC)

• Natural framework depicting parallel/distributed computation:

• Models natural parallelism via the following framework:

Repeat:
• Split the input into small pieces
• Each machine analyzes/solves one small piece
• Combine (with low congestion) partial solutions



Model: Massively Parallel Computation (MPC)

Repeat:
• Split the input into small pieces
• Each machine analyzes/solves one small piece
• Combine (with low congestion) partial solutions



Model: Massively Parallel Computation (MPC)

Synchronized steps:
• Each machine does arbitrary computation

• local space of 𝑂(𝑠) words



Model: Massively Parallel Computation (MPC)

Synchronized steps:
• Each machine does arbitrary computation

• local space of 𝑂(𝑠) words
• Then, machines communicate

• each machine sends at most 𝑠 messages
• each machine receives at most 𝑠 messages



Model: Massively Parallel Computation (MPC)

Introduced by Karloff, Suri, and Vassilvitskii (2010)

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Input: 𝑁 items
𝑀 machines 𝑠 space on each machine

Initially: each machine receives 𝑂(𝑁/𝑀) items
Single round:

1. Each machine performs arbitrary computation
2. Each machine sends/receives 𝑂(𝑠) data

𝑆 data sent/received



Model: Massively Parallel Computation (MPC)

• Inspired by MapReduce (Dean, Ghemawat 2004)

– Sleek abstraction that hides details of MapReduce

• Natural framework depicting parallel/distributed computation:

Repeat:

• Split the input into small pieces

• Each machine analyzes/solves one small piece

• Combine (with low congestion) partial solutions



Model: Massively Parallel Computation (MPC)

• Inspired by MapReduce (Dean, Ghemawat 2004)

– Sleek abstraction that hides details of MapReduce

• Central parameters: local and global space

– Beame, Koutris, Suciu (2013)

– Andoni, Nikolov, Onak, Yaroslavtsev (2014)

– Karloff et al. (2010): allow 𝑁1−𝜀 machines with 𝑁1−𝜀 space

 near quadratic total space 𝑁2−2𝜀

– A refined version asks for near-linear total space:

• 𝑀 × 𝑠 = ෨𝑂(𝑁)



Model: Massively Parallel Computation (MPC)

Introduced by Karloff, Suri, and Vassilvitskii (2010)

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Input: 𝑁 items𝑀 machines 𝑠 space on each machine

• Goals:

– Small number of rounds

– Small space per machine

– Fast local computation



Model: Massively Parallel Computation (MPC)

• Parameters:

– 𝑠

– 𝑀

– Total space = 𝑠 ⋅ 𝑀

– Time

• Ideally: 

– 𝑠 ⋅ 𝑀 is close to the input size

– Time should be constant, or as little as possible



Model: Massively Parallel Computation (MPC)

• Parameters:

– 𝑠

– 𝑀

– Total space = 𝑠 ⋅ 𝑀

– Time

• Ideally: 

– 𝑠 ⋅ 𝑀 is close to the input size

– Time should be constant, or as little as possible

How big is 𝑠?



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

Machine

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges

• Natural space regimes:

– Linear: 𝑠 = Ω(𝑚) or 𝑠 = Ω(𝑛1+𝜀) or 𝑠 = Ω(𝑛)

– Sublinear: 𝑠 = (𝑛1−𝜀) for some (small) constant 𝜀

– Low-space: 𝑠 = 𝑂(𝑛𝛿) for any (arbitrarily small) constant 𝛿

– Polylogarithmic: 𝑠 = log𝑂(1) 𝑛



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges

• Natural space regimes:

– Linear: 𝑠 = Ω(𝑚) or 𝑠 = Ω(𝑛1+𝜀) or 𝑠 = Ω(𝑛)

– Sublinear: 𝑠 = (𝑛1−𝜀) for some (small) constant 𝜀

– Low-space: 𝑠 = 𝑂(𝑛𝛿) for any (arbitrarily small) constant 𝛿

– Polylogarithmic: 𝑠 = log𝑂(1) 𝑛

Many problems are trivial



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges

• Natural space regimes:

– Linear: 𝑠 = Ω(𝑚) or 𝑠 = Ω(𝑛1+𝜀) or 𝑠 = Ω(𝑛)

– Sublinear: 𝑠 = (𝑛1−𝜀) for some (small) constant 𝜀

– Low-space: 𝑠 = 𝑂(𝑛𝛿) for any (arbitrarily small) constant 𝛿

– Polylogarithmic: 𝑠 = log𝑂(1) 𝑛

Many problems are trivial

Case 𝑠 = Θ(𝑛) is the same as the CONGESTED CLIQUE 
model extensively studied in distributed computing



