PhD Open lectures, University of Warsaw A formal framework for processes inspired by the functioning of living cells

GRZEGORZ ROZENBERG

December 2012

Please solve the three problems below and turn in your solutions as a PDF. Please consult appropriate chapters of the lecture slides that were handed out during the lectures.

Your solutions should be sent to Bartosz Klin (klin@mimuw.edu.pl) by Friday, Jan. 4, 2013.

1. Basic Notions - slides 21-27.

Consider the following reaction system with three reactions and three elements in its background set:

$$S = \{a, b, c\}$$

$$A = \{ (\{a\}, \{b\}, \{a, b\}), (\{a, b\}, \{c\}, \{b, c\}), (\{c\}, \{a\}, \{c\}) \}$$

Compute the interactive processes of length 5 with the following context sequences:

1a)	$\{a,b\}$	Ø	Ø	Ø	Ø
1b)	{a}	Ø	{b}	{a}	{a}
1c)	$\{a,c\}$	{c}	$\{b,c\}$	$\{a\}$	$\{b\}$

2. Examples - slides 18-29.

Consider a reaction system simulating an n-bit counter. Design a reaction system with the background

$$S = \{\mathtt{p}_1, \dots, \mathtt{p}_n, \mathtt{collatz}, \dots\}$$

(you may extend the background with further elements if you wish) so that a system that represents a number k in binary, when put in the context {collatz}, simulates the Collatz process on the number k, i.e., repeatedly:

- divides k by 2 if it is even,
- multiplies k by 3 and adds 1, otherwise.

A single step of the Collatz process may be simulated by several steps of your reaction system. All calculations should be done modulo 2^n , i.e., on *n*-bit numbers.

Hint: design reaction systems for multiplication / division by 2, and for adding two numbers represented in binary.

3. Functions - slides 18-30.

For each of the following powerset functions f_1 , f_2 , and f_3 over $S = \{a, b, c\}$, determine if the function is

- reactant minimal?
- inhibitor minimal?
- resource minimal?

and argue for your answers (using the theorems from the slides).