# Main Quantum Algorithms: Shor and Grover

Ronald de Wolf



#### Overview

- Recap of previous lecture:
  - Quantum algorithm: circuit of elementary gates (such as Hadamard)
  - This transforms starting state to final state
  - Measurement of final state yields (classical) output
  - Algorithm is efficient it it uses few elementary gates
  - Examples: Deutsch-Jozsa and Simon algorithms
- Today's lecture:
  - 1. Shor's quantum algorithm for factoring
  - 2. Grover's quantum algorithm for search
  - 3. Other algorithms

## Factoring

- Given  $N = p \cdot q$ , compute the prime factors p and q
- Fundamental mathematical problem since Antiquity
- Fundamental computational problem on  $\log N$  bits
- Best known classical algorithms use time  $2^{(\log N)^{\alpha}}$ , where  $\alpha = 1/2$  or 1/3
- Its assumed computational hardness is basis of public-key cryptography (RSA)
- A quantum computer can break this, using Shor's efficient quantum factoring algorithm!

## **Overview of Shor's algorithm**

- Classical reduction: choose random  $x \in \{2, ..., N-1\}$ .
   It suffices to find period r of  $f(a) = x^a \mod N$
- Shor's quantum algorithm for period-finding uses the quantum Fourier transform



• Overall complexity: roughly  $(\log N)^2$  elementary gates

## **Reduction to period-finding**

- Pick a random integer  $x \in \{2, ..., N-1\}$ , gcd(x, N)=1
- The sequence  $x^0, x^1, x^2, x^3, \dots$  mod N cycles: has an unknown period r (min r > 0 s.t.  $x^r \equiv 1 \mod N$ )
- For at least 1/4 of the x's: r is even and  $x^{r/2} \pm 1 \not\equiv 0 \mod N$
- Then:

 $\begin{aligned} x^r &= (x^{r/2})^2 \equiv 1 \bmod N \iff \\ (x^{r/2} + 1)(x^{r/2} - 1) \equiv 0 \bmod N \iff \\ (x^{r/2} + 1)(x^{r/2} - 1) &= kN \text{ for some } k \end{aligned}$ 

- $x^{r/2} \pm 1$  shares a factor with N
- $\checkmark$  This factor of N can be extracted using gcd-algorithm

#### **Quantum Fourier transform**

• Fourier basis (dimension q):  $|\chi_j\rangle = \frac{1}{\sqrt{q}} \sum_{k=0}^{q-1} e^{\frac{2\pi i j k}{q}} |k\rangle$ 

- **9** Quantum Fourier Transform:  $|j\rangle \mapsto |\chi_j\rangle$
- If  $q = 2^{\ell}$ , then can do this with  $O(\ell^2)$  gates.  $|\chi_{j_0 j_1 j_2}\rangle = \frac{1}{\sqrt{8}}(|0\rangle + e^{2\pi i 0.j_2}|1\rangle)(|0\rangle + e^{2\pi i 0.j_1 j_2}|1\rangle)(|0\rangle + e^{2\pi i 0.j_0 j_1 j_2}|1\rangle)$



• For Shor: choose q power of 2 in  $(N^2, 2N^2]$ 

#### **Easy case:** r|q

**1.** Apply QFT to 1st register of  $|0 \dots 0\rangle |0 \dots 0\rangle$ :

$$\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1} |a\rangle |0\rangle$$

**2.** Compute  $x^a \mod N$  (repeated squaring)

$$\frac{1}{\sqrt{q}}\sum_{a=0}^{q-1}|a\rangle|x^a \bmod N\rangle$$

3. Observing 2nd register gives  $|x^s \mod N\rangle$  (random s < r) 1st register collapses to superposition of

$$|s\rangle, |r+s\rangle, |2r+s\rangle, \dots, |q-r+s\rangle$$

#### **Easy case:** r|q (continued)

q/r-1

Recall: 1st register is in superposition  $\sum_{j=0} |jr+s\rangle$ 

4. Apply QFT once more:

$$\sum_{j=0}^{q/r-1} \sum_{b=0}^{q-1} e^{2\pi i \frac{(jr+s)b}{q}} |b\rangle = \sum_{b=0}^{q-1} e^{2\pi i \frac{sb}{q}} \underbrace{\left(\sum_{j=0}^{q/r-1} \left(e^{2\pi i \frac{rb}{q}}\right)^{j}\right)}_{\text{geometric sum}} |b\rangle$$

Sum 
$$\neq 0$$
 iff  $e^{2\pi i \frac{rb}{q}} = 1$  iff  $\frac{rb}{q}$  is an integer  
Only the *b* that are multiples of  $\frac{q}{r}$  have non-zero amplitude!

