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Multiplicative Complexity &

Roadmap

* bi-linear and tri-linear problems such as
complex / matrix multiplication

e general case

— arbitrary vectorial Boolean functions
* in cryptography called S-boxes

 some prominent cipher systems
» and their algebraic vulnerabilities

©Nicolas T. Courtois 2012 m.



Multiplicative Complexity &

Glossary

« MC = Multiplicative Complexity,
informally counting the number of
multiplications in algorithms

—trying to do it with less

« MM = Matrix Multiplication

3
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Multiplicative Complexity &

5

Gauss in 1805

multiplying two complex numbers:
e naive method AX
(a + bi) - (c +di) = (ac-bd) + (bc+da)i

o Gauss method:

P1 =c(atb)

02 =a(d-c) 3X

P3 = b(c+d)

(a+bi) - (c+d)=(P1-P3) + (P1+P2)i
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Multiplicative Complexity &

MM = Matrix Multiplication

e entry size = n?
 naive algorithm = n3

e amazingly enough, many computer scientists

believe it could be nearly quadratic...
e like = n?(log n)sth
« which in fact would be linear!
— this is in the input size = n?
e there is a proven lower bound of n“*log n
[Raz 2002]
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Multiplicative Complexity &

MM = *Meta-Algorithm”?

Representation Theory:
any finite group will be seen as matrices of certain
particular form, matrix multiplication will be used to
compute in the group.

Sort of magical trick to “compute” things unrelated to
matrices.
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Equivalence of MM and Other Problems

A speed up in MM will automatically result in a speed

improvement of many other algorithms:

« (Gauss: solving linear equations

« solving of non-linear polynomial equations...

» transitive closure of a graph or a relation on a finite set

« recognising if a word of length n belongs to a context-free language
 many many other...
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$$$ Importance of MM

e At least
Hundreds of Megawatts * Years
are spent in linear algebra operations
— Code breaking by intelligence agencies
— Google page ranking
— Computer graphics x millions of GPU chips
— Scientific computations
— Etc.

9
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Best Known Exponents

e O(n%37>°) obtained in 1987 by
COppersmith-Winograd, best known until now!

e June 2010:
Andrew Stothers obtained n2373/

e 2011: beaten by Virginia Vassilevska
Williams [Berkeley] who obtained n%372/

could we join the race???

©Nicolas T. Courtois 2012 m.
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James Eve [Newcastle Uni. UK, 2008]

“l am very confident that | have found the right approach and
that what | have done has cracked or is very close to
cracking the problem of efficient algorithms for multiplying
and inverting matrices”

Which would be n? (log n) ?? or similar.
Donald Knuth has been reviewing his paper in 2008 and
asked questions. James Eve died in 2008 before he could
answer these questions...

11
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Improving MM

12 ©Nicolas T. Courtois 2012



Multiplicative Complexity

Naive = n°

4= [ E’] B=|° f]

Bi-Linear Non-Commutative Algorithm

a blle f ae +bg af + bh
ce +dg cf +dh
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Strassen [1969]

i
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Lower Complexity

* Trading multiplications (expensive)
for additions (much cheaper)

* The algorithm CAN be applied recursively.

« Result = n4-807
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Remark

e the algorithm is bi-linear
e pbut the problem is somewhat tri-linear:
e 2 Iinputs + 1 output,

* linear(A_ij) x linear(B_kl) are combined
linearly again!

And in fact it HAS a tri-linear formal algebraic
representation:

©Nicolas T. Courtois 2012 m.
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Multiplicative Complexity &

Formal Tri-Linear Representation
(21111 + T1awan)2n + (20 + 21ay92)210 + (Zo1vnn + 2oayan 291 + (2o1y1e + 2oaym)am =

(241 + 299) (W11 + o0 (211 + 299) + (291 + oo Jyry (201 — 29) + 211 (W2 — Yoo) (212 + 299)+

Ton(Uar — Ui )21 + 221) + (211 + 2ea)oa( =211 + 219) + (291 — 2y ) (W1 + Yo)2mt

a trick to write many equations as one single equation (!)

provides better understanding...

minimum number of x = rank of this tri-linear form (a.k.a. Tensor Rank)

= its Multiplicative Complexity (MC)

©Nicolas T. Courtois 2012
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5 Symmetries

Tri-linear view unlocks a hidden world of symmetries of the problem

1. One can permute the r indexes i.

2. One can cyclically shift the three sets of matrices, A%, BY) and C'1¥) for
1 < i <r becomes B, 0 and AW for 1 < i <r.

3. One reverse the order and transpose: A, B and O\ for 1 < i < r
becomes (CHT, (BT and (AW)T for 1 <i <7,

4. One can rescale as follows: a;A" 5; B and ¢;C') for 1 < i < r where

a;, b;, ¢; are rational coefficients with a;b;c; = 1 for Pa(*h 1 < 1 <.
. This method is (‘alled 7 andwu‘hmg We replat‘e AW B and 0 for 1<

i <1 by UADYV-L VBOW- and WCWU L, where U, V.W are three
arbitrary invertible matrices.

