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Overview

- N

#® Recap of previous lecture:
o Quantum algorithm: circuit of elementary gates
(such as Hadamard)
» This transforms starting state to final state
s Measurement of final state yields (classical) output
s Algorithm is efficient it it uses few elementary gates
s Examples: Deutsch-Jozsa and Simon algorithms

# Today’s lecture:

1. Shor’s quantum algorithm for factoring
2. Grover’s quantum algorithm for search
3. Other algorithms

o |
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Factoring

Given N = p - ¢, compute the prime factors p and ¢
Fundamental mathematical problem since Antiquity
Fundamental computational problem on log N bits

Best known classical algorithms use time 216 V)",
where a =1/2 or 1/3

Its assumed computational hardness is basis of
public-key cryptography (RSA)

A quantum computer can break this,
using Shor’s efficient quantum factoring algorithm!
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Overview of Shor’s algorithm
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# Classical reduction: choose random z € {2,... . N — 1}.
It suffices to find period r of f(a) = 2 mod N

# Shor’s quantum algorithm for period-finding uses the
guantum Fourier transform

0)— —
. |QFT QFT| : measure
0)— —
]O) Of _
: measure
0) —

L.o Overall complexity: roughly (log N)? elementary gates J
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Reduction to period-finding

Pick a random integer x € {2,..., N — 1}, gcd(z, N)=1 T
The sequence z°, 2%, 2%, z°, ... mod N cycles:

has an unknown period » (min » > 0 s.t. z" = 1 mod N)

For at least 1/4 of the z’s:
risevenand 2”/2+ 1% 0 mod N

Then:
"= (2?2 =1mod N <
(272 + 1) (272 —1)=0mod N <—
(272 +1)(z"/? — 1) = kN for some k
2"/2 + 1 shares a factor with N
This factor of NV can be extracted using gcd-algorithm
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Quantum Fourier transform

1
_ _ - _ 1 d 2mijk
Fourier basis (dimension q): |y;) = 7 Z k)
Quantum Fourier Transform: |5) — |x;)
If ¢ = 2¢, then can do this with O(¢?) gates. |xjj.j,) =
%(‘@ 4 627ri0.j2‘1>)(‘0> 4 627m;0.j1j2’1>)(’0> 4+ 627Ti0-joj1j2’1>)
jo) |\ HHSHT -
J1) : H 5
j2> o l H %

For Shor: choose ¢ power of 2 in (N? 2N?] J
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Easy caser|q
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1. Apply QFT to 1st register of |0...0)[0...0):
— ) 0)]0)
\/a a=0

2. Compute z¢ mod N (repeated squaring)

1=
— ) |a)|z® mod N)
=0

Vi =

3. Observing 2nd register gives |z* mod N) (random s < r)
1st register collapses to superposition of

L ), |r+s),[2r+s),...,]¢g —1r+5) J
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Easy case:r|q (continued)
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q/r—1
Recall: 1st register is in superposition Z gr +s)
j=0
4. Apply QFT once more:
a/r-la-1  (jr+s)b -1 . sb 2! rb\ J
S: ) QQWZTU» _ 6277&? Z (627”7) ‘b>
j=0 b=0 b=0 j=0

geometric sum

. 7 e Th . .
Sum £ 0 iff 2 — 1 iff - is an integer
q

LOnIy the b that are multiples of ? have non-zero amplitude! J
T
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Easy case:r|q (continued)
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5. Observe 1st register: random multiple b = ¢=, ¢ € |0, r):
(A

#® b and g are known; ¢ and r are unknown

# c and r are coprime with probability Q(1/loglogr)

.. b
# Then: we know r by writing — in lowest terms
q

® Since we can find r, we can factor!

o |
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Hard case:r /fq

b
We do not have - = & anymore

q T
. b ¢ 1
Still, we probably observe a b such that |- — —| < o0
q T q
There I1s at most one fraction with denominator < N In

1 1
an interval of Iength < N2

This fraction must be f
T

b . . .
Can compute £ from 2 by continued fraction expansion
r q

Again, if ¢ and r are coprime, then we know r

|
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Summary for Shor’s algorithm
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Reduce factoring to finding the period » of modular
exponentiation function f(a) = xz* mod N

Use quantum Fourier transform to find a multiple of ¢/r
Repeat a few times to find r

Overall complexity:
s QFT takes O(log q)? ~ O(log N)? elementary gates

» Modular exponentiation: ~ (log N)?loglog N gates;
classical computation by repeated squaring
(use Schonhage-Strassen for fast multiplication)

s Everything repeated O(loglog N) times
» Classical postprocessing takes O(log N)? gates

Roughly (log N)? elementary gates in total J
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Part 2:

