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Notice

The exercises due January 31, 2008 are along this document on slides
with a blue background like the present one.

They consist of 10 exercices. Each one deals with what has just been
presented in the previous slides and mostly requires only a basic
understanding of it.

Solutions should be sent:

• in PDF by e-mail to joly@pps.jussieu.fr (scanned handwritten
versions in order to avoid typewriting proof trees are welcome)

or
• by snail-mail to: Thierry Joly
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Université Paris Diderot - Paris 7
Case 7014
75205 PARIS Cedex 13
FRANCE
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1st order language

Defined by a set of predicate symbols P,P ′,P ′′ . . . and a set of function
symbols f , f ′, f ′′ . . .. Each one of these symbols is given with a fixed arity.
A predicate symbol of arity 0 is called propositional symbol. A function
symbol of arity 0 is called constant.

Individual terms:
t = x

∣∣ f (t, . . . , t)†

Formulas:

A = P(t, . . . , t)†
∣∣ A→ A

∣∣ A ∧ A
∣∣ A ∨ A

∣∣ ¬A
∣∣ ∀x A

∣∣ ∃x A

† The arity of the symbol must be respected.
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Hilbert style proof system

In Hilbert style systems, the meaning of the logical symbols is defined by
a lot of axioms, e.g.

A→ B → A
(A→ B → C)→ (A→ B)→ A→ C
((A→ B)→ A)→ A

A ∧ B → A
A ∧ B → B
A→ B → A ∧ B

A→ A ∨ B
B → A ∨ B
A ∨ B → (A→ C)→ (B → C)→ C

(A→ B)→ ¬B → ¬A
¬A→ A→ B

∀x A→ A[t/x]
∀x (A→ B)→ A→ ∀x B, only if x /∈ A

A[t/x]→ ∃x A
∀x (A→ B)→ ∃x A→ B, only if x /∈ B

and only two inference rules are used to articulate these axioms, Modus
Ponens and Universalization:

A→ B A
MP

B

A
U∀x A
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Sequents

In the sequent calculus LK, the formulas are replaced by sequents:

A1,A2, . . . ,An ` B1,B2, . . . ,Bp (n > 0, p > 0)

Intended meaning:

A1 ∧ A2 ∧ . . . ∧ An → B1 ∨ B2 ∨ . . . ∨ Bp

In case n = 0:
B1 ∨ B2 ∨ . . . ∨ Bp

In case p = 0:
¬(A1 ∧ A2 ∧ . . . ∧ An)

A1,A2, . . . ,An and B1,B2, . . . ,Bn are multisets of formulas.
If Γ and ∆ are such multisets then Γ,∆ denotes the sum of these multisets.
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LK rules

Only one axiom rule!

A lot of inference rules (two for every logical symbol)and more . . . )

I. Axiom rule: A ` A

II. Logical rules:
Γ ` A,∆ Γ,B ` ∆

l→
Γ,A→B ` ∆

Γ,A ` B,∆
r→

Γ ` A→B,∆

Γ,A,B ` ∆
l∧

Γ,A∧B ` ∆

Γ ` A,∆ Γ ` B,∆
r∧

Γ ` A∧B,∆
.
.
.

.

.

.

Γ,A[t/x] ` ∆
l∀

Γ, ∀x A ` ∆

Γ ` A,∆
r∀ †

Γ ` ∀x A,∆

III. Structural rules:
Γ ` ∆

lw
Γ,A ` ∆

Γ ` ∆
rw

Γ ` A,∆

Γ,A,A ` ∆
lc

Γ,A ` ∆

Γ ` A,A,∆
rc

Γ ` A,∆

IV. Cut rule:
Γ ` A,∆ Γ′,A ` ∆′

cut
Γ, Γ′ ` ∆,∆′

†Only if x does not occur free in Γ,∆.
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Cut elimination

The main property of LK (with quite a few consequences in proof theory):

Cut rule is redundant
(i.e. all what can be proved by using it can be proved without).