18 ©Nicolas T. Courtois 2012
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Invariants

All the known symmetries leave invariant determinants???
a set of 3 x r matrices nxn.

This can be used to prove that two solutions are NOT equivalent.

It is known that ALL solutions to Strassen’s 2x2 problem are the same
(isomorphic wrt to these symmetries).
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Brent Equations [1970]

Obtained directly from the tri-linear form.

ViV VEVINMYn
> A B C0, = 60ik60m
=1
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3x3 Matrices

 Laderman [1976]; 23 multiplications.

e Doing 22 (or showing it cannot be done) is one of the most
famous problems in computer science, 35 years, in every
book about algorithms and data structures...

e In 1986 Johnson and McLoughlin found some new solutions
(for 23)

21
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3x3 Matrices

In 2011 we solved the Brent equations with a SAT solver

We also prove that it is a NEW solution NOT isomorphic to
Laderman and neither to Johnson-McLoughlin.

Courtois Bard and Hulme:
“A New General-Purpose Method to Multiply 3x3 Matrices
Using Only 23 Multiplications”,

http://arxiv.org/abs/1108.2830

22
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3x3 Matrices

We have FULLY automated the problem:

* Write Brent equations

e Consider only solutions in 0,1 = integers modulo 2.

e Convert to SAT with Courtois-Bard-Jefferson method

 Lift the solution from GF(2) to the general bigger fields by
another constraint satisfaction algorithm (easy in practice).

As it is a fully automated process of discovery, we are very
close to doing 22, just need more CPUs...

23
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P01 := (a_2_3) * (-b_1_2+b_1_3-b_3_2+b_3_3);

P02 := (-a_1_1+a_1_3+a_3_1+a_3_2) * (b_2_1+b_2_2);

P03 := (a_1_3+a_2_3-a_3_3) * (b_3_1+b_3_2-b_3_3);

P04 := (-a_1_1+a_1_3) * (-b_2_1-b_2_2+b_3_1);

P05 := (a_1_1-a_1_3+a_3_3) * (b_3_1);

P06 := (-a_2_1+a_2_3+a_3_1) * (b_1_2-b_1_3); 23
P07 := (-a_3_1-a_3_2) * (b_2_2); X
P08 := (a_3.1) * (b_1_1-b_2_1);

P09 := (-a_2_1-a_2_2+a_2_3) * (b_3_3);
P10 := (a_1_1+a_2_1-a_3_1) * (b_1_1+b_1_2+b_3_3);

P11 := (-a_1_2-a_2_2+a_3_2) * (-b_2_2+b_2_3); Our SOIUt'On

P12 := (a_3_3) * (b_3_2);
P13 := (a_2_2) * (b_1_3-b_2_3);
P14 := (a_2_1+a_2_2) * (b_1_3+b_3_3);

P15 := (ai1) * (-b1_1+b_2.1-b.3.1); arxiv.org/abs/1108.2830

P16 := (a_3.1) * (b_1_2-b_2_2);

P17 := (a_1_2) * (-b_2_2+b_2_3-b_3_3);
P18 := (-a_1_1+a_1_2+a_1_3+a_2_2+a_3_1) * (b_2_1+b_2_2+b_3_3);
P19 := (-a_1_1+a_2_2+a_3_1) = (b_1_3+b_2_1+b_3_3);

P20 := (-a_1_2+a_2_1+a_2_2-a_2_3-a_3_3) * (-b_3_3);

P21 := (-a_2_2-a_3_1) * (b_1_3-b_2_2);

P22 := (-a_1_1-a_1_2+a_3_1+a_3_2) * (b_2_1);

P23 := (a_1_1+a_2_3) * (b_1_2-b_1_3-b_3_1);

expand (PO2+P04+P07-P15-P22-a_1_1%b_1_1-a_1_2*%b_2_1-a_1_3*b_3_ 1);
expand (PO1-P02+P03+P05-PO7+P0S+P12+P18-P19-P20-P21+P22+P23-
a_1_1xb_1_2-a_1_2%b_2_2-a_1_3%b_3_2);

expand (-P02-PO7+P17+P18-P19-P21+P22-a_1_1xb_1_3-a_1_2%b_2_3-a_1_3%b_3_3);

expand (PO6+P08+P10-P14+P156+P19-P23-a_2_1xb_1_1-a_2 2%b_2_1-a_2_3%b_3_1);
expand (-P01-P06+P09+P14+P16+P21-a_2_1%b_1_2-a_2_2%b_2_2-a_2_3%b_3_2);
expand (P09-P13+P14-a_2_1xb_1_3-a_2_2%¥b_2_3-a_2_3%b_3_3);

expand (P02+P04+P05+P07+P08-a_3_1#b_1_1-a_3_2%b_2_1-a_3_3*b_3_1);

expand (-PO7+P12+P16-a_3_1%b_1_2-a_3_2%b_2_2-a_3_3%b_3_2);

expand (-PO7-P09+P11-P13+P17+P20-P21-a_3_1xb_1_3-a_3_2%b_2_3-a_3_3%b_3_3);

