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PART I

Wagner’s Conjecture and Graph Minors series



W.Q.O. definition

I X be a collection of mathematical objects

I Relation “≤” is quasi-ordering on X if it is reflexive and

transitive

I X is well-quasi-ordered by ≤ if for every infinite sequence

x = x0, x1, . . . in X, ∃ i < j, s.t. xi ≤ xj .

I (xixj): a good pair of x . Sequence x is a good sequence.
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I X be a collection of mathematical objects

I Relation “≤” is quasi-ordering on X if it is reflexive and

transitive

I X is well-quasi-ordered by ≤ if for every infinite sequence
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Proposition

A quasi-ordering X is a well-quasi-ordering if and only if X

contains

I neither infinite antichain

I nor strictly decreasing sequence x0 > x1 > . . . .

PROOF: Ramsey arguments



We define 4 local operations:

1. \v: vertex removal:
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2. \e: edge removal:

e

3. /v: deg-2 vertex dissolution:

v

4. /e: edge contraction

e

Let L ⊆ {\v, \e, /v, /e}

H ≤L G if H can be obtained from G after a sequence of operations in L
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Relation Notation \v \e /v /e WQO

induced subgraph (H ⊆in G) • NO

subgraph (H ⊆sb G) • • NO

spanning subgraph (H ⊆sp G) • NO

induced topological minor (H ≤it G) • • NO

topological minor (H ≤tp G) • • • NO

induced minor (H ≤in G) • • NO

contraction (H ≤cn G) • NO

minor (H ≤mn G) • • • YES



The fact that graphs are WQO by the minor relation was known as The

Wagner’s Conjecture formulated by Klaus Wagner in the 1930s (?).



The Graph Minors Series

The conjecture was proven by Neil Robertson and Paul Seymour in

their Graph Minor series of papers.

Now it is known as the Robertson & Seymour Theorem.

Width of the proof: < 10 cm (23 papers)



Kruskal’s theorem

Theorem (Kruskal, 1960)

Trees are W.Q.O. by the topological minor relation.

(Formerly also known as the Vázsonyi conjecture)



Proof of Kruskal’s theorem

We prove the following stronger statement:

I Rooted trees are W.Q.O. by the topological minor containment

Trees T and T ′ with roots r and r′.

T ≤ T ′ if ∃ isomorphism ϕ from some subdivision of T to a subtree

of T ′ preserving the tree-order on V (T ) associated with r and T .
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Proof sketch:

Suppose that there is a bad sequence of rooted trees. For n ≥ 0

we select inductively the following bad sequence:

I Assume we constructed a sequence T0, T1, T2, . . . , Tn−1 s.t.

there is a bad sequence starting with T0, T1, T2, . . . , Tn−1

I Choose Tn to be the minimum order rooted tree such that there

is a bad sequence starting with T0, T1, T2, . . . , Tn

I (Tn)n≥0 is a bad sequence
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Suppose that there is a bad sequence of rooted trees. For n ≥ 0

we select inductively the following bad sequence:

I Assume we constructed a sequence T0, T1, T2, . . . , Tn−1 s.t.

there is a bad sequence starting with T0, T1, T2, . . . , Tn−1

I Choose Tn to be the minimum order rooted tree such that there

is a bad sequence starting with T0, T1, T2, . . . , Tn

I (Tn)n≥0 is a bad sequence



I For (Tn)n≥0 = T0, T1, T2, . . .

I An the set of components Tn − rn.

I A =
⋃

n≥0An

A

r1 r2 r3 r4r0

I We first prove that A is WQO.

Let A1, A2, . . . be a sequence of rooted trees in A

Let Ak be such that the tree Ti where Ak comes from has the smallest

possible index.

Then the sequence T0, . . . , Ti−1, A
k, Ak+1, . . . , is good (by (*)).

Then a comparable pair is of the form Ak′ ≤tp A
k′′

for k′′ > k′ ≥ k.



Proof that A is WQO

Tk

r1 r2 r3 r4r0

A

Let (T k)k≥0 = T 1, T 2, . . . be a sequence of rooted trees in A

For k define n(k) to be the minimum n such that T k ∈ An.

Choose k with the smallest n(k).

Then the sequence T0, . . . , Tn(k)−1, T
k, T k+1, . . . is good (by

minimality of Tn(k) and because T k ⊂ Tn(k)).
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k, T k+1, . . . is good

Thus it has a good pair (T, T ′)
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Proof that A is WQO

Tk

r1 r2 r3 r4r0

A

The sequence T0, . . . , Tn(k)−1, T
k, T k+1, . . . is good

Thus it has a good pair (T, T ′)

Thus it has a good pair (T, T ′)

?