 Subformula property: In a cut free proof, all the formulas are
subformulas of a formula of the conclusion.

Moreover:

Cut rules can recursively be removed from any proof throughout a rewrite
sequence of the proof.
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Cut elimination procedure (sketch)

The formula that is erased from the premisses to the conclusion of a cut
rule is called cut formula:

Γ ` A,∆ Γ′,A ` ∆′
cut

Γ, Γ′ ` ∆,∆′

3 kinds of cuts:

ax-cut (axiomatic cut): one of the premisses (at least) is an axiom.

l-cut (logical cut): in every pemiss the cut formula has just been
built by a logical rule.

s-cut (structural cut): otherwise.

Axiomatics cut are removed at once:

A ` A

.

.

. Π

Γ,A ` ∆
ax-cut

Γ ` ∆ →
.
.
. Π

Γ,A ` ∆

.

.

. Π

Γ ` A,∆ A ` A
ax-cut

Γ ` ∆ →
.
.
. Π

Γ,A ` ∆
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Elimination of the logical cuts

Every logical cut can be replaced by cuts with smaller cut formulas:

.

.

. Π

Γ,A ` B,∆
r→

Γ ` A→B,∆

.

.

. Π′1

Γ′ ` A,∆′

.

.

. Π′2

Γ′,B ` ∆′

l→
Γ′,A→B ` ∆′

l-cut
Γ, Γ′ ` ∆,∆′

→

.

.

. Π′1

Γ′ ` A,∆′

.

.

. Π

Γ,A ` B,∆
cut

Γ, Γ′ ` B,∆,∆′

.

.

. Π′2

Γ′,B ` ∆′
cut

Γ, Γ′, Γ′ ` ∆,∆′,∆′

lc/rc
Γ, Γ′ ` ∆,∆′

.

.

. Π1

Γ ` A,∆

.

.

. Π2

Γ ` B,∆
r∧

Γ ` A∧B,∆

.

.

. Π′

Γ′,A,B ` ∆′

l∧
Γ′,A∧B ` ∆′

l-cut
Γ, Γ′ ` ∆,∆′

→
.
.
. Π2

Γ ` B,∆

.

.

. Π1

Γ ` A,∆

.

.

. Π′

Γ′,A,B ` ∆′
cut

Γ, Γ′,B ` ∆,∆′
cut

Γ, Γ, Γ′ ` ∆,∆,∆′

lc/rc
Γ, Γ′ ` ∆,∆′

. . .
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Elimination of the structural cuts

Suppose that the last rule of Π creates the cut formula A but not the last
rule of Π′: .

.

. Π

Γ ` A,∆

x

.

.

. Π′

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

Then we make Π climb up Π′ as follows:

.

.

. Π

Γ ` A,∆

x

.

.

. Π′

Γ′,A,B ` C ,∆′
r→

Γ′,A ` B→C ,∆′
s-cut

Γ, Γ′ ` B→C ,∆,∆′
→

.

.

. Π

Γ ` A,∆

x

.

.

. Π′

Γ′,A,B ` C ,∆′
cut

Γ, Γ′,B ` C ,∆,∆′
r→

Γ, Γ′ ` B→C ,∆,∆′

.

.

. Π

Γ ` A,∆

x

.

.

. Π′1

Γ′,A ` B,∆′

.

.

. Π′2

Γ′,A,C ` ∆′

l→
Γ′,A,B→C ` ∆′

s-cut
Γ, Γ′,B→C ` ∆,∆′

→

.

.

. Π

Γ ` A,∆

x

.

.

. Π′1

Γ′,A ` B,∆′

Γ, Γ′ ` B,∆,∆′

.

.

. Π

Γ ` A,∆

x

.

.

. Π′2

Γ′,A,C ` ∆′

Γ, Γ′,C ` ∆,∆′

l→
Γ, Γ′,B→C ` ∆,∆′

. . .
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Elimination of the structural cuts

. . .
.
.
. Π

Γ ` A,∆

x

.

.