“UCL
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MC of Tri-Linear Functions

25
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Multiplicative Complexity &

Remember Gauss in 18057

multiplying two complex numbers:
e naive method AX
(a + bi) - (c +di) = (ac-bd) + (bc+da)i

e Gauss method:

P1 =c(atb)
P2 =a(d-c) 33X
p3 = h(c+d)

(a + bi) - (c + di) = (P1-P3) + (P1+P2)i

26 ©Nicolas T. Courtois 2012



What About 3 Complex Numbers?

e naive method
(@+b)*(c+d)*(e+fiy=(ace-adf-bcf-bde)
+ilacf+ade+bce-bdf) 16X

n GF(2) we can do 5 multiplications total!
P1:=(at+b+e+f)*(c+d+e+f);

P2:=(ate)(d+e); NEW!
3=(cHybH); O X

m = P4:= (P1+P2+P3+a+d+e)*(P1+e+f);
Re .= P5:= (P1+e+f)*(P1+P4+a+b+c+d+1);

©Nicolas T. Courtois 2012 m.
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Our Paper

28 ©Nicolas T. Courtois 2012



Multiplicative Complexity

Best Paper!

IARIA

International Academy, Research, and Industry Association

BEST PAPER. AWARD

ultiplicative Complexity and Solving Generalized Brent Equations

With SAT Solvers
BY

@urtois, Daniel Hulme, Theodosis MOUID

Presented during COMPUTATION TOQLS 2012, The Third International Conference on Computational Logics,
Algebras, Programming, Tools, and Benchmarking, held in Nice, France - July 22-27, 2012
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MC of Arbitrary Functions

30
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Logic Synthesis

a mundane problem of practical electronics
solved by engineers...
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Complexity

= the lofty name given by scientists
to the same problems...

Complexity Theory:
most of it is about “what we don’t
know”

> snowing nat oroolarm A wnicr we de not <) O/‘/ N0OYY

[0 solve 13 e 1/04 ot Mj'JJ\/ ent o oroolem =
Lnder assumotorn et oiner inings vwWe do «novy so
littl2 200Ut are irus
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Complexity Theory — Positive Aspect

Also defines NP-hard problems.
They are sort of “universal” problems.

If an algorithm solves 3-SAT in PTIME than we can
also solve Travelling Salesman in PTIME and all

the other famous problems

sezrcr funding
0 Ll ¢ JQ [0 ‘Dr\r
SIETs

for zll NP-nard oroolerms s
Solvers © as iney solye 2
OfQOJdH 1S 100,

] )
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Multiplicative Complexity &

Circuit Complexity

e Multiplicative Complexity (MC) = minimum number of 2-
iInput AND gates, NOT and XOR gates go for free.

» Bitslice Gate Complexity (BGC) is the minimum number of
2-input gates of types XOR,OR,AND needed.

o Gate Complexity (GC) is the minimum number of 2-input
gates of types XOR,0OR,AND,NAND,NOR,NXOR.

« NAND Complexity (NC) = 2-input NAND gates only

x_0 Hv+— 1 - 10
> L]
X 2 H—= .—l 5 )
2 4 -/ )6 -2
> *UCL
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Motivation

35 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

Motivation

e silicon = $$$
« software encryption = $$$
e secure implementation in smart cards = $3%

e cryptanalysis

36
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Crypto and MC

37 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

Cryptography and MC

 Most of energy and silicon in smart cards
and SSL web servers is spent on
cryptography which could be improved with

“lower MC”

e (for all sorts of algorithms, RSA, ECC also symmetric
ciphers use multiplications or AND gates etc.).

38
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AES and MC

39 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

AES

Advanced Encryption Standard:
US government standard and a (de facto)
world standard for commercial applications.

!

Key sizes 128, 192 and 256 bits.

e In 2000 NIST selected Rijndael as the AES.
o Serpent was second in the number of votes.

40 ©Nicolas T. Courtois 2012 m.



Multiplicative Complexity &

e il

!

11 years later:

In 2011, the year in which AES is becoming standard in every
new Intel CPU... (i5 and above)

AES was broken (but really only in theory).

Today’s most competitive ciphers are precisely PRESENT
Serpent and GOST...

* Unhappily GOST was also broken in 2011.
o Serpent not very popular still.

« PRESENT is popular within research community but not
widely used..

=> MC is at the heart of optimisation of ALL these ciphers.