### **Easy case:** r|q (continued)

**5.** Observe 1st register: random multiple  $b = c\frac{q}{r}$ ,  $c \in [0, r)$ :

$$\frac{b}{q} = \frac{c}{r}$$

- $\bullet$  b and q are known; c and r are unknown
- c and r are coprime with probability  $\Omega(1/\log \log r)$
- Then: we know r by writing  $\frac{b}{q}$  in lowest terms
- Since we can find r, we can factor!

## Hard case: $r \not| q$

- We do not have  $\frac{b}{q} = \frac{c}{r}$  anymore
- Still, we probably observe a *b* such that  $\left|\frac{b}{q} \frac{c}{r}\right| \le \frac{1}{2q}$
- There is at most one fraction with denominator < N in an interval of length  $\frac{1}{q} < \frac{1}{N^2}$
- This fraction must be  $\frac{c}{r}$
- Can compute  $\frac{c}{r}$  from  $\frac{b}{q}$  by continued fraction expansion
- Again, if c and r are coprime, then we know r

## **Summary for Shor's algorithm**

- Reduce factoring to finding the period r of modular exponentiation function  $f(a) = x^a \mod N$
- Use quantum Fourier transform to find a multiple of q/r
- Repeat a few times to find r
- Overall complexity:
  - QFT takes  $O(\log q)^2 \approx O(\log N)^2$  elementary gates
  - Modular exponentiation:  $\approx (\log N)^2 \log \log N$  gates; classical computation by repeated squaring (use Schönhage-Strassen for fast multiplication)
  - Everything repeated  $O(\log \log N)$  times
  - Classical postprocessing takes  $O(\log N)^2$  gates
- Solution Roughly  $(\log N)^2$  elementary gates in total

#### Part 2:

#### Grover's algorithm

Main Quantum Algorithms: Shor and Grover - p. 12/23

### The search problem

- We want to search for some good item in an unordered N-element search space
- Model this as function  $f : \{0,1\}^n \to \{0,1\}$  ( $N = 2^n$ ) f(x) = 1 if x is a solution
- We can query f:  $O_f : |x\rangle |0\rangle \mapsto |x\rangle |f(x)\rangle$ or  $O_f : |x\rangle \mapsto (-1)^{f(x)} |x\rangle$
- Goal: find a solution
- Classically this takes O(N) steps (queries to f)
- Grover's algorithm does it in  $\sqrt{N}$  steps

## **Grover's algorithm**

- Define Grover iteration  $G = H^{\otimes n} R H^{\otimes n} O_f$ ,
  where R negates  $|x\rangle$  for all  $x \neq 0^n$
- Apply G k times on uniform starting state



## Example

- N = 4, f(00) = f(10) = f(11) = 0, f(01) = 1, 1 iteration
- Starting state:  $|00\rangle$
- After  $H^{\otimes 2}$ :  $\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$
- The 4 parts of one Grover iterate G:
  - After  $O_f$ :  $\frac{1}{2}(|00\rangle |01\rangle + |10\rangle + |11\rangle)$
  - After  $H^{\otimes 2}$ :  $\frac{1}{2}(|00\rangle + |01\rangle |10\rangle + |11\rangle)$
  - After R:  $\frac{1}{2}(|00\rangle |01\rangle + |10\rangle |11\rangle)$
  - After  $H^{\otimes 2}$ :  $|01\rangle$ , this is the index of the solution!
- We found the solution in a space of size 4, with 1 query!

