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PART IV

Approximation algorithms



Definition: A c-approximation algorithm for a minimization

problem is a polynomial-time algorithm that finds a solution of

cost at most OPT · c.

Examples:

I 3
2 -approximation for Metric TSP,

I 2-approximation for Minimum Vertex Cover and

Minimum Feedback Vertex Set

I 8
7 -approximation for Max 3SAT, etc.



I For some problems, we have lower bounds: there is no

(2− ε)-approximation for Vertex Cover or

(8
7 − ε)-approximation for Max 3SAT (under suitable

complexity assumptions).

I For some other problems, arbitrarily good approximation is

possible in polynomial time: for any c > 1 (say, c = 1.000001),

there is a polynomial-time c-approximation algorithm!



Approximation schemes

Definition: A polynomial-time approximation scheme (PTAS)

for a problem P is an algorithm that takes an instance of P and a

rational number ε > 0,

I always finds a (1 + ε)-approximate solution,

I the running time is polynomial in n for every fixed ε > 0.

Typical running times: 21/ε · n, n1/ε, (n/ε)2, n1/ε2 .



Some classical PTAS

I Vertex Cover for planar graphs

I TSP in the Euclidean plane

I Steiner Tree in planar graphs

I Knapsack



Shifting strategy

Classical approach: Baker [J. ACM 1994] and of Hochbaum and

Maass [J. ACM 1985]



Example: Vertex Cover

Fact: There is a 2O(1/ε) · n time PTAS for Vertex Cover for

planar graphs.



Example: Vertex Cover

I Let D := 1/(3ε). For a fixed 0 ≤ s < D, delete every layer Li with

i = s (mod D)

I The resulting graph Gs is D-outerplanar, hence it has treewidth

O(D) = O(1/ε).

I Using the O(2w · n) time algorithm for Vertex Cover, the

problem on Gs can be solved in time 2O(1/ε) · n.



Example: Vertex Cover

I For a fixed 0 ≤ s < D, define Fs as the graph induced by layers

Li−1, Li, Li+1, i = s (mod D).

I The resulting graph is 3-outerplanar, hence it has treewidth O(1).

I For at least one value of s, Fs contains at most 3/D = ε vertices of

some optimal solution.

I The union of vertex covers of Fs and Gs is a (1 + ε)-approximate

solution.



Let’s take a different look

Bidimensionality and EPTAS



Branch-width separation

Lemma (Tree-width separation)

Let G = (V,E) be a graph of treewidth t, and w : V → {0, 1} be

a weight function. Then there is a set S ⊂ V of size at most t+ 1

such that the connected components C1, . . . , C` of G[V \ S] can

be grouped into two sets C1 and C2 such that

w(V )−w(S)
3 ≤ w(Ci) ≤ 2(w(V )−w(S))

3 , for i ∈ {1, 2}.

Before we start looking for protrusions,

we will need the following observations:

Lemma (Treewidth separation)

Let G = (V, E) be a graph and w : V → R+ ∪ {0} be a weight function. Then

there is a set S ⊂ V of size at most tw(G) + 1 such that the connected

components C1, . . . , C� of G[V \ S] can be grouped into two sets C1 and C2

such that w(V )−w(S)
3

≤ w(Ci) ≤ 2(w(V )−w(S))
3

, for i ∈ {1, 2}.
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� Π is separable: the solutions Zi in Gi = G[Ci] are of sizes |Ci ∩Z| ±O(|S|)
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Crucial Lemma

Lemma

Let X be a VC of size k in a planar graph G. For every ε > 0, ∃

set X ′ ⊆ V (G) such that

I |X ′| ≤ εk;

I bw(G \X ′) = O(1
ε )

In other words, G has a constant-treewidth vertex removal set of

size O(k).



Put it a bit differently

∀ε > 0, ∃ X ′ ⊆ V (G) s.t.

I |X ′| ≤ εk;

I bw(G \X ′) = O(1
ε )

∀ε > 0, ∃ X ′ ⊆ V (G) s.t.

I |X ′| ≤ εk;

I ∀ component C of G \X ′,

|V (C) ∩X| = O( 1
ε2

)

Indeed, X is bidimensional, and thus bw(C) = O
√
|V (C) ∩X|.



Put it a bit differently

∀ε > 0, ∃ X ′ ⊆ V (G) s.t.

I |X ′| ≤ εk;

I bw(G \X ′) = O(1
ε )

∀ε > 0 ∃δ > 0, X ′ ⊆ V (G) s.t.

I |X ′| ≤ εk;

I ∀ component C of G \X ′,

|V (C) ∩X| ≤ 1
ε2

Indeed, X is bidimensional, and thus

bw(C) = O
√
|V (C) ∩X| = O(1

ε ).