. Π′

Γ′ ` ∆′
lw

Γ′,A ` ∆′
s-cut

Γ, Γ′ ` ∆,∆′

→

.

.

. Π′

Γ′ ` ∆′
lw/rw

Γ, Γ′ ` ∆,∆′

. . . until all the remaining copies of the cut reach on their r.h.s. premisses
either an axiom or a logical rule creating the cut formula A, and then
become rules ax-cut or l-cut that we eliminate as previously.

If the last rule of Π creates the cut formula A but not the last rule of Π′:
.
.
. Π

Γ ` A,∆

.

.

. Π′

y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

then we symetrically make Π′ climb up Π′.
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Elimination of the structural cuts

At last, if none of the subproofs Π,Π′ creates the cut formula A:
.
.
. Π

Γ ` A,∆

x

.

.

. Π′

y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

we may

first make Π climb up Π′ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

and then make these cuts go up left until each of their copies
becomes an ax-cut or a l-cut.

or we may first make the cut go up left then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

Hilbert style systems
Sequent calculus LK
Natural deduction ND
Intuitionistic logic
2 × 3 logics

Elimination of the structural cuts

At last, if none of the subproofs Π,Π′ creates the cut formula A:
.
.
. Π

Γ ` A,∆

x

.

.

. Π′

y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

we may

first make Π climb up Π′ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

and then make these cuts go up left until each of their copies
becomes an ax-cut or a l-cut.

or we may first make the cut go up left then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

Hilbert style systems
Sequent calculus LK
Natural deduction ND
Intuitionistic logic
2 × 3 logics

Elimination of the structural cuts

At last, if none of the subproofs Π,Π′ creates the cut formula A:
.
.
. Π

Γ ` A,∆

x

.

.

. Π′y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

we may

first make Π climb up Π′ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

and then make these cuts go up left until each of their copies
becomes an ax-cut or a l-cut.

or we may first make the cut go up left then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

Hilbert style systems
Sequent calculus LK
Natural deduction ND
Intuitionistic logic
2 × 3 logics

Elimination of the structural cuts

At last, if none of the subproofs Π,Π′ creates the cut formula A:
.
.
. Π

Γ ` A,∆

x

.

.

. Π′

y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

we may

first make Π climb up Π′ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

and then make these cuts go up left until each of their copies
becomes an ax-cut or a l-cut.

or we may

first make the cut go up left then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

Hilbert style systems
Sequent calculus LK
Natural deduction ND
Intuitionistic logic
2 × 3 logics

Elimination of the structural cuts

At last, if none of the subproofs Π,Π′ creates the cut formula A:
.
.
. Π

Γ ` A,∆

x

.

.

. Π′y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

we may

first make Π climb up Π′ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

and then make these cuts go up left until each of their copies
becomes an ax-cut or a l-cut.

or we may first make the cut go up left

then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

Hilbert style systems
Sequent calculus LK
Natural deduction ND
Intuitionistic logic
2 × 3 logics

Elimination of the structural cuts

At last, if none of the subproofs Π,Π′ creates the cut formula A:
.
.
. Π

Γ ` A,∆

x

.

.

. Π′

y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

we may

first make Π climb up Π′ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

and then make these cuts go up left until each of their copies
becomes an ax-cut or a l-cut.

or we may first make the cut go up left then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

Hilbert style systems
Sequent calculus LK
Natural deduction ND
Intuitionistic logic
2 × 3 logics

Elimination of the structural cuts

At last, if none of the subproofs Π,Π′ creates the cut formula A:
.
.
. Π

Γ ` A,∆

x

.

.

. Π′y

Γ′,A ` ∆0
s-cut

Γ, Γ′ ` ∆,∆0

we may

first make Π climb up Π′ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

and then make these cuts go up left until each of their copies
becomes an ax-cut or a l-cut.

or we may first make the cut go up left then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

Hilbert style systems
Sequent calculus LK
Natural deduction ND
Intuitionistic logic
2 × 3 logics

Natural deduction ND: the differences between LK and ND

In ND:

Only one formula on the r.h.s. of a sequent: Γ ` C.

