Prof. Fedor V. Fomin, fomin@ii.uib.no

Exam, PhD Open, University of Warsaw, Jan. 2011

Problem 1:

- Let \mathcal{G} be a class of graphs closed under operation of taking minors, i.e. for every $G \in \mathcal{G}$ all minors of G are also in \mathcal{G} . Show that the following are equivalent.
 - 1. \mathcal{G} is a class of graphs of bounded treewidth, i.e. there is a constant c such that the treewidth of all graphs from \mathcal{G} is at most c;
 - 2. There is a planar graph H that does not belong to \mathcal{G} .

Problem 2:

A graph class \mathcal{G} has bounded local treewidth, if there exists a function f: $\mathbf{N} \to \mathbf{N}$ such that for every graph $G \in \mathcal{G}$, every integer $r \in \mathbf{N}$, and every vertex $v \in V(G)$, the subgraph of G induced by vertices of distance at most r from v is of treewidth at most f(r). For example, graphs of vertex degree at most 3 are of bounded local treewidth because every subgraph of radius r of such a graph has at most $3^r + 1$ vertices, and thus of treewidth at most $f(r) = 3^r$. On the other hand, a class of graphs containing arbitrarily large cliques is not of bounded local treewidth.

- Show that planar graphs are of bounded local treewidth.
- An apex graph is a graph which can be turned into a planar graph by removing at most one vertex. Let \mathcal{G} be a class of graphs closed under operation of taking minors. Show that the following are equivalent.
 - 1. \mathcal{G} is of bounded local treewidth;
 - 2. There is an apex graph H that does not belong to \mathcal{G} .

Hint: Use the grid theorem for planar and *H*-minor-free graphs.

Problem 3: In the parameterized CONNECTED DOMINATING SET problem (CDS) we are given a graph G and a parameter k. The question is if G contains a dominating set of size at most k inducing a connected subgraph of G.

- 1. Show that on planar graphs with *n* vertices the problem is solvable in time $2^{O(\sqrt{k} \log k)} n^{O(1)}$:
- 2. Improve the running time of your algorithm to $2^{O(\sqrt{k})}n^{O(1)}$.

Problem 4: Describe an EPTAS for CDS on planar graphs.