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges

• Natural space regimes:

– Linear: 𝑠 = Ω(𝑚) or 𝑠 = Ω(𝑛1+𝜀) or 𝑠 = Ω(𝑛)

– Sublinear: 𝑠 = (𝑛1−𝜀) for some (small) constant 𝜀

– Low-space: 𝑠 = 𝑂(𝑛𝛿) for any (arbitrarily small) constant 𝛿

– Polylogarithmic: 𝑠 = log𝑂(1) 𝑛

Many problems are interesting and can be parallelized



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges

• Natural space regimes:

– Linear: 𝑠 = Ω(𝑚) or 𝑠 = Ω(𝑛1+𝜀) or 𝑠 = Ω(𝑛)

– Sublinear: 𝑠 = (𝑛1−𝜀) for some (small) constant 𝜀

– Low-space: 𝑠 = 𝑂(𝑛𝛿) for any (arbitrarily small) constant 𝛿

– Polylogarithmic: 𝑠 = log𝑂(1) 𝑛

Many problems are difficult – here is the focus of modern research



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges

• Natural space regimes:

– Linear: 𝑠 = Ω(𝑚) or 𝑠 = Ω(𝑛1+𝜀) or 𝑠 = Ω(𝑛)

– Sublinear: 𝑠 = (𝑛1−𝜀) for some (small) constant 𝜀

– Low-space: 𝑠 = 𝑂(𝑛𝛿) for any (arbitrarily small) constant 𝛿

– Polylogarithmic: 𝑠 = log𝑂(1) 𝑛

Many problems are hard (and typically not better than on PRAM)



Input: Edges of an 𝑚-edge graph on 𝑛 vertices

Case study: MPC for graphs

𝑀 = 𝑂(𝑚/𝑠)machines 𝑠 space on each machine

𝑚-edges and 𝑛 vertices are distributed among 𝑀 machines,

each machine can accommodate 𝑂(𝑠) vertices, 𝑂(𝑠) edges

• Natural space regimes:

– Linear: 𝑠 = Ω(𝑚) or 𝑠 = Ω(𝑛1+𝜀) or 𝑠 = Ω(𝑛)

– Sublinear: 𝑠 = (𝑛1−𝜀) for some (small) constant 𝜀

– Low-space: 𝑠 = 𝑂(𝑛𝛿) for any (arbitrarily small) constant 𝛿

– Polylogarithmic: 𝑠 = log𝑂(1) 𝑛

Low-space 𝑠 = 𝑂(𝑛𝛿) – most interesting setting:
• allows full scalability
• algorithmically challenging
• interesting tasks can be solved efficiently

Here is the focus of modern research



Basic primitives for MPC algorithms

• Communication primitives

– broadcasting, communication gathering, …

• Basic data primitives

– sum computation, prefix-sums, sorting, …

• Simulations

– PRAM simulations, BSP simulations

– Distributed CONGESTED CLIQUE and LOCAL simulations



Broadcasting

• There is a single machine (say, 𝑀1) having some 𝑁 words of data stored in 
its local memory (and hence 𝑁 ≤ 𝑠)

• Goal: inform all machines in the system about this data

• We are happy with local space 𝑂(𝑠); it’s in words



Broadcasting

• There is a single machine (say, 𝑀1) having some 𝑁 words of data stored in 
its local memory (and hence 𝑁 ≤ 𝑠)

• Goal: inform all machines in the system about this data

• If 𝑁 ⋅ 𝑀 − 1 ≤ 𝑠 then the task is trivial

• Otherwise, if 𝑁 ≪ 𝑠 then easily 𝑂(log(1+𝑠/𝑁)𝑀) rounds

• Otherwise, if 𝑁 ∼ 𝑠 or 𝑁 ≥ 𝑠 then 𝑂(log𝑠𝑀) rounds



Broadcasting

• There is a single machine (say, 𝑀1) having some 𝑁 words of data stored in 
its local memory (and hence 𝑁 ≤ 𝑠)

• Goal: inform all machines in the system about this data

• If 𝑁 ⋅ 𝑀 − 1 ≤ 𝑠 then the task is trivial

• Otherwise, if 𝑁 ≪ 𝑠 then easily 𝑂(log(1+𝑠/𝑁)𝑀) rounds

• Otherwise, if 𝑁 ∼ 𝑠 or 𝑁 ≥ 𝑠 then 𝑂(log𝑠𝑀) rounds

Broadcasting can be done in 𝑂(log𝑠𝑀) rounds