## Analysis

- Suppose y is the only solution, so f(x) = 1 iff x = y
- Define "good" and "bad" states:

$$|G\rangle = |y\rangle$$
  $|B\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq y} |x\rangle$ 

- All intermediate states are in span $\{|G\rangle, |B\rangle\}$
- Initial uniform state is  $\sin(\theta)|G\rangle + \cos(\theta)|B\rangle$ for  $\theta = \arcsin(1/\sqrt{N})$
- Grover iteration is a rotation over angle  $2\theta$ : after k iterations the state is

$$\sin((2k+1)\theta)|G\rangle + \cos((2k+1)\theta)|B\rangle$$

#### How many iterations do we need?

Success probability after k iterations:

 $\sin^2((2k+1)\theta)$ , with  $\theta = \arcsin(1/\sqrt{N}) \approx 1/\sqrt{N}$ 

If  $k = \frac{\pi}{4\theta} - \frac{1}{2}$ , then success probability is  $\sin^2(\pi/2) = 1$ 

• Example: 
$$N = 4 \Rightarrow k = 1$$

- Choose k nearest integer (small error)
- Query complexity is  $k \approx \frac{\pi}{4}\sqrt{N}$
- Gate complexity is  $O(\sqrt{N} \log N)$

#### **Executive summary**

- Quantum computers can search any
  N-element space in about  $\sqrt{N}$  iterations
- That's  $\sqrt{N}$  queries, and  $\sqrt{N} \log N$  elementary gates

If there are t solutions, then 
$$\sqrt{\frac{N}{t}}$$
 iterations suffice

The algorithm has a small error probability, but can be modified to error 0 if we know t

## **Application: Speed up NP problems**

Given a propositional formula  $f(x_1, ..., x_n)$  Computable in time poly(n)

Question: is *f* satisfiable?

- This is a typical NP-complete problem
- Search space of  $N = 2^n$  possibilities
- Classically: exhaustive search is the best we know. This takes about N steps
- Quantumly: Grover finds a satisfying assignment in  $\sqrt{N} \cdot \operatorname{poly}(n)$  steps

## **Other applications & generalizations**

- Minimize  $f:[N] \to \mathbb{R}$  in  $\sqrt{N}$  steps
- Find collision in *r*-to-1 f in  $(N/r)^{1/3}$  steps
- Approximate counting
- Amplitude amplification
- Find shortest path between 2 vertices in N-vertex graphs in  $N^{3/2}$  steps
- Minimum spanning tree, other graph problems, ...
- Faster sorting if we have limited space

#### Lower bound (BBBV 93)

• Fix a *T*-query quantum search algorithm  $|\phi_y^t\rangle =$  state before *t*-th query, on *f* where only f(y) = 1 $\alpha_y^t =$  amplitude on query *y* in  $|\phi_{\emptyset}^t\rangle$  (constant-0 *f*) Compare constant-0 *f* with all other *f* 

• Easy: 
$$\|\phi_{\emptyset}^{t+1} - \phi_{y}^{t+1}\| \le \|\phi_{\emptyset}^{t} - \phi_{y}^{t}\| + 2|\alpha_{y}^{t}|, \text{ so}$$
  
 $\frac{1}{2} \le \|\phi_{\emptyset}^{T+1} - \phi_{y}^{T+1}\| \le 2\sum_{t=1}^{T} |\alpha_{y}^{t}|$ 

• Sum over all 
$$y$$
:  $\frac{N}{2} \le \sum_{y \in \{0,1\}^n} 2\sum_{t=1}^T |\alpha_y^t| = 2\sum_{t=1}^T \sum_{y \in \{0,1\}^n} |\alpha_y^t|$   
C.S.  $2\sum_{t=1}^T \sqrt{N} \sqrt{\sum_{y \in \{0,1\}^n} |\alpha_y^t|^2} \le 2T\sqrt{N} \Rightarrow \frac{\sqrt{N}}{4} \le T$  —

### **Other quantum algorithms**

- Generalizations of Shor's algorithm
  - Discrete logarithm (Shor), elliptic curves
  - Hidden subgroup problem (Kitaev)
  - Pell's equation (Hallgren)
- Quantum random walks
  - Element distinctness (Ambainis)
  - Verifying AB = C for matrices (Buhrman & Špalek)
  - Computing formulas (Farhi et al)

## **Summary: quantum algorithms**

- Shor's algorithm (1994) factors an n-bit integer in roughly  $n^2$  elementary quantum gates. This is
  - exponential speed-up over best known classical algo
  - breaks a lot of public-key cryptography
- Grover's algorithm (1996) searches a size-N search space in  $\sim \sqrt{N}$  time
  - quadratic speed-up over classical
  - widely applicable
- Many other quantum algorithms discovered since then
- Next lecture: quantum communication