No more logical left introduction rules, right elimination rules instead

E.g.
Γ,A,B ` C

l∧
Γ,A∧B ` C

is replaced by the rules
Γ ` A∧B ∧e1

Γ ` A
and

Γ ` A∧B ∧e2
Γ ` B

No explicit structural rule: the l.h.s. sides of the sequents are now
sets of labelled formulas Γ = {C x1

1 , . . . ,C
xn
n }  in binary rules such as

Γ ` A→B Γ′ ` A →e
Γ, Γ′ ` B

(Γ, Γ′
def
= Γ ∪ Γ′), contraction rules are implicitly

performed, e.g.
C x,Dy ` A→B C x,Dz ` A

→e
C x,Dy,Dz ` B

.

No explicit cut rule: a cut is now just a (right) introduction rule
immediatly followed by a (right) elimination rule destroying the
created formula, that we still call cut formula.

E.g.
Γ ` A Γ′ ` B ∧i

Γ, Γ′ ` A∧B
∧e1

Γ, Γ′ ` A

Γ,Ax ` B
→ i

Γ ` A→B Γ′ ` A →e
Γ, Γ′ ` B
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ND rules

Only one axiom rule as in LK and still a lot of inference rules.

I. Axiom rule: Ax ` A

II. Logical rules:
Γ ` A→B Γ′ ` A →e

Γ, Γ′ ` B

Γ,Ax ` B
→ i

Γ ` A→B

Γ ` A∧B ∧e1
Γ ` A

Γ ` A∧B ∧e2
Γ ` B

Γ ` A Γ ` B ∧i
Γ ` A∧B

.

.

.
.
.
.

Γ ` ∀x A ∀e
Γ ` A[t/x]

Γ ` A
∀i †

Γ ` ∀x A

III. Structural rule:
Γ ` C

w
Γ, Γ′ ` C

†Only if x does not occur free in Γ.
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But we just said: No structural rule in ND!

Well, in the more traditional formulation of ND with single formulas
(i.e. as for Hilbert style systems), there is no rule w .

But we chose the sequent formulation of ND in order to make it look
closer to LK.

Even in the sequent formulation of ND, rule w is not necessary
in case we adopt axiom rules of the form: Γ,Ax ` A.

Nevertheless, ND is more natural when introducing additional
assumptions only at the point where they are required, e.g.

C z ` C
.
.
.

Γ ` B w
Γ,Ax ` B

→ i
Γ ` A→B

instead of

Ax,C z ` C
.
.
.

Ax , Γ ` B
→ i

Γ ` A→B

(material implication)
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Cuts & subformula property in ND

Since we consider ND with an explicit rule w , cuts are slightly more
complex than previously stated: rules w may occur between the
introduction rule and the elimination rule below.

Γ,Ax ` B
→ i

Γ ` A→B
w

Γ, Γ′′ ` A→B Γ′ ` A
→e

Γ, Γ′, Γ′′ ` B

Γ ` A Γ′ ` B ∧i
Γ, Γ′ ` A∧B

w
Γ, Γ′, Γ′′ ` A∧B

∧e1
Γ, Γ′, Γ′′ ` A

. . .

If there is no such cut in the proof, then every formula not in the last
sequent is either a subformula of a formula in the sequent just below
or a proper subformula of another formula in the proof.
 Every formula is a subformula of a formula in the last sequent.

Hence, subformula property holds for this definition of a cut.
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Eliminating cuts in ND

In order to get rid of the rules w between the introduction rule
and the elimination rule of a cut, we can always commute them
with the elimination rule:

.

.

. Π

Γ,Ax ` B
→ i

Γ ` A→B
w

Γ, Γ′′ ` A→B

.

.

. Π′

Γ′ ` A →e
Γ, Γ′, Γ′′ ` B

→

.

.

. Π

Γ,Ax ` B
→ i

Γ ` A→B

.