If Tj = T ′ = T = T i ≤ Tn(i), j < k ≤ i, then because

n(i) ≥ n(k), we have Tj ≤ Tn(i).



Proof that A is WQO:

T0, . . . , Tn(k)−1, T
k, T k+1, . . .

I Thus both T ′ and T are from T k, T k+1, . . ..

I Hence, A is WQO.



Proof of Kruskal Theorem, contd.:

A

r1 r2 r3 r4r0

I We know that A is WQO.

I next step, show that [A]<ω, the set of all finite subsets of A,

is WQO.



Proof of Kruskal Theorem, contd.:

I [A]<ω, the set of all finite subsets of A, is WQO.

I For sets A,B ∈ A, A ≤ B if there is an injective mapping

f : A→ B s.t. a ≤ f(a), ∀a ∈ A

Lemma

If A, is WQO then so is [A]<ω



Proof of Kruskal Theorem, contd.:

Suppose (for a minute) that Lemma “A is WQO then so is [A]<ω”

holds. Then [A]<ω is WQO.

I The sequence (An)n≥0 in [A]<ω should have a good pair

(Ai, Aj): Ai ≤ Aj , i < j

I ∃ injective mapping f : Ai → Aj s.t. T x ≤ f(T x), ∀T x ∈ Ai

Tj

A′1 A
′
2 A

′
3 A

′
4 A

′
5A1 A2 A3 A4 A5 A′6

ri rj

Ti



Proof of Kruskal Theorem, contd.:

Extend f to ϕ by ϕ(ri) = ϕ(rj)

I Ti ≤ Tj

I (Ti, Tj) is a good pair in a bad sequence - CONTRADICTION!

Tj

A′1 A
′
2 A

′
3 A

′
4 A

′
5A1 A2 A3 A4 A5 A′6

ri rj

Ti



What remains

Lemma

If A is WQO then so is [A]<ω

PROOF: Assume that A is WQO but [A]<ω not

For every i ≥ 1 choose Ai s.t. A0, A1, . . . , Ai is a bad sequence

and |Ai| → min
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PROOF: take

A0, . . . , An0−1, Bn0 , Bn1 , Bn2 , . . .

This is a good sequence because of minimality of A0, A1, . . .

Good pair cannot be of the form (Ai, Aj) and of the form

(Ai, Bj ≤ Aj)

But good pair (Bi, Bj) and ai ≤ aj imply that

(Ai = Bi,∪ai, Aj = Bj ∪ aj) is a good pair.
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REMARKS

The proof is non-constructive.

Friedman (2002) observed that Kruskal’s theorem has special cases

that can be stated but not proved in first-order arithmetic.

(Though they can easily be proved in second-order arithmetic.)
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How can we go further than trees?

We have to define the tree-likeness of a graph.



Treewidth of a graph

Theorem (Robertson & Seymour, GM IV)

For every k ≥ 0, graphs of treewidth at most k are WQO.



What if the treewidth is unbounded?

Start from planar graphs.

Theorem (Robertson & Seymour, GM IV)

There is function f such that for every k ≥ 0, a planar graph G of

treewidth at least f(k) contains k as a minor.

We will be back to this theorem soon...
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What if the treewidth is unbounded?

Observation: Every planar graph G on n vertices is a minor of

sufficiently large grid.



Wagner’s conjecture for planar graphs, GM IV

I Let G0, G1, . . . , be a bad sequence of planar graphs.

I If Gi, i ≥ 1, is of treewidth more than f(G0), it has large grid

as a minor, which contains G0 as a minor. Thus G0 ≤ Gi.

I All graphs in G1, G2 . . . should have

treewidth at most c = f(V (G0)), and thus are WQO!
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What about non-planar graphs?

How graphs excluding a non-planar graph look like?

Is it again “all about trees”?

Answer: YES and NO!

NO: We should now also deal with graphs embedded in surfaces!

YES: But surfaces that are arranged together as trees!
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Further reading

I Chapter 12 of Graph Theory, R. Diestel, 3rd edition.



Algorithmic consequences of the R&S theorem



A graph parameter p is a function mapping graphs to positive integers.

A graph parameter is minor-closed if H ≤mn G⇒ p(H) ≤ p(G)
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Each parameter p corresponds to a parameterized problem:

p-Problem of Deciding p

Instance: a graph G and an integer k ≥ 0.

Parameter: k

Question: p(G)≤ k?



We say that a parameterized (by k) problem is FPT (fixed

parameter tractable) if it can be solved in time

O(f(k) · nO(1)) steps

(n is the size of the input, f depends only one the parameter k.)

