

Modern Parallel Algorithms

Artur Czumaj

DIMAP and Department of Computer Science University of Warwick

Warszawa, November 2022

Modern Parallel Algorithms Content

What this course is about:

- Some brief (and possibly biased) view of modern design of (theoretical) parallel algorithms, focusing on central models
- Study of algorithms for the central model:

Massive Parallel Computation

- Design of basic algorithms for MPC
- Design of more complex MPC algorithms for fundamental graph problems

Modern Parallel Algorithms Admin

Admin:

- 3 lectures + 2 exercise sessions
- Slides used to guide the discussion
- Details typically on the board
- I'm trying to be as interactive as possible
- Exam to be posted next week
- Solutions until late December

Parallel Models and Algorithms Parallel computing – previous century

- Seriously started in the 80^{th}
- Multiple processors usually either connected by simple regular
 networks or with a very small number of processors
- Typically:
 - tightly coupled regular networks,
 - synchronous,
 - with simple frequent communication

1980 – 95 PRAM

- Theoretical study of algorithms in the 80^{th} mostly for PRAM
- PRAM = Parallel Random Access Machine
 - Parallel version of PRAM

Parallel Random Access Machine (PRAM)

- *p* processors
- Large shared memory
- In a single step (synchronized)
 - each processor reads, computes for O(1) time, writes
 - EREW exclusive read, exclusive write
 - CRCW concurrent read, concurrent write
- Complexity
 - number of processors
 - Time
- Class NC efficient parallel algorithms (polylog time, polynomial processors)

Parallel Random Access Machine (PRAM)

- *p* processors
- Large shared memory
- In a single step (synchronized)
 - each processor reads, computes for O(1) time, writes
 - EREW exclusive read, exclusive write
 - CRCW concurrent read, coProcessor 2ri
- Complexity
 - number of processors
 - Time

• Class NC – efficient parallel algorithms (polylog time, polynomial processors)

Parallel Random Access Machine (PRAM)

- Elegant model (most natural extension of RAM to parallel setting)
- Original hope like RAM, will be realistic and is simple
- Focuses on inherent parallelism
- Natural complexity classes NC and RNC (randomized NC)
- Problems
 - shared memory is unrealistic
 - need log factors to translate to real machines

Late 90th and thereafter

- Late 90th: PRAM not realistic
- Assumes an arbitrarily large number of processors (like N or N^3)
- Ignores communication costs
 - Attempt to deal with it: Valiant's BSP (bulk synchronous parallel) model
- Programming is hard and machine specific
 - Requires knowing the topology of the machine to get good performance
 - Well beyond the capabilities of most programmers

Modern parallel computing

- Focuses on different paradigms
- Modern real-world parallel system, such as MapReduce, Hadoop, Spark, and Dryad

Modern parallel computing

• Focusing on many very powerful computers connected by a network

Modern parallel computing

• Focusing on many very powerful computers connected by a network

The Massively Parallel Computation (MPC) model:

a theoretical abstraction of real-world parallel system, such as MapReduce, Hadoop, Spark, and Dryad

MPC is the de-facto standard for analyzing (theoretically) algorithms for large-scale parallel computing

• Natural framework depicting parallel/distributed computation:

• Models natural parallelism via the following framework:

Repeat:

- Split the input into small pieces
- Each machine analyzes/solves one small piece
- Combine (with low congestion) partial solutions

Repeat:

- Split the input into small pieces
- Each machine analyzes/solves one small piece
- Combine (with low congestion) partial solutions

Synchronized steps:

- Each machine does arbitrary computation
 - local space of O(s) words

Synchronized steps:

- Each machine does arbitrary computation
 - local space of O(s) words
- Then, machines communicate
 - each machine sends at most *s* messages
 - each machine receives at most s messages

Introduced by Karloff, Suri, and Vassilvitskii (2010)

Initially: each machine receives O(N/M) items Single round:

- 1. Each machine performs arbitrary computation
- 2. Each machine sends/receives O(s) data

- Inspired by MapReduce (*Dean, Ghemawat 2004*)
 - Sleek abstraction that hides details of MapReduce
- Natural framework depicting parallel/distributed computation:

Repeat:

- Split the input into small pieces
- Each machine analyzes/solves one small piece
- Combine (with low congestion) partial solutions

- Inspired by MapReduce (Dean, Ghemawat 2004)
 - Sleek abstraction that hides details of MapReduce
- Central parameters: *local and global space*
 - Beame, Koutris, Suciu (2013)
 - Andoni, Nikolov, Onak, Yaroslavtsev (2014)
 - Karloff et al. (2010): allow $N^{1-\varepsilon}$ machines with $N^{1-\varepsilon}$ space
 - → near quadratic total space $N^{2-2\varepsilon}$
 - A refined version asks for near-linear total space:

• $M \times s = \tilde{O}(N)$

Introduced by Karloff, Suri, and Vassilvitskii (2010)

• Goals:

- Small number of rounds
- Small space per machine
- Fast local computation

- Parameters:
 - *S*
 - *M*
 - Total space = $s \cdot M$
 - Time
- Ideally:
 - $s \cdot M$ is close to the input size
 - Time should be constant, or as little as possible

- Parameters:
 - *S*
 - *M*
 - Total space = $s \cdot M$
 - Time
- Ideally:
 - $s \cdot M$ is close to the input size
 - Time should be constant, or as little as possible

How big is s?