.

. Π′

Γ′ ` A →e
Γ, Γ′ ` B

w
Γ, Γ′, Γ′′ ` B

.

.

. Π

Γ ` A

.

.

. Π′

Γ′ ` B ∧i
Γ, Γ′ ` A∧B

w
Γ, Γ′, Γ′′ ` A∧B ∧e1

Γ, Γ′, Γ′′ ` A

→

.

.

. Π

Γ ` A

.

.

. Π′

Γ′ ` B ∧i
Γ, Γ′ ` A∧B ∧e1
Γ, Γ′, Γ′′ ` A

w
Γ, Γ′, Γ′′ ` A

. . .
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Eliminating cuts in ND

It remains to eliminate the cuts as formerly defined:
.
.
. Π

Γ,Ax ` B
→ i

Γ ` A→B

.

.

. Π′

Γ′ ` A →e
Γ, Γ′ ` B

→
.
.
. Π

Γ,Ax ` B

.

.

. Π′y

x Γ′ ` A

Γ, Γ′ ` B

.

.

. Π

Γ ` A

.

.

. Π′

Γ′ ` B ∧i
Γ, Γ′ ` A∧B ∧e1

Γ, Γ′ ` A
→

.

.

. Π

Γ ` A w
Γ, Γ′ ` A

. . .

Here,

.

.

. Π

Γ,Ax ` B

.

.

. Π′y

x Γ′ ` A

Γ, Γ′ ` B
does not denote an explicit rule s-cut with cut

formula A on the point to climb up its left premiss. It is a notation for
the proof obtained by removing every occurrence of Ax in the proof Π and
by plugging at once the proof Π′ to every axiom rule [Ax ] ` A of Π.
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Eliminating cuts in ND

Recursive definition of

.

.

. Π

Γ,Ax ` B

.

.

. Π′y

x Γ′ ` A

Γ, Γ′ ` B
:

Ax ` A

.

.

. Π′y

x Γ′ ` A

Γ′ ` A

def
=

.

.

. Π′

Γ′ ` A

.

.

. Π

Γ0 ` C
w

Γ,Ax ` C

.

.

. Π′y

x Γ′ ` A

Γ, Γ′ ` C

def
=

.

.

. Π

Γ0 ` C
w

Γ, Γ′ ` C
if Ax /∈ Γ0

.

.

. Π1

Γ1 ` C1 · · ·

.

.

. Πn

Γn ` Cn
R

Γ ` C

.

.

. Π′y

x Γ′ ` A

Γr{Ax}, Γ′ ` C

def
=

.

.

. Π1

Γ1 ` C1

.

.

. Π′y

x Γ′ ` A

Γ1 r{Ax}, Γ′ ` C1 · · ·

.

.

. Πn

Γn ` Cn

.

.

. Π′y

x Γ′ ` A

Γn r{Ax}, Γ′ ` Cn
R

Γr{Ax}, Γ′ ` C

otherwise
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Eliminating cuts in ND

Church-Rosser Property (CR) If Π→→ Π1 and Π→→ Π2 (i.e. if a proof
Π can be rewritten into proofs Π1 and Π2, possibly Π = Π1 or Π = Π2)
then there is a proof Π′ such that Π1 →→ Π′ and Π2 →→ Π′.

 If Π1 and Π2 are cut free then Π1 = Π2.
In other words, all the rewrite sequences may lead to a unique cut free
proof, called normal form of the proof Π.
A rewrite sequence leading to this cut free proof is called normalization of Π.

Strong Normalization Property (SN) Every rewrite sequence
Π→ Π1 → Π2 → Π3 → · · · is finite.

 Every rewrite sequence leads to the normal form of Π.
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ND is not classically complete

Unfortunately, ND does not prove every classically true formula. It is a
system for intuitionistic logic.

Every intuitionistically provable statement is classically provable but not
vice versa.