I Not all parameterized problems admit FPT-algorithms.

There are parameterized complexity classes like W[1], W[2], or W[P] and

adequate reductions such that when a problem is hard for them is not

expected to have an FPT-algorithm.
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Minor-closed parameters:

I vertex cover, vc(G)

I feedback vertex set, fvs(G)

I branchwidth, bw(G)

I minimum maximal matching, mmm(G)

I k-almostΠ(G) = min{|S| | G− S ∈ Π} (Π is any minor-closed class)

I the genus of a graph, γ(G)

I p(G) = min{k | Pk 6≤mn G}



I Consequence of R&S Theorem: for any minor-closed graph class G the

set of graphs not in it have a finite set of minor-minimal elements.

I we denote this set ob(G) and we call it obstruction set of G.

I Observe: G if is minor-closed then ob(G) is finite.



Examples of obstruction sets

I Trees: K3

I Outerplanar Graphs: K2,3, K4

I bw(G) ≤ 2: K4

I planar graphs: K3,3, K5 (Theorem Kuratowski-Понтрягин)

I link-free graphs: 7 graphs (Petersen family: X-Y transformations of K6)



Examples of obstruction sets

I Graphs with a vertex cover of size ≤ 5: 56 graphs

I Graphs with a vertex cover of size ≤ 6: 260 graphs

I Graphs with a feedback vertex of size ≤ 3: ≥ 744 graphs

I Graphs embeddable in the projective plane: 35 graphs

I Graphs embeddable in the torus: ≥ 2200 graphs



Upper Bounds?

I Graphs with branchwidth ≤ k graphs: obstructions have size ≤ (6k − 1)/5.

[Geelen, Gerards, Robertson, and Whittlee, JCTSB’ 03]

I Graphs with a vertex cover ≤ k graphs: obstructions have size ≤ 2(k + 1).

[Michael J. Dinneen, Rongwei Lai, Disc. Math, ’07]
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Main meta-algorithmic consequence of GM

Theorem

If p is a minor-closed parameter, then p-Problem of Deciding

p is in FPT by an O(f(k) · n3) step algorithm.

Moreover, for planar inputs (and more) the above algorithms are linear.



Proof:

I Let Gk be the graph class of the YES instances of

p-Problem of Deciding p with k as parameter.

I ∀k, Gk is minor-closed and its obstruction set ob(Gk) is finite

I Let ob(Gk) has at most f(k) elements of size at most g(k).

I G ∈ Gk iff ∀H∈ob(Gk)
H 6≤mn G
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An algorithm for p-Problem of Deciding p.

Decide-p(G, k)

1. for all H ∈ ob(Gk)

2. check (in O(h(k) · n3) steps) whether H ≤mn G

3. if the answer if YES, then output NO

4. output YES.



Applications

p-Feedback Vertex Set

Instance: a graph G and a positive integer k.

Parameter: k

Question: does G contain a set k meeting all cycles of G?

Notice that, for each k, the class of YES-instances

for p-Feedback Vertex Set is minor-closed:

I Gyes
k = {G | ∃S ⊆ V (G)[≤k],K3 6≤mn G \ S}

I Therefore: p-Feedback Vertex Set ∈ FPT
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Instance: a graph G and a positive integer k.

Parameter: k

Question: is there an embedding of G in R3 such that

no more than pairs k cycles are linked?
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Drawbacks of graph minors meta-algorithm:

1. the above proof is non-constructive as we do not know

obs(Gk)

2. we know obs(Gk) for few classes and for small values of k

3. when we have estimations of f(k) and g(k), they are

immense. The corresponding FPT-algorithms have a

heavy parameter dependance.
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Conclusion:

However spectacular such unexpected

solutions to long-standing problems may be,

viewing the graph minor theory merely in

terms of its corollaries will not do its justice.

At least as important are the techniques

developed for its proof...

Reinhard Diestel, Graph Theory, 4th edition.



Conclusion:

Main motif of GM: If graph has a tree like structure (small

treewidth), great!

Otherwise, exploit the structure of the obstruction to the small

treewidth!
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Conclusion:

From Algorithmic perspective:

Seems that the consequences of GM are great but completely

unpractical.

But it appeared that the WIN/WIN approach of GM: either small

treewidth or big obstruction is worth to try!
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Further reading. Kruskal’s Theorem and Graph Minors

R. Diestel, Graph Theory, Third Edition, Springer, Chapter

12



Further reading. Algorithmic Applications of Graph Minors

R. Downey and M. Fellows, Parameterized Complexity,

Springer
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