Input: Edges of an *m*-edge graph on *n* vertices

Input: Edges of an *m*-edge graph on *n* vertices

M = O(m/s) machines s space on each machine m-edges and n vertices are distributed among M machines, each machine can accommodate O(s) vertices, O(s) edges

Input: Edges of an *m*-edge graph on *n* vertices

M = O(m/s) machines s space on each machine m-edges and n vertices are distributed among M machines, each machine can accommodate O(s) vertices, O(s) edges

- Natural space regimes:
 - Linear: $s = \Omega(m)$ or $s = \Omega(n^{1+\varepsilon})$ or $s = \Omega(n)$
 - Sublinear: $s = (n^{1-\varepsilon})$ for some (small) constant ε
 - Low-space: $s = O(n^{\delta})$ for any (arbitrarily small) constant δ
 - Polylogarithmic: $s = \log^{O(1)} n$

Input: Edges of an *m*-edge graph on *n* vertices

M = O(m/s) machines s pace on each machine

m-edges and n vertices are distributed among M machines, each mach Many problems are trivial s vertices, O(s) edges

- Natural space regimes: Linear: $s = \Omega(m)$ or $s = \Omega(n^{1+\varepsilon})$ or $s = \Omega(n)$
 - Sublinear: $s = (n^{1-\varepsilon})$ for some (small) constant ε
 - Low-space: $s = O(n^{\delta})$ for any (arbitrarily small) constant δ
 - Polylogarithmic: $s = \log^{O(1)} n$

Input: Edges of an *m*-edge graph on *n* vertices

M = O(m/s) machines s space on each machine

m-edges and n vertices are distributed among M machines,

each mach Many problems are trivial (s) vertices, O(s) edges

• Natural Case $s = \Theta(n)$ is the same as the CONGESTED CLIQUE model extensively studied in distributed computing - Linear: $s = \Omega(m)$ or $s = \Omega(n^{1+\varepsilon})$ or $s = \Omega(n)$

- Sublinear: $s = (n^{1-\varepsilon})$ for some (small) constant ε

- Low-space: $s = O(n^{\delta})$ for any (arbitrarily small) constant δ

– Polylogarithmic: $s = \log^{O(1)} n$

Input: Edges of an *m*-edge graph on *n* vertices

M = O(m/s) machines s space on each machine m-edges and n vertices are distributed among M machines, each machine can accommodate O(s) vertices, O(s) edges

- Natural space regimes:
 - Linear Many problems are interesting and can be parallelized
 - Sublinear: $s = (n^{1-\varepsilon})$ for some (small) constant ε
 - Low-space: $s = O(n^{\delta})$ for any (arbitrarily small) constant δ
 - Polylogarithmic: $s = \log^{O(1)} n$

Input: Edges of an *m*-edge graph on *n* vertices

M = O(m/s) machines s pace on each machine m-edges and n vertices are distributed among M machines, each machine can accommodate O(s) vertices, O(s) edges

- Natural space regimes:
 - Linear: $s = \Omega(m)$ or $s = \Omega(n^{1+\varepsilon})$ or $s = \Omega(n)$
 - Su Many problems are difficult here is the focus of modern research Low-space: $s = O(n^{\delta})$ for any (arbitrarily small) constant δ

 - Polylogarithmic: $s = \log^{O(1)} n$

Input: Edges of an *m*-edge graph on *n* vertices

M = O(m/s) machines s space on each machine m-edges and n vertices are distributed among M machines, each machine can accommodate O(s) vertices, O(s) edges

- Natural space regimes:
 - Linear: $s = \Omega(m)$ or $s = \Omega(n^{1+\varepsilon})$ or $s = \Omega(n)$
 - Sublinear: $s = (n^{1-\varepsilon})$ for some (small) constant ε
 - LOW-SF Many problems are hard (and typically not better than on PRAM) - Polylogarithmic: $c = \log^{O(1)} n$
 - Polylogarithmic: $s = \log^{O(1)} n$

- Natural space regimes:
 - Linear: $s = \Omega(m)$ or $s = \Omega(n^{1+\varepsilon})$ or $s = \Omega(n)$
 - Sublinear: $s = (n^{1-\varepsilon})$ for some (small) constant ε
 - Low-space: $s = O(n^{\delta})$ for any (arbitrarily small) constant δ
 - Polylogarithmic: $s = \log^{O(1)} n$

Basic primitives for MPC algorithms

- Communication primitives
 - broadcasting, communication gathering, ...
- Basic data primitives
 - sum computation, prefix-sums, sorting, ...
- Simulations
 - PRAM simulations, BSP simulations
 - Distributed CONGESTED CLIQUE and LOCAL simulations

Broadcasting

- There is a single machine (say, M_1) having some N words of data stored in its local memory (and hence $N \leq s$)
- Goal: inform all machines in the system about this data

• We are happy with local space O(s); it's in words

Broadcasting

- There is a single machine (say, M_1) having some N words of data stored in its local memory (and hence $N \leq s$)
- Goal: inform all machines in the system about this data
- If $N \cdot (M 1) \leq s$ then the task is trivial
- Otherwise, if $N \ll s$ then easily $O(\log_{(1+s/N)} M)$ rounds
- Otherwise, if $N \sim s$ or $N \geq s$ then $O(\log_s M)$ rounds

Broadcasting

- There is a single machine (say, M_1) having some N words of data stored in its local memory (and hence $N \leq s$)
- Goal: inform all machines in the system about this data

• If *N* · (

Broadcasting can be done in $O(\log_s M)$ rounds

- Otherwise, if $N \ll s$ then easily $O(\log_{(1+s/N)} M)$ rounds
- Otherwise, if $N \sim s$ or $N \geq s$ then $O(\log_s M)$ rounds