
University of Warsaw, PhD Open, Exam Quantum Computing

Ronald de Wolf (CWI Amsterdam, rdewolf@cwi.nl)

5 questions. Handed out: January 9, 2010

1. Suppose we have a qubit which is promised to be either in the state 1
√

2
(|0〉 + |1〉) or in the state

1
√

2
(|0〉− |1〉). Give a quantum circuit that determines the state of this qubit, using a unitary gate and

a measurement in the computational basis.

2. Consider 1-qubit gates H = 1
√

2

(

1 1
1 −1

)

and X =

(

0 1
1 0

)

, and 2-qubit CNOT (controlled-X).

(a) Show that HXH =

(

1 0
0 −1

)

. This is known as the phase-flip operation.

(b) Give the 4 × 4 unitary matrix for the 2-qubit operation (I ⊗ H)CNOT(I ⊗ H).

(c) Draw a 2-qubit circuit which transforms the initial state |00〉 into the state 1
√

2
(|00〉 − |11〉).

3. Given a function f : {0, 1}n → {0, 1} with the promise that there exists a string s ∈ {0, 1}n such that
f(x) = x · s for all x ∈ {0, 1}n. Here x · s =

∑n

i=1 xisi mod 2 denotes inner product of bit strings
modulo 2. We would like to learn what s is.

(a) Give a quantum algorithm that makes only 1 query to f , and that computes s with success
probability 1 (as usual, a query is the unitary transformation Of : |x〉 → (−1)f(x)|x〉).
Hint: Use the Deutsch-Jozsa algorithm.

(b) Argue that any classical algorithm to compute s needs to evalute f at least n times.

4. Suppose we have a database with N = 2n binary slots, containing t ones (solutions) and N − t zeroes.

(a) Show that we can use Grover’s algorithm to find the positions of all t ones, using an expected
number of O(t

√
N) queries to the database. You can argue on a high level, no need to draw actual

quantum circuits.

(b) Show that this can be improved to an expected number of O(
√

tN) queries.
Hint: Recall that if there are i solutions, Grover’s algorithm finds a solution using an expected
number of O(

√

N/i) queries.

5. Consider the sorting problem: there are n distinct numbers a1, . . . , an, and we want to sort these. We
can only access the numbers by making comparisons. A comparison is similar to a black-box query: it
takes 2 indices i, j ∈ {1, . . . , n} as input and outputs whether ai < aj or not. The output of a sorting
algorithm should be the list of n indices, sorted in increasing order. It is well-known that for classical
computers, log2(n!) = n log2(n) + O(n) comparisons are necessary and sufficient for sorting. Prove
that a quantum sorting algorithm needs at least Ω(n) comparisons.
Hint: View this in a two-party communication setting: Alice knows the numbers a1, . . . , an, and hence
she knows which one among the n! permutations is the one that puts the numbers in order. Bob would
run an optimal quantum sorting algorithm (say with T comparisons), using O(log n) qubits of commu-
nication (to and from Alice) to implement each comparison. In the end Bob learns the permutation.
Then apply Holevo’s theorem to lower bound the total amount of quantum communciation that must
have been sent. Then conclude a lower bound on T . Again, you can argue on a high level.

