
PART III
Warsaw, 2011

 FEDOR V. FOMIN

Graph Minors, Bidimensionality and Algorithms



Reminder

Back to the YEAR 2010...



Branch Decompositions

Definition

A branch decomposition of a graph G = (V,E) is a tuple (T, µ)

where

I T is a tree with degree 3 for all internal nodes.

I µ is a bijection between the leaves of T and E(G).



Example of Branch Decomposition
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Edge e ∈ T partitions the edge set of G in Ae and Be
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Edge e ∈ T partitions the edge set of G in Ae and Be
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Middle set mid(e) = V (Ae) ∩V (Be)
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Branchwidth

I The width of a branch decomposition is maxe∈T |mid(e)|.

I The branchwidth of a graph G is the minimum width over all

branch decompositions of G.



Grid Theorem

Theorem (Robertson, Seymour & Thomas, 1994)

Let ` ≥ 1 be an integer. Every planar graph of branchwidth ≥ 4`

contains ` as a minor.



Subexponential algorithms on planar graphs: What is the

main idea?

Dynamic programming and
Grid Theorem



Meta conditions

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps.



Algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps.

If bw(T, µ) > α ·
√
k, then by (A) the answer is clear

Else, by (B), P (G) can be computed in f(α ·
√
k) · nO(1) steps.

When f(k) = 2O(k), the running time is 2O(
√
k) · nO(1)



Bidimensionality: The main idea

If the graph parameter is closed under taking minors or

contractions, the only thing needed for the proof

branchwidth/parameter bound is to understand how this parameter

behaves on a (partially triangulated) grid.



Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005

Definition

A parameter P is minor bidimensional with density δ if

1. P is closed under taking of minors, and

2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).



Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005

Definition

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,

2. for any partially triangulated (r × r)-grid R,

P (R) = (δRr)2 + o((δRr)2), and

3. δ is the smallest δR among all paritally triangulated

(r × r)-grids.



Bidimensionality

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

Lemma

If P is a bidimensional parameter with density δ then P satisfies

property (A) for α = 4/δ, on planar graphs.

Proof.

Let R be an (r × r)-grid.

P (R) ≥ (δRr)2.

If G contains R as a minor, then bw(G) ≤ 4r ≤ 4/δ
√
P (G).



Examples of bidimensional problems

Vertex cover

Dominating Set

Independent Set

(k, r)-center

Feedback Vertex Set

Minimum Maximal Matching

Planar Graph TSP

Longest Path ...



Bidimensional theory

If P is a parameter that

(A) is minor (contraction) bidimensional

(B) can be computed in f(bw(G)) · nO(1) steps.

then there is a f(O(
√
k)) · nO(1) step algorithm for checking

whether P(G) ≤ k for H (apex) -minor free graphs.

We now fix our attention to property (B) and function f .



PART III

Dynamic programming and Catalan

structures



Dynamic programming for branch decompositions

I We root the tree T of the branch decomposition (T, τ),

I We define a partial solution for each cut-set of an edge e of T

I We compute all partial solutions bottom-up (using the partial

solutions corresponding to the children edges).

This can be done in O(f(`) · n) if we have a branch decomposition

of width at most `.

f(`) depends on the number of partial solutions we have to

compute for each edge of T .

I To find a good bound for f(`) is important!



Dynamic programming for branch decompositions

I We root the tree T of the branch decomposition (T, τ),

I We define a partial solution for each cut-set of an edge e of T

I We compute all partial solutions bottom-up (using the partial

solutions corresponding to the children edges).

This can be done in O(f(`) · n) if we have a branch decomposition

of width at most `.

f(`) depends on the number of partial solutions we have to

compute for each edge of T .

I To find a good bound for f(`) is important!



For many problems, 2O(bw(G)) · nO(1) step algorithms exist.

Dynamic programming on graphs with small branchwidth gives

such algorithms for problems like

Vertex Cover,

Dominating Set, or

Edge Dominating Set, (and others...)



However: There are (many) problems where no general

2O(bw(G)) · nO(1) step algorithm is known.

Such problems are

Longest Path, Longest Cycle, Connected Dominating

Set, Feedback Vertex Set, Hamiltonian Cycle, Max

Leaf Tree and Graph Metric TSP

For the natural parameterizations of these problems, no 2O(
√

k) · nO(1)

step FPT-algorithm follows by just using bidimensionality theory and

dynamic programming.
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Example: k- Path

The k-Path problem is to decide, given a graph G and a

positive integer k, whether G contains a path of length k.



k- Path

On general graphs k-Path can be solved Color Coding technique

in time O((2e)kn) [Alon, Yuster, Zwick, 1995].

A chain of improvements up to recent O∗(1.66k) algorithm of

[Björklund, Husfeldt, Kaski, Koivisto, 2010]



k-Path

On planar graphs k-Path has a

2O(
√
k·log k) · nO(1) step algorithm.