©Nicolas T. Courtois 2012 m.
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AES S-box

X — X

in GF(256)

42 ©Nicolas T. Courtois 2012



AES S-box

X — X
in GF(256)

BTW. Its “Implicit” Multiplicative Complexity = 1
Xy=1

43
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Multiplicative Complexity &

X — X' n=4 [Boyar and Peralta 2008-9]
eprint.iacr.org/2009/191/

5X

Iy, =1+ T2 o =T X I3 I3 = x4 + 12

ta =1 % I3 a4 = T2 + 14 [*:I e = I3 +Ta

te = T2 + 12 t7 = 1ig X I35 Yz = Ts+1t7 (%)
s = T3+ Y= fg = i3+ Y= o = T4 X 1o

iy = tip +ts () t11 = t3 4+ t1o f12 = ya X 11

yz =tz +11 (%)

Fig. 1. Inversion in GF(2%).
5 AND 11 XOR
©Nicolas T. Courtois 2012
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X — X1 n=8 or Full-Size AES S-box

f2 = yi2 X Y15 t3s =ys X ys ty =tz+tz

Is = Ya X Ty tle =15 +12 Iy =iz X Uis

ts = Ys X i1 ts —=1g 417 tip = 42 X Y7

tin = tig+ 7 iz = Yo X Y11 iz = Yia X Y17 3 2X
fi12a =tz + hiz fi15 = Y= X Yo tig = f15 + 11z

tar =14 + 11 tig =it +1l18 tig = tg + t14

fag = 11+ tis fs1 = t17 + Y20 tos = tis + Yo

=ty Y =lrtee eprint.iacr.org/2009/191/
tag = f21 + faz tog = f21 X f23 tor = tos +1og

tag = f25 X fa7 tog = fa2g + f22 tap = f23 + 124

f31 = taz + t2s tzz = t31 X f3n tzzg = f32 +f24

fza = faa + fa3 fass = fa7 + 133 tag = f24 X 35

tay = lze + T34 t3g = Lo7 + 138 tag = fog X I3s

tan = f25 + 30

fsn = t4p+ L37 typ = tag + 133 f43 = f29 + 14 151 gateS,

44 = 33 + l37 fas = Taz + Taa Znp = taa X s

2y = ig7 X Us Za —=l33 X T7 23 =14z X e CheapeSt known
Zg =l40X Y1 zs =1t X Y7 zg = fao X 11

zr = tas X Yi7 zg = ta1 X Y10 Zg = Tas X 12

zZip = 37 X Y3 zir = 133 X Y4 zi2 = t43z X 13

Z1z3 =Tan X Y5 Zia = fag X 3o Z15 = T4z X Yo

z16 = faz X Y14 zir =14 X Ys

Fig. 3. The middle non-linear section
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Can we do 47?

Boyar and Peralta has proven that 4 is
impossible. Manual proof.

We can do this routinely in an automated way.

Two sorts of SAT solvers:

e stochastic

e combplete some of these output a file which is
P " aformal proof of UNSAT.

©Nicolas T. Courtois 2012 m.

46
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Mt/ Ay satalia.com

SAT Solvers
- ™ “"
In the Cloud Sqtqhq a o
UCL spin-off the solve engine
company
Solve today's hardest optimization
and constraint problems:
. « chip design
SOIVmg SAT « software verification
problems * logistics and scheduling
on demand... « portfolio management
Solving. Made simple.
commercial

but also for free...

47 ©Nicolas T. Courtois 2012
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PRESENT and MC

48 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

Theorem [Courtois et al. 2010]

The Multiplicative Complexity of the PRESENT S-box
IS exactly 4.

(cheaper than AES at the same size which has 5)

49
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Our Method

Quantified SAT Problem:

ViVVEVIVmVn

Equations...

Convert to SAT and say that holds for sufficiently many small
weight cases...

Generic very pOWGFfUl method. we also use it for many other things...

But not so good for MM 23 result, Brent Equations are another
sort of more “formal algebraic” method and can be seen as
the same with a suitable choice of basis...

©Nicolas T. Courtois 2012 m.
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Bit-Slice Complexity
PRESENT S-box
« Naive implementation = 39 gates
* Logic Friday [Berkeley] = 25 gates

e Our result = 14 gates. M

T1=X2°X1; T2=X1&T1; T3=X0"T2; Y3=X3°T3; T2=T1&T3; T1"=Y3; T2"=K1,
T4=X3|T2; Y2=T1°T4; T2"="X3; Y0=Y2"T2; T2|=T1; Y1=T3"T2,

Fig. 1. Our implementation of the PRESENT S-box with only 14 gates

ol ©Nicolas T. Courtois 2012



PRESENT Software

We have co-authored an open-source implementation
of PRESENT, the best currently known.

algebraic_attacks / present_bitslice.c

dd32845601204 266 loc 8.7 KB

S
Bit-5lice Tmplementation of PRESENT in pure standard .
Wi, 5 FeSSEA11

The authors are

Martin Albrecht =martinrelbrecht@googlemail. com=

Wicolas 7. Cowrtois =firstinitial. family namefes. wcl.ac. wh=
Daniel Helme =Firstnamo@zatalis. com=

Guangyan Song =firstname, lastname@gmail . com=

Thiz wark was partly funded by the Technology Strategy Board
in the United Kingdom wnder Project Mo 9536-58525,

WEW FEATURES in this wversion!