E.g. (A→ B ∨ C )→ (A→ B) ∨ (A→ C ) is classically provable but not
intuitionistically.
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Heyting semantics

A proof of A ∧ B is an ordered pair (π, π′), where π is a proof of A
and π′ a proof of B.

A proof of A ∨ B is either leftπ where π proves A or rightπ′ where
π′ proves B.

A proof of A→ B is a procedure† f which maps any proof π of A to
a proof f (π) of B.

A proof of ¬A is a procedure† f which maps any couple (π,B)
where π proves A to a proof of B.

A proof of ∀x A is a procedure† f taking any individual t to a proof
f (t) of A[t/x ].

A proof of ∃x A is a couple (t, π) where t is an individual and π a
proof of A[t/x ].

† By a procedure, we mean a constructive one.
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The usual way to handle negation in intuitionistic logic

According to Heyting semantics:

A proof of ¬A is a procedure f which maps any couple (π,B) where
π proves A to a proof of B.
A proof of A→ B is a procedure f which maps any proof π of A to
a proof f (π) of B.

 There is a formula ⊥ together with a procedure g which maps any
couple (π,A) where π proves ⊥ to a proof of A. Take e.g. ⊥ = P ∧ ¬P,
where P is any formula.

 Proving ¬A amounts to proving A→ ⊥.

In the intuitionistic systems, ⊥ is usually taken as a primitive instead of ¬.
The corresponding procedure g then has to be explicited by a formal rule,
called rule of intuitionistic absurdity, e.g. in ND:

Γ ` ⊥
int.abs.

Γ ` A

and ¬A then is just a notation:

¬A
def
= A→ ⊥
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Ways & means

Besides the classical and intuitionistic variants, we may play on the
expressivity of the logical language:

We may quantify over the predicates just as we quantify over
the individuals

: Let us add to the language predicate variables
X n,Y p,Z q . . . of fixed arities n, p, q . . . (X (u1, . . . , un) is now a
well formed formula; if n = 0 then X is a propositional variable
and a well formed formula on its own). Let us allow quantification
over these variables (e.g. ∀X (∀x X (x)→ X (0)) is a well formed
formula).

 This yields 2nd order logic.

We may also restrict the 1st order language to a (still interesting)
minimum

: Allow only predicate symbols of arity 0 (i.e. propositional
symbols), no quantifier (since they are now meaningless) and only
the connective →.

 This gives the minimal logic.
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2× 3

Classical logic Intuitionistic logic

2nd order logic

1st order logic

Minimal logic
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A nice feature of 2nd order logic: Impredicativity

From A ∧ B it follows that for all propositions X , if A→B→X then X .

In a 2nd order logic formula: ∀X ((A→B→X )→X ).
Conversely, suppose that ∀X ((A→B→X )→X ). Then in particular for
X = A ∧ B: (A→B→A ∧ B)→A ∧ B, hence A ∧ B.
 A ∧ B is naturally equivalent to ∀X ((A→B→X )→X ).

Similarly, ⊥, A ∨ B, ∃z A and ∃Z A are naturally and respectively
equivalent to ∀X X , ∀X ((A→X )→(B→X )→X ), ∀X (∀z(A→X )→X )
and ∀X (∀Z (A→X )→X ).
 No need to have ⊥, ∧, ∨, ∃ (1st and 2nd order versions) as primitives
in the definition of 2nd order classical logic.

By “naturally”, we meant “from natural deductions”, i.e. intuitionistically.
 No need to have primitives ⊥, ∧, ∨, ∃ in the definition of 2nd order
intuitionistic logic either.
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A nice feature of 2nd order logic: Impredicativity (continued)

Leibniz Principle: “From an equality t = u, it follows that t can be
replaced by u in every statement without changing its meaning.”
Hence if t = u then ∀X (X (t)→ X (u)).

Conversely, suppose that ∀X (X (t)→ X (u)). Then in particular for
X ( · ) = (t = · ), we have: t = t → t = u, hence t = u.
 No need to add a predicate symbol for equality in 2nd order
(intuitionistic or classical) logic, we only have to adopt the notation:

(t = u)
def
= ∀X (X (t)→ X (u)).