Grover’s algorithm
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The search problem

We want to search for some good item in
an unordered N-element search space

Model this as function f : {0,1}"* — {0,1} (N = 2")
f(x) =11if z is a solution

We can query f:
Oy« |2)]0) = |z)|f(2))

or
Oy : ) = (=1)/)|z)

Goal: find a solution

Classically this takes O(N) steps (queries to f)
Grover's algorithm does it in VN steps

|
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Grover’s algorithm
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» Define Grover iteration G = H*"RH*"Oy,
where R negates |z) for all z #£ 0"

#» Apply G k times on uniform starting state

(0)—H
ns |0)—H— G G |- |G
([0)— H

> measure

\ . J/

N

k

# Rough idea: each iteration moves LN amplitude

o

L towards solutions =% ~ +/N iterations should suffice J
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Example

-

N =4, f(00) = f(10) = f(11) =0, f(01) =1, 1 iteration
Starting state: |00)

After H®2: 2 (|00) + |01) + [10) + |11))

The 4 parts of one Grover iterate G-

s After Op: 1 (|00)—[01) + [10) + |11))

s After H®2: 1 (]00) + |01) — [10) + |11))

s After R: 3 (]00) —|01) +[10) — [11))

s After H®?: |01), this is the index of the solution!

We found the solution in a space of size 4, with 1 query!

|
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Analysis
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Suppose y is the only solution, so f(x) =11iff x =y
Define “good” and “bad” states:

|
= =
|
N
=

G) = |y) B) =

All intermediate states are in span{|G), |B)}

Initial uniform state is sin(0)|G) + cos(0)|B)
for @ = arcsin(1/v/N)

Grover iteration is a rotation over angle 20:
after k iterations the state Is

sin((2k + 1)0)|G) + cos((2k 4+ 1)0)| B)

|
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How many iterations do we need?
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#® Success probability after £ iterations:

sin?((2k 4+ 1)0), with 6 = arcsin(1/vVN) ~ 1/vVN

1 ey
o Ifk= Z—e bt then success probability is sin*(7/2) = 1

® Example: N =4=Fk=1
#® Choose k nearest integer (small error)

® Query complexity is k = %\/N

» Gate complexity is O(v/N log N)

o |
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Executive summary

Quantum computers can search any
N-element space in about /N iterations

That's v/ N queries, and v N log N elementary gates

. N . . .
If there are t solutions, then \/7 Iterations suffice

The algorithm has a small error probability,
but can be modified to error O if we know ¢

|
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Application: Speed up NP problems
-

# Given a propositional formula f(zy, ..., z,)
Computable in time poly(n)

Question: Is f satisfiable?

# This is a typical NP-complete problem

°

Search space of N = 2" possibilities

o Classically: exhaustive search is the best we know.
This takes about N steps

# Quantumly: Grover finds a satisfying assignment in
VN - poly(n) steps

|
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Other applications & generalizations
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Minimize f : [N] — R in VN steps
Find collision in r-to-1 f in (N/r)!/3 steps
Approximate counting

Amplitude amplification

Find shortest path between 2 vertices
in N-vertex graphs in N3/2 steps

Minimum spanning tree, other graph problems, ...
Faster sorting if we have limited space
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Lower bound (BBBV 93)
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# Fix a T-query quantum search algorithm
¢! ) = state before ¢-th query, on f where only f(y) =1

a; = amplitude on query y in |¢y) (constant-0 f)

Compare constant-0 f with all other f
® Easy: [|¢5™ — o I<Il¢f — oy || +2|aj], so

T
T+1 T+1
—<ch ol < 2) ol
t=1

T T
® Sum over all y: gﬁ Z QZ!@Z\:QY > layl

ye{0,1}n  t=1 t=1 ye{0,1}~

< ET:\/_ > b2 <2TVN :>£<T
. 4 |

ye{0,1}n
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Other quantum algorithms
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o Generalizations of Shor’s algorithm
» Discrete logarithm (Shor), elliptic curves
» Hidden subgroup problem (Kitaev)
s Pell's equation (Hallgren)

#® Quantum random walks
s Element distinctness (Ambainis)

s Verifying AB = C for matrices (Buhrman & Spalek)
s Computing formulas (Farhi et al)

o |
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Summary: guantum algorithms
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Shor’s algorithm (1994) factors an n-bit integer in
roughly n? elementary quantum gates. This is

» exponential speed-up over best known classical algo
s breaks a lot of public-key cryptography

Grover’s algorithm (1996) searches a size-N search
space in ~ v/N time

» (Quadratic speed-up over classical

» widely applicable

Many other quantum algorithms discovered since then

|
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Next lecture: quantum communication
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