- it contains an optimized shox() wsing 15 only gotes, instead of 30
areviously

- it mow supports both 80-bHit and 128-bit PRESENT

- it contains test vectors for both versions

This iz 3 simple and straightforward implementation
it encrypts at the speed of
52 50 cycles per byte on Intel Xeon 5130 1,66 GHZ l

this can be compared to for example

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 147 cycles per byte for optimized triple DES on the same O

©Nicolas T. Courtois 2012



Another S-box —CTC2

Our new design:

x_ 0 |""_D_ | y_1
X 1 I--'——L/‘_E\ |

PROVEN
OPTIMAL

o3 ©Nicolas T. Courtois 2012



More About CTC2 S-box.

Theorem 3.1.

 The Multiplicative Complexity (MC) is exactly 3
— 3 AND + any number of XOR gates.

 The Bitslice Gate Complexity (BGC) is exactly 8
— (allowed are XOR,OR,AND,OR). \

 The Gate Complexity (GC) Is exactly 6 ALL
— in addition allowing NAND,NOR,NXOR. ¥ PROVEN

« The NAND Complexity (NC) is exactly 12/ OPTIMAL
— only NAND gates and constants.

o4 ©Nicolas T. Courtois 2012 m.
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Optimal S-boxes

SE ©Nicolas T. Courtois 2012



Theory of Optimal S-boxes

There is a theory of “optimal S-boxes” which
are the best possible w.r.t. linear and
differential criteria to build ciphers...

On the Classification of 4 Bit S-Boxes

q
G. Leander’* and A. Poschmann?

! GRIM, University Toulon, France
Gregor .Leander@rub.de
? Horst-Gértz-Institute for I'T-Security, Ruhr-University Bochum, Germany
poschmann@crypto.rub.de

56
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Affine Equivalence

We call two S-boxes 5.5 equivalent if there exist bijective
linear mappings A, B and constants a,b IE"E1 such that

S'(z) = B(S(A(z) + a)) + b.

If two S-boxes 5 and 52 are equivalent in the above sense we denote this by
Sy ~ S,

Abstract. In this paper we classify all optimal 4 bit S-boxes. Remark-
ably, up to affine equivalence, there are only 16 different optimal S-boxes.

o/ ©Nicolas T. Courtois 2012
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Affine Equivalence

On the Classification of 4 Bit S-Boxes

O n Iy 1 6 S' bOXeS G. Leander!* and A. Poschmann?

! GRIM, University Toulon, France

(14 1
a re O O Gregor .Leander@rub.de
- ? Horst-Gortz-Institute for IT-Security, Ruhr-University Bochum, Germany

poschmann@crypto.rub.de

4x4 occur in Serpent, PRESENT, GOST, [AES...]

not surprising that some of the S5-boxes of the Serpent cipher are linear
equivalent. Another advantage of our characterization is that it eases the
highly non-trivial task of choosing good S-boxes for hardware dedicated

ciphers a lot.

o8 ©Nicolas T. Courtois 2012
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Affine Equivalence => MC?!

Yes!

1. Determine another S-box for which our S-box 1s an affine equivalent ot an-
other S-box, for which the MC was already computed.

2. The affine equivalence can be determined by methods of [2] which are ac-
tually essentially the same methods which have been proposed at the same
conference 10 years earlier [9] in a slightly different context.

Original algorithm: see

e Courtois Goubin Patarin, Eurocrypt 1998
Adaptation:

* Biryukov et al, Eurocrypt 2008

29 ©Nicolas T. Courtois 2012



Affine Equivalence in GOST

Or do Russian code makers read French-German papers about crypto S-boxes...

S-box Set Name 5152|853 |54|55|56| 57| S8

GostR3411.94_TestParamSet 36 02| 03|04 06| 35| 08

- their inverses 02| 03 | 04 06 08
GostR3411.94_CryptoProParamSet Lul| 14 |G1o G
- their inverses Lul| 14 |G1g (g

Gost28147_Test ParamSet 21 | 21 25 28

- their inverses 21 | 21 25 28

Gost28147_CryptoProParamSet A 3113233 |Gs|35(36| 37| 38

- their inverses 31132 33 |Gs 37 | 38

GDS‘LQS14?_CryptoPmParamSetB G13|G13|G13|G11| G7 |G- G141 Gs

- their inverses Gi13|G13|G13|G11| G7 |G7|1G11| Gs

Gost28147_CryptoProParamSetC G- | Gy | Gg |G13|G13|Ge|G11|Gas

- their inverses Gz | Ga | Ge |G13|G13|Ge|G11|Gas

Gost 28 14?_01‘}’ptDPI‘(}PHI‘HIHSEtD G13|G13|Gi3| Gy |G12|G4|Gr3| G-

- their inverses G13|G13|G13| G4 |G12|Ga|Gis| Gy
GostR3411_94_SberbankHashParamset T4 | 75| 76 78
- their inverses A | TH| 78 76

GOST 150 18033-3 proposal Go|Go | Gg |Go |Gg |Ga| Go | G

- their inverses Go | Go | Go | Go | Go |Ge| Ga | Gg m



Multiplicative Complexity &

Affine Equivalence in GOST - Observations

» There was a historical evolution of GOST S-boxes towards boxes of
type G_i which are optimal against LC/DC

 most of more recent S-boxes which appear in OpenSSL are one of the
G_i

« BTW. 12 out of these 'optimal' S-boxes are affine equivalent to their own
inverse.