Proof

What we want to prove:

I |X ′| ≤ εk;

I For every component C of G \X ′, |V (C) ∩X| ≤ 1
ε2

If k ≤ 1
ε2

, we put X ′ = ∅.



Proof

Let k > 1
ε2

.

Let T (G, k) be the minimum size of the set X ′ s.t.

I For every component C of G \X ′, |V (C) ∩X| = O( 1
ε2

)

We prove that T (G, k) ≤ εk − δ
√
k for some δ > 0.



Proof

We want to prove that T (G, k) ≤ εk − δ
√
k.

Let S be a balanced X-separator.

Then

T (G, k) ≤ |S|+ max
1/3≤α≤2/3

(T (G1, αk) + T (G2, (1− α)k))



Proof

Take a weight function w assigning weight 1 to vertices of X and

0 to V (G) \X.

By bidimensionality of VC, bw(G) = O(
√
k). By Separation

Lemma, G has a balanced X-separator of size at most β
√
k for

some β > 0.



Proof

Let S be a balanced X-separator of size at most β
√
k.

Then

T (G, k) ≤ |S|+ max
1/3≤α≤2/3

(T (G1, αk) + T (G2, (1− α)k))

≤ β
√
k + T (G1,

k

3
) + T (G2,

2k
3

)



Proof

T (G, k) ≤ |S|+ max
1/3≤α≤2/3

(T (G1, αk) + T (G2, (1− α)k))

≤ β
√
k + T (G1,

k

3
) + T (G2,

2k
3

)

≤ β
√
k + (ε

k

3
− δ

√
k

3
) + (ε

2k
3
− δ

√
2k
3

)

= εk + β
√
k − δ(

√
k

3
−

√
2k
3

)

≤ εk − δ
√
k

for δ ≥ β/(−1 +
√

1/3 +
√

2/3)



Remark

If VC X is given, construction of to-constant-branchwidth-removal

set X ′ can be done in polynomial time.



Algorithm

INPUT: Planar graph G, ε > 0

OUTPUT: vertex cover of size at most (1 + ε)OPT

Use well-known 2-approximation to compute VC of G: X

Put ε′ = ε/2 and use Lemma to compute set X ′ ⊆ V (G) s.t.

I |X ′| ≤ ε′k;

I bw(G \X ′) = O(1
ε )

Compute in time O(2O( 1
ε
)n) optimum VC of G \X ′

Output V C(G \X ′) ∪X ′



Algorithm

V C(G \X ′) ∪X ′ is a VC in G of size

V C(G \X ′) + |X ′| ≤ V C(G \X ′) + ε′|X|

= V C(G) + ε′|X| ≤ V C(G) + εV C(G) = (1 + ε)OPT



Usual questions

I What properties of Vertex Cover did we use?

I What properties of planar graph did we use?



What properties of Vertex Cover did we use?

I bw(G) = O(
√
k), or bidimensionality. But bw(G) = o(k)

also will do

I Constant factor approximation

I “Separability”, meaning that for separator S, and components

G[V \ S] ∑
C

OPT (C) ≤ OPT (G) + |S|

Again, ∑
C

OPT (C) ≤ OPT (G) + γ|S|

will do



What properties of Vertex Cover did we use?

I bw(G) = O(
√
k), or bidimensionality. But bw(G) = o(k)

also will do

I Constant factor approximation

I “Separability”, meaning that for separator S, and components

G[V \ S] ∑
C

OPT (C) ≤ OPT (G) + |S|

Again, ∑
C

OPT (C) ≤ OPT (G) + γ|S|

will do



What properties of Vertex Cover did we use?

I bw(G) = O(
√
k), or bidimensionality. But bw(G) = o(k)

also will do

I Constant factor approximation

I “Separability”, meaning that for separator S, and components

G[V \ S] ∑
C

OPT (C) ≤ OPT (G) + |S|

Again, ∑
C

OPT (C) ≤ OPT (G) + γ|S|

will do



What properties of Vertex Cover did we use?

I On graphs of constant branchwidth the problem is solvable in

polynomial time

I Remark: For EPTAS problem is FPT parameterized by

branchwidth



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability”, meaning that for separator S, and components

G[V \ S] ∑
C

OPT (C) ≤ OPT (G) + |S|.

OK



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability”, meaning that for separator S, and components

G[V \ S] ∑
C

OPT (C) ≤ OPT (G) + |S|.

OK



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability”, meaning that for separator S, and components

G[V \ S] ∑
C

OPT (C) ≤ OPT (G) + |S|.

OK



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability” OK

I Branchwidth algorithm. OK

Which means that FVS has PTAS on planar graphs!