Induction Principle: “If u is an integer, then X (u) holds for every
statement X such that ∀z (X (x)→ X (sx)) and X (0).”
Hence if u ∈ N, then ∀X (∀z (X (x)→ X (sx))→ X (0)→ X (u)).
Conversely, suppose the latter. Then in particular for X ( · ) = · ∈ N:
∀z (z∈N→ sz∈N)→ 0∈N→ u∈N, hence u∈N.
 No need to add a predicate symbol for N in 2nd order (intuitionistic or
classical) logic, we only have to adopt the notation:

N(u)
def
= ∀X (∀z (X (x)→ X (sx))→ X (0)→ X (u)).
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Just 2× 2 logics to come!

Although our concern would rather be 1st order logic, in the rest of
this course, we will only consider:

2nd order logic, just because it has a lighter syntax. Its formulas
are indeed generated by: A = X (u1, . . . , un)

∣∣ A→ A
∣∣ ∀x A

∣∣ ∀X A
hence only 3× 2 logical rules in LK or ND.

Minimal logic, because it is the kernel of all proof → program
systems. Once this kernel is extended to classical logic, full logic
follows straightfowardly.
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Formal definition of 2nd order ND:
Formulas & predicate substitution

Individual terms: as usual from individual variables and function symbols.
Formulas: A = X (u1, . . . , un)†

∣∣ A→ A
∣∣ ∀x A

∣∣ ∀X A

Definition of A[F/X (x1, . . . , xn)]‡ (A[F/X~x ] for short):

X (u1, . . . , un)[F/X~x ] = F [u1/x1, . . . , un/xn]

(A→B)[F/X~x ] = A[F/X~x ]→ B[F/X~x ]

(∀z A)[F/X~x ] = ∀z A[F/X~x ]

(∀Z A)[F/X~x ] = ∀Z A[F/X~x ]

† For any 2nd order variable X of arity n.

‡ This notation [F/X (x1, . . . , xn)] binds the free occurences of x1, . . . , xn in the formula F .
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Formal definition of 2nd order ND: Rules

I. Axiom rule: Ax ` A

II. Logical rules:
Γ ` A→B Γ′ ` A →e

Γ, Γ′ ` B

Γ,Ax ` B
→ i

Γ ` A→B

Γ ` ∀x A ∀e
Γ ` A[t/x]

Γ ` A
∀i †

Γ ` ∀x A

Γ ` ∀X A ∀e
Γ ` A[F~x/X~x]

Γ ` A
∀i ‡

Γ ` ∀X A

III. Structural rule:
Γ ` C

w
Γ, Γ′ ` C

†Only if x does not occur free in Γ.

‡Only if X does not occur free in Γ.
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Formal definition of 2nd order ND: Normalization steps
.
.
. Π

Γ,Ax ` B
→ i

Γ ` A→B

.

.

. Π′

Γ′ ` A →e
Γ, Γ′ ` B

→
.
.
. Π

Γ,Ax ` B

.

.

. Π′y

x Γ′ ` A

Γ, Γ′ ` B

where the right hand side is defined as previously.
.
.
. Π

Γ ` A → i
Γ ` ∀x A →e

Γ ` A[t/x]
→

.

.

. Π[t/x]

Γ ` A[t/x]

where Π[t/x ] denotes the proof obtained by replacing every free
occurrence of x by t in Π.

.

.

. Π

Γ ` A → i
Γ ` ∀X A →e

Γ ` A[F/X~x ]
→

.

.