* Interestingly, only 9 of these 12 which are namely G_{4},G_{6},G_{7},
G_{8}, G_{9}, G_{10},G_{11},G_{12},G_{13} occur in our table for GOST,
and only those which are equivalent to their inverse occur in this table.
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Reverse Engineering
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Multiplicative Complexity &

Software Reverse Engineering

 Reproduce the cipher by queries to it.

* Holy grail for serious hackers and cryptanalysts, even before we try to
break a cipher system, we need to know the spec.

 Possible IF we can compute MC for circuits.
— for small circuits WE CAN do it with SAT solvers.

—In 2008/2009 Dutch researchers have published
a “software reverse engineering method” for
MiFare Classic Crypto-1 cipher.
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Multiplicative Complexity

Cryptol Cipher

Tag/Reader IV
Key _
0 47| [31 0
3 IR

o
0|5 9 1011121314151?18 3[24]2 1l42]4

v EESRERTPRANEY! Hjl

2 lo 1 2 3] 1 o 1 2 3] o 142 3] |o 1 2 éé’;
\ S\ L/ \ WU/ e/ S
3
S
0XEC57E80A
31[15[13[12]10] 0 |=~—ER E ax S _""E
- . Reader 1V?

Tag IV  Response? Serial

out

f.2=0x9E98 = (at+b)(ct+1)(a+d)+(b+1)cta 'lI‘ag IV @ Serial is
oaded first, then

.2 = 0xB48E = (a+c)(at+b+d)+(a+b)cd+b Reader IV ® NFSR

Il T A T A& |



Hitag2 Cipher

Serial Key

0«II +++ 31f0 +++ 15 =
R DR e B -

CO LT R L T N

R

U A w

f5—0x79072875

\J f IV
out 5 T3
imverse(first 32 keystream bits) = authenticator -

f.#=0x2C79 = abct+actad+bct+atb+d+1
fo3 = 0x6671 = abd+acd+bcd+ab+ac+bctat+b+d+1
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In the world of Serious Cryptanalysis
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Beyond Crypto-1

...AC can break “any cipher”, if not too complex...

 \We can break Hitag2 in 1 day
— with a SAT solver.

Cf. Nicolas T. Courtois, Sean O'Nell and Jean-
Jacques Quisquater: “Practical Algebraic
Attacks on the Hitag2 Stream Cipher”,

In ISC 2009, Springer.

68

©Nicolas T. Courtois 2012 m.



Algebraic Cryptanalysis [Shannon]

Breaking a « good » cipher should require:

*as much work as solving a system of
simultaneous equations in a large number
of unknowns of a complex type”

[Shannon, 1949]

69 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

Motivation

Usual linear and differential cryptanalysis do
require huge quantities of known/chosen
plaintexts.

Q: What kind of cryptanalysis is possible
when the attacker has

only one known plaintext (or very few) ?

Claim: This question did not receive sufficient
attention.

70 ©Nicolas T. Courtois 2012 m.




Two Worlds:

* The “approximation” cryptanalysis:

— Linear, differential, high-order differential, impossible
differential, Jakobsen-Knudsen approximation, etc..

— All are based on probabillistic characteristics true with
some probability.

— Consequently, the security will grow exponentially with
the number of rounds, and so does the humber of
required plaintexts in the attacks (main limitation in
practice).

 The “exact algebraic” approach:
— Write equations to solve, true with probability 1.

— Very small number of known plaintexts required.

©Nicolas T. Courtois 2012 m.
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Why Cryptographers Get It Wrong...

By assuming that 243 time 243 KP is feasible (it isn't)
block ciphers have too many rounds.

Some attacks which are really feasible, e.g. 279 and 4
KP are never studied

—because somebody will say that they less practical
than other already known attacks...

= In fact they are the only attacks feasible.

=iln real-life applications the key will be changed and 243
KP never happens while 279 and 4 KP is costly but
realistic.

©Nicolas T. Courtois 2012 m.
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What Makes Ciphers Vulnerable
o«
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Multiplicative Complexity &

Design of Symmetric Ciphers

A mix of sufficiently many
highly non-linear functions.... /

“

74 ©Nicolas T. Courtois 2012 m.



Def: “I / O Degree” = “Graph Al”

Consider function f: GF(2)" — GF(2)™,
f(aj) — y' Wlth L — (3307 ° e 7337?,—1) ! y — (ij ° 7ym—1)

Definition [The I/O degree] Thel/O degree
of f is the smallest degree of the algebraic re-
lation

9(z0,- -, Tp—1,90,++»Ym—1) =0
that holds with certainty for every couple (z,vy)
such that vy = f(x).

A “good” cipher should use at least some
components with high 1/O degree.