Because

(A) The parameter is minor bidimensional

(B) to find a longest path in a graph G takes

2O(bw(G)·log bw(G)) · n steps
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Dynamic programming: k-Path
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Dynamic programming: k-Path

Left Right

Remainingmid(e)

mid(g)

mid(f)



k-Path

Fact: Given a branch decomposition of width w, k-Path can be

solved in time wO(w) · n.

Ge: subgraph formed by edges of the subtree rooted at e.

If P is a path, then the subgraph

Pe = Ge ∩ P is a set of paths with

endpoints in mid(e).

mid(
e)

B^0

B^1

B^2



k-Path

What are the important properties of Pe“seen from the outside

world”?

I The subsets B0
e , B1

e , B2
e of

mid(e) having degree 0, 1, and

2.

I Disjoint pairs pairs(e) of B1
e .

mid(
e)

B^0

B^1

B^2

Number of subproblems (B0
e , B

1
e , B

2
e , pairs(e)) for each edge e:

at most 3w · ww.



The running time of dynamic programming is proportional to the

amount of all possible subproblems (B0
e , B

1
e , B

2
e , pairs(e)), which

is 3w · ww = 2O(w logw).

I Issue: The same problem appears in many dynamic

programming algorithms

I Idea: as long as we care about sparse graph classes, we can take

their structure into consideration

I We want to show that on planar graphs, the amount of pairs

pairs(e) in mid(e) is 2O(w)
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Sphere-cut decomposition

Let G be a planar graph embedded on the sphere (or a plane) S0

A sphere-cut decomposition of G is a branch decomposition (T, τ)

where for every e ∈ E(T ), the vertices in mid(e) are the vertices in

a Jordan curve of S0 that meets no edges of G (a noose).
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Seymour-Thomas 1994, Dorn-Penninkx-Bodlaender-FF

2005

Theorem

Every planar graph G of branchwidth ` has a sphere-cut

decomposition of width `. This decomposition can be constructed

in O(n3) steps.



Proof ideas

I Carving-width

I Connectivity properties of carving-width decompositions

I Branch-width as the carving width of a radial graph



Bounding (B0
e , B

1
e , B

2
e , pairs(e))

We now have that

1: the vertices of mid(e) lay on the boundary of a disk and

2: the pairings pairs(e)) cannot be crossing because of planarity.





It follows that pairs(e) = O(C(|mid(e)|)) = O(C(w))

Where C(w) is the w-th Catalan Number.

It is known that C(w) ∼ 4w

w3/2
√
π

= 2O(w)

We conclude that for planar graphs, there is an optimal branch

decomposition of width w such that for every edge e, the amount

of tuples (B0
e , B

1
e , B

2
e , pairs(e)) is 2O(w)

Therefore: dynamic programming for finding a k-path of a planar

graph G on a sphere cut decompositions of G with width ≤ w

takes O(2O(w) · n) steps.
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Conclusion:

Planar k-Path can be solved in O(2O(
√
k) · nnO(1)) steps

Algorithm:

I Compute branch-width of G in polynomial time. If

bw(G) ≥ 4
√
k, then G contains

√
k ×
√
k gris as a minor.

Thus it also contains a path of length k

I If bw(G) ≤ 4
√
k, use sphere-cut decomposition to find in

time 2O(
√
k)n if G has a path of length k.



I Similar results hold for several other problems where an analogue of

pairs(e) can be defined for controlling the size of the tables in dynamic

programming.

I Like that one can design 2O(
√

k) · nO(1) step algorithms for

parameterized planar versions of Cycle Cover, Path Cover,

Longest Cycle, Connected Dominating Set, Feedback

Vertex Set, Graph Metric TSP, Max Leaf Tree, etc.
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Planarity not a limit

I For H-minor free graphs, one can construct an algorithm that

solves the k-Path problem in 2O(
√
k) · nO(1) steps.



More grids

Grids for other problems or walls



t-spanners

Definition (t-spanner)

Let t be a positive integer. A subgraph S of G, such that

V (S) = V (G), is called a t-spanner, if distS(u, v) ≤ t · distG(u, v)

for every pair of vertices u and v. The parameter t is called the

stretch factor of S.



Examples of spanners

3 and 2-spanners
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Spanners of bounded branchwidth

Problem (k-Branchwidth t-spanner)

Instance: A connected graph G and positive integers k and t.

Question: Is there a t-spanner of G of branchwidth at most k?



Topological minors

Contracting edge can increase t

bounded genus graphs).

Finally, let us briefly mention the relevant work on parameterized al-
gorithms on planar graphs and more general classes of graphs (we refer to
books [21, 32, 43] for more information on parameterized complexity and al-
gorithms). Alber et al. [2] initiated the study of subexponential parameter-
ized algorithms for the dominating set problem and its different variations.
Demaine et al. [14, 15] gave a general framework called bidimensionality to
design parameterized algorithms for many problems on planar graphs and
showed how by making use of this framework to extend results from planar
graphs to much more general graph classes including H-minor-free graphs.
We refer to surveys [16, 20] for an overview of results and techniques related
to bidimensionality (see also [33]). However, this framework cannot be used
directly to solve the k-Treewidth t-spanner problem because the theory
of Demaine et al. is strongly based on the assumption that the parameter-
ized problem should be minor or edge contraction closed, which is not the
case for spanners. In particular, it is easy to construct an example when by
contracting of an edge in a graph G with a t-spanner of treewidth k, one
can obtain a graph which does not have such a spanner (see Figure 1).

x y

Figure 1: Examples of graphs with tree 3-spanner and without such span-
ners. The second graph is obtained from the first by contraction of (x, y).