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability” OK

I Branchwidth algorithm. OK

Which means that FVS has PTAS on planar graphs!



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability” OK

I Branchwidth algorithm. OK

Which means that FVS has PTAS on planar graphs!



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability” OK

I Branchwidth algorithm. OK

Which means that FVS has PTAS on planar graphs!



What about FVS?

I bw(G) = O(
√
k), or bidimensionality. OK.

I Constant factor approximation. OK

I “Separability” OK

I Branchwidth algorithm. OK

Which means that FVS has PTAS on planar graphs!



What about Dominating Set?

I Should be a bit more careful to define separability property

and use contraction bidimensionality



Crucial Lemma for DS

Lemma

Let X be a DS of size k in a planar graph G. For every ε > 0, ∃

set X ′ ⊆ V (G) such that

I |X ′| ≤ εk;

I bw(G \X ′) = O(1
ε )

In other words, G has a constant-treewidth vertex removal set of

size O(k).



Proof

As for VC, we put T (G, k) be the minimum size of set X ′.

We want to prove that for some δ > 0, T (G, k) ≤ εk + δ
√
k.

Let S be a balanced X-separator. Instead of removal S, we

contract!

Then

T (G, k) ≤ |S|+ max
1/3≤α≤2/3

(T (G1, αk) + T (G2, (1− α)k))



Proof

Let S be a balanced X-separator.

By bidimensionality of DS, bw(G) = O(
√
k). By separation

lemma, G has a balanced X-separator of size at most β
√
k.



Proof

Let S be a balanced X-separator of size at most β
√
k.

Then

T (G, k) ≤ β
√
k + T (G1,

k

3
) + T (G2,

2k
3

)



Algorithm

INPUT: Planar graph G, ε > 0

OUTPUT: dominating set of size at most (1 + ε)OPT

Use a (constant) c-approximation to compute DS of planar graph

G: X

Put ε′ = ε/c and use Lemma to compute set X ′ ⊆ V (G) s.t.

I |X ′| ≤ ε′k;

I bw(G \X ′) = O(1
ε )

For each component Ci of G \X ′ define C ′i as contracting G on

Ci.

Compute in time O(2O( 1
ε
)n) optimum solution D of union of C ′i

Output D ∪X ′



Algorithm

D ∪X ′ is a DS in G of size

|D|+ |X ′| ≤ |D|+ ε′|X|

= DS(G) + ε′|X| ≤ DS(G) + εDS(G) = (1 + ε)OPT



What about Connected Dominating Set?

Or shall we try to state a generic result?



Theorem

Let Π be a “reducible” minor- (contraction-) bidimensional

problem with the “separation” property. There is an EPTAS for Π

on planar graphs.



Where did we use planarity?

I Only for bidimensionality, i.e. the grid theorem

PTAS for Vertex Cover holds also on graphs excluding some fixed

graph as a minor!



Where did we use planarity?

Theorem (FF, Lokshtanov, Raman, Saurabh, 2011)

Let Π be a “reducible” minor- (contraction-) bidimensional

problem with the separation property and H be a (apex) graph.

There is an EPTAS for Π on the class of graphs excluding H as a

minor.



EPTAS on H-minor-free graphs

Feedback Vertex Set, Vertex Cover, Connected

Vertex Cover, Cycle Packing, Diamond Hitting Set,

Vertex-H-Packing, Vertex-H-Covering, Maximum

Induced Forest, Maximum Induced Bipartite

Subgraph, Maximum Induced Planar Subgraph ...



EPTAS on apex-minor-free graphs

Edge Dominating Set, Dominating Set, r-Dominating

Set, q-Threshold Dominating Set, Connected

Dominating Set, Directed Domination, r-Scattered

Set, Minimum Maximal Matching, Independent Set,

Maximum Full-Degree Spanning Tree, Max Induced at

most d-Degree Subgraph, Max Internal Spanning

Tree, Induced Matching, Triangle Packing ...



What we learned in this course?

I Graph Minors

I Implication of Graph Minors to Algorithmsto check in

polynomial time properties closed under minors

I Branchwidth and its obstructions

I Grid theorem



What we learned in this course?

I Bidimensionality

I Use of bidimensionality to design subexponential

parameterized algorithms

I Catalan structures and dynamic programming

I Bidimensionality and PTAS



Further reading. Bidimensionality and PTAS

E. D. Demaine and M. Hajiaghayi, Bidimensionality:

new connections between FPT algorithms and PTASs, SODA

2005, 590–601.

F. V. Fomin, D. Lokshtanov, V. Raman, and

S. Saurabh, Bidimensionality and EPTAS, SODA 2011.
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