©Nicolas T. Courtois 2012
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AES S-box

X — X
in GF(256)

BTW. Its “Implicit” Multiplicative Complexity = 1
/O degree = 2
Xy=1

©Nicolas T. Courtois 2012
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Multiplicative Complexity

AES S-boxes
(Vg o)) =S (X4, .05 Xg) -

Theorem [Courtois-Pieprzyk]. For each S-box
there are r=39 quadratic equations

with 16 variables x, and v,
that are true with probability 1.
!

©Nicolas T. Courtois 2012
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Multiplicative Complexity &

Optimal S-boxes ?

[Anne Canteaut, Marion Videau, Eurocrypt 2002]:

Optimal for linear, differential and high-order differential
attacks.

We do not know any worse S-box in terms of r.

Power -1 3 S /
Equations/S-box | 39 | 39 | 34 | 24
==

/8

©Nicolas T. Courtois 2012 m.



Multiplicative Complexity &

Break AES with Quadratic Equations?

Rijndael 128 bit: to recover the secret key can
be rewritten as MQ:

8000 quadratic equations
1600 variables in GF(2).

But how to solve it ?

79 ©Nicolas T. Courtois 2012
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Multiplicative Complexity

XL Algorithm, Grobner Bases

o [Shamir, Patarin, Courtois, Klimov, Eurocrypt’2000]

@ o [Courtois, ICISC’02], [Courtois, Patarin, CT-RSA’'03]

o Grobner bases, Buchberger algorithm, F4, F5, F5/2 by
Jean-Charles Faugere... ...

 Recent many paper: Claus Diem, Gwenole Ars,
Magali Bardet, Jean-Charles Faugere, Bruno Salvy,
Makoto Sugita, Mitsuru Kawazoe, Hideki Imai, Jiun-
Ming Chen, Nicolas Courtois, Bo-Yin Yang and others.

XL is too general. Deals with dense

systems of equations. Our are sparse
(easier).

80
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The principle of XL:

Multiply the initial equations by
low-degree monomials:

1l = x5 + xpxr1 + TOT>
becomes:
r1+1=2x1 (25 + zox1 + 2T0T2)
(degreee 3 now).

81 ©Nicolas T. Courtois 2012 m.



Multiplicative Complexity

The 1dea of XL:
Multiply equations by low-degree
monomials.
 Count new equations: R
 Count new monomials present: T

One term can be obtained in many
different ways,
= [ grows slower than R.

82 ©Nicolas T. Courtois 2012 m.



The XL idea:

Multiplying the
equations

by one or several
variables.

©Nicolas T. Courtois 2012 m.
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The XSL variant:

Multiplying the
equations

by one or several
m O n O m I al S (out of monomials present) «
©Nicolas T. Courto is 2012 m‘
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Block Ciphers

Nicolas Courtois, Joseph Pieprzyk:
Cryptanalysis of Block Ciphers with Overdefined Systems of Equations, in Asiacrypt 2002.

> 500 citations

¥ 2
LOTS of press speculation NEWSCIentISt

abut real and imaginary The global science and technology weekly | 7 June 2003 NEW! us JOBS SECTION
consequences of this...
Vincent Rijmen have said: MEG AWATER

“XSL is not an attack, it is a dream® The biggest engineering folly of all time?

JOHN BARROW

How our world could be just
a computer simulation

48 CIPHER CRISIS

The end of internet privacy

85 ©Nicolas T. Courtois 2012 'T'ﬁTEST NEWS
(S Stop-go universe



Multiplicative Complexity

Is AES Broken ?

o

It is widely believed that XSL
does not work..

In fact there is no proof...

T

86 ©Nicolas T. Courtois 2012 m.



Multiplicative Complexity &

Stream Ciphers

87 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

Stream Ciphers

Nicolas Courtois, Willi Meier: Algebraic Attacks
on Stream Ciphers with Linear Feedback, in EuroCrypt 2003.

Citing URL: http; //www, esi-topics, COFﬂ,-’ﬁT‘Iﬂ-’EOOS;"]UWbS-NiCOHISCO'UI’tOiJS

> 500 citations From e>>July 2005

Nicolas T. Courtois answers a few guestions about this
“Fast Moving Front” month's fast moving front in the field of Compiuiter

in computer science e
(top 1% result in whole of CS)  Field: Computer Science

Article: Algebraic attacks on stream ciphers with linear

feedback
Authors: eIl eI RN Meicr, W
T H D M SD N Journal, LECT NOTE COMPUT =CI, 2856 345-359, 2003
* ™ Addresses:

Schlumberger Smart Cards, Cryptog Res, 36-308 Rue Princesse, BP 45, F-78430
Louveciennes, France.,

Schlumberger Smart Cards, Cryptog Res, F-78430 Louveciennes, France,
FH &argau, CH-5210 Windisch, Switzerland,

Why do you think your paper is highly cited?