Our results and organization of the paper. In this paper we resolve
the problem left open in [31] and extend solutions in several directions. Our
general technique is combinatorial in nature and is based on the following
observation. Let G be a class of graphs such that for every fixed t and every
G ∈ G, the treewidth of every t-spanner of G is Ω(treewidth(G)). Then
as an almost direct corollary of Bodlaender’s Algorithm and Courcelle’s
Theorem (see Section 5 for details), we have that the k-Treewidth t-
spanner problem is fixed parameter tractable on G. Our main combinatorial
result is the proof that the class of apex-minor-free graphs, which contains
planar and bounded genus graphs, is in G.

After preliminary Section 2, we start (Section 3) by proving the combi-
natorial properties of t-spanners in planar graphs. Our main result here is
the proof that every t-spanner of a planar graph of treewidth k has treewidth
Ω(k/t). The proof idea is based on a theorem due to Robertson, Seymour,

4



Planar graphs

Theorem (Bounds for planar graphs)

Let G be a planar graph of branchwidth k and let S be a t-spanner

of G. Then the branchwidth of S is Ω(k/t).



Walls

Bidimensionality for minors and contractions The irrelevant vertex technique

Walls and their subdivisions

Therefore, if bw(G) = Ω(k5/2), then
Ω(k5/2)

≤tp G.

This can be seen like a wall of height Ω(k5/2).

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 89

A wall of height k.



Walls

Observation: If a graph contains a k × k grid as a minor, it

contains a wall of height k as a topological subgraph.

Bidimensionality for minors and contractions The irrelevant vertex technique

Walls and their subdivisions

Therefore, if bw(G) = Ω(k5/2), then
Ω(k5/2)

≤tp G.

Which can be seen as a subgraph that is a subdivided wall.

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 90

Which can be seen as a subgraph that is a subdivided wall.



Sketch of the proof

Walls and grids
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Algorithmic consequences

Theorem (Dragan, FF, Golovach, 2008)

Deciding if a planar graph G has a t-spanner of treewidth at most

k is solvable in time O(f(k, t) · nO(1)).



Disjoint Path Problem

p-Disjoint Paths Problem

Instance: a graph G and terminals (si, ti) ∈ V (G)2, i = 1, . . . , k.

Parameter: k

Question: Does G have k disjoint paths between si and ti, i = 1, . . . , k?



Disjoint Path Problem

I To solve problem on planar graphs: If the branch-width is

small, do DP

I If the branch-widht is large, there is a wall of large height

I If there is a wall of large height, there is a wall of large height

containing no terminal vertices

I A vertex in the center of this wall is irrelevant. i.e. its removal

does not change the problem
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I To solve problem on planar graphs: If the branch-width is

small, do DP

I If the branch-widht is large, there is a wall of large height

I If there is a wall of large height, there is a wall of large height

containing no terminal vertices

I A vertex in the center of this wall is irrelevant. i.e. its removal

does not change the problem



Conclusion

I WIN/WIN approach via Excluding Grid Theorem

I Dynamic programming and Catalan structures

I Working on planar problems don’t afraid to hit the wall!



Further reading. Subexponential algorithms and

bidimensionality

J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks,

and R. Niedermeier, Fixed parameter algorithms for

dominating set and related problems on planar graphs,

Algorithmica, 33 (2002), pp. 461–493.

E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and

D. M. Thilikos, Subexponential parameterized algorithms

on graphs of bounded genus and H-minor-free graphs, Journal

of the ACM, 52 (2005), pp. 866–893.



Further reading. Catalan structures and dynamic

programming

F. Dorn, E. Penninkx, H. Bodlaender, and F. V.

Fomin, Efficient exact algorithms on planar graphs: Exploiting

sphere cut branch decompositions, Proceedings of the 13th

Annual European Symposium on Algorithms (ESA 2005),

vol. 3669 of LNCS, Springer, 2005, pp. 95–106.

F. Dorn, F. V. Fomin, and D. M. Thilikos, Catalan

structures and dynamic programming on H-minor-free graphs,

in Proceedings of the 19th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA 2008), ACM-SIAM, pp. 631–640.



Further reading. Surveys

E. Demaine and M. Hajiaghayi, The bidimensionality

theory and its algorithmic applications, The Computer Journal,

(2007), pp. 332–337.

F. Dorn, F. V. Fomin, and D. M. Thilikos,

Subexponential parameterized algorithms, Computer Science

Review, 2 (2008), pp. 29–39.
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