. Π[F/X~x ]

Γ ` A[F/X~x ]

where Π[F/X~x ] denotes the proof obtained by replacing every
formula C by C [F/X~x ] in Π.
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Formal definition of minimal ND:

In the same way with no rule about quantifiers and no 1st order.
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2nd order & minimal classical logics

We have just given in terms of ND a definition of 2nd order & minimal
intuitionistic logics.
A lazy way to extend them to classical logics is to add to them Peirce
Law as an extra axiom scheme:

` ((A→ B)→ A)→ A

 It then allows to prove every classical statement in both logics,
. . . but it also ruins the normalization procedure!
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A few words about Peirce Law ((A→ B)→ A)→ A

Peirce Law may look obscure at first sight. It is actually an adaptation of
the classical reductio ad absurdum ¬¬A→ A (i.e. ((A→ ⊥)→ ⊥)→ A)
to minimal logic where the rule of intuitionistic absurdity does not apply
and where ⊥ may just be used as any other propositional symbol:

Reductio ad absurdum is first modified into the intuitionistically
equivalent formula ((A→ ⊥)→ A)→ A.

In this way, we now may replace the remaining occurrence of ⊥
by any proposition B without loosing the classical validity† of the
formula: ((A→ B)→ A)→ A.

Therefore, Peirce Law is just a tricky generalization of the reductio ad
absurdum principle expressible in the poorer language of minimal logic.

† Without the first modification, we would get the formula ((A → B) → ⊥) → A
which is not classically valid because we must view ⊥ as any propositional symbol
whereas ((A → B) → C) → A is not a tautology.
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Exercise 1: Extending minimal intuitionistic logic to
minimal classical logic

Another way to extend minimal intuitionistic logic to minimal classical logic is to adapt
the excluded middle principle (instead of reductio ad absurdum yielding Peirce Law).
First give the excluded middle principle the following form: (C → A) → (¬C → A) → A
(“if we proved A from the assumption C and then from the assumption ¬C , then we
really proved A from no assumption at all”), then replace the unique occurrence of ⊥
by any proposition B:

(C → A) → ((C → B) → A) → A (mEM)

The goal of this exercise is to show that this axiom scheme yields the same as Peirce Law.

1. Write down all the rules of ND for minimal intuitionistic logic.
Call mND this proof system.

2. Give a formal proof of Peirce Law in mND+(mEM), i.e. mND with
the additional axiom scheme: ` (C → A)→ ((C → B)→ A)→ A.

3. Give a formal proof in mND of the formula:
(((A→ B)→ A)→ A)→ (C → A)→ ((C → B)→ A)→ A.

4. Show that every formula of minimal logic is provable in mND+(mEM)
iff it is provable in mND+(Peirce Law).
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A stenography of the proofs

Proof in minimal ND of conclusion Γ ` A  Γ ` t : A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

x :

Ax `

x :

A
Γ `

t :

A
w

Γ, Γ′ `

t :

A

Γ,

x :

Ax `

t :

B
r→i

Γ `

λx t :

A→B

Γ `

t :

A→B Γ′ `

u :

A →e
Γ, Γ′ `

(tu) :

B

The term t is called λ-term extracted from the proof.
Let us note the l.h.s. Γ = Ax1

1 , . . . ,A
xn
n of the sequents in the same way:

Γ = x1 : A1, . . . , xn : An. Γ is then called context of the λ-term t.
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The effect of normalisation on the λ-terms

Recall that

.

.

. Π

Γ, x :A ` B

Γ ` A→B

.

.

. Π′

Γ′ ` A

Γ, Γ′ ` B
→

.

.

. Π

Γ, x :A ` B

.

.

. Π′y

x Γ′ ` A

Γ, Γ′ ` B

If say

.

.

. Π

Γ, x :A ` t :B and

.

.

. Π′

Γ′ ` u :A , let t[x :=u] denote the λ-term of the r.h.s.:

.

.

. Π

Γ, x :A ` t :B

.

.

. Π′y

x Γ′ ` u :A

Γ, Γ′ ` t[x :=u] :B
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The effect of normalisation on the λ-terms

x :A ` x :A

.

.

. Π′y

x Γ′ ` u :A

Γ′ ` x[x :=u] :A

def
=

.

.

. Π′

Γ′ ` u :A hence x [x :=u] = u

.

.

. Π

Γ ` t :C

.

.

. Π′y

x