This paper proposes a new, surprisingly

Essantial Science Indicators ™"
powerful method for attacking stream
ciphers. It allows us to break not only a

= rbmiEs
OPI
few ciphers that were up until now

88 believed quite secure, but also holds

©Nicolas T. Courtois 2012 even deeper consequences. For about a
decade, designers of ciphers have




Multiplicative Complexity &

DES Cipher

89 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

DES

At a first glance,
DES seems to be a very poor target:

there is (apparently)

no strong algebraic structure
of any kind in DES

90 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

What's Left ?

ldea 1: (IO)

Algebraic I/O relations.
Theorem [Courtois-Pieprzyk]:

Every S-box has a low I/O degree.
=>3 for DES.

ldea 2: (Very Sparse)

DES has been designed to be implemented in
hardware.

=> \/ery-sparse quadratic equations at the price of
adding some 40 new variables per S-box.

©Nicolas T. Courtois 2012 m.
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Multiplicative Complexity &

Results ?
Both Idea 1 (I0) and Idea 2 (VS)
can be exploited in working
key recovery attacks.

92
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Multiplicative Complexity &

Results on DES

Nicolas T. Courtois and Gregory V. Bard:
Algebraic Cryptanalysis of the D.E.S.

In IMA conference 2007, pp. 152-169,
LNCS 4887, Springer.

See also:
eprint.iacr.org/2006/402/
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Two Attacks on Reduced-Round DES

Cubic |10 + Equations ElimLin algorithm:

We recover the key of 5-round DES with
3 KP faster than brute force.

Circuit representation+ ANF-to-CNF + MiniSat
2.0.:

Key recovery for 6-round DES. Only 1 KP (}).

96
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Multiplicative Complexity &

GOST Cipher
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Multiplicative Complexity &

Ready Software for Windows

Equations generators for some ciphers:
www.cryptosystem.net/aes/toyciphers.html

Some ready programs for algebraic
cryptanalysis:

www.cryptosystem.net/aes/tools.html

98 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

GOST 28148-39

 The Official Encryption Standard of Russian
Federation.

e Declassified in 1994.
 Best single-key attack:

— Shamir et al. 2°?
 FSE 2012, Washington DC, March 201m
— NEW attack by Courtois: 2779 :
 advanced differential attack, March 2012

— MULTIPLE KEY attack by Courtois; 2101
 NEW: December 2012

99 ©Nicolas T. Courtois 2012 m.



GOST 28148-89

 Very high level of security (256 bits)
— In theory secure for 200 years...

 Widely used, Crypto ++, Open SSL

e (Central Bank of Russia and other Russian
banks...

— not a commercial algorithm for short-term security such as DES...

 Very competitive, less gates that simplified DES,
much less than AES

— [cf CHES 2010]
— 800 G.E. while AES-128 needs >3100

e |n 2010 GOST was also submitted to ISO to
become an international standard.

100 ©Nicolas T. Courtois 2012 m.



GOST 28148-89

Table 1. Multiplicative Complexity for all known GOST S-Boxes

S-box Set Name
GostR3411.94 _TestParamSet
GostR3411.94 _CryptoProParamSet
(GGost28147 _Test Param Set
Gost28147 _CryptoProParamSet A
Gost28147 _CryptoProParamSet B
Gost28147 _CryptoProParamSetC
Gost28147 _CryptoProParamSetD
GostR 341194 _SberbankHash Paramset
GOST ISO 18033-3 proposal

—_
N
o

S5

e
!
s
=2
!
~1
o0

o

o | el e e e e ] | @2
| | e e e en| | e el @2
| ] el e en| | e en] en| @2
| | e e | en| | en| el @2
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Multiplicative Complexity &

GOST-P

A version of GOST with 8x PRESENT S-box
— Only 650 G.E.

MC = 4 each exactly (as we already proved).

The authors have obtained in 2011 for their work
precisely on PRESENT cipher and 4-bit S-boxes,
an “IT Security Price” of 100 000 € which is the
highest scientific price in Germany awarded by a
private foundation.

102 ©Nicolas T. Courtois 2012 m.



Multiplicative Complexity &

Modular Addition

+ modulo 232

In several ciphers: GOST, SNOW 2.0.

(@, y) =z =

y mod 2"

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo

2™ 18 exactly n — 1.

103 ©Nicolas T. Courtois 2012



Multiplicative Complexity &

Modular Addition

(z,y) — z=xHBy mod2"

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo

2™ 18 exactly n — 1.

104

r;:1:1=In -0
H=ZI11+Y T
=TIy TY21C

L=T T TG

: Zn-1 = Tn-1T Yn—1 ‘l‘ﬂn—l,

©Nicolas T. Courtois 2012

(1 = ZoYo
c9

¢ = Ti-10i-1 + (Zi-t + Yi-1 )i

\ Cn—1 < In-2Yn-2 3 (Iﬂ—ﬂ + yn—E]



Multiplicative Complexity

MC (+ Mod 2") = n-1 ?7?

Theorem 6.1.1. The Multiplicative Complexity (MC) of the addition modulo

2™ 18 exactly n — 1.

| TOY0
Proof: ey + (21 + y)er
we have:
Xy + (x + y)c — /
ot O+ 0) b [Ett Pt vt
1x each
= Tn-2Yn—2 + (Zn-2 + Yn-2)Cn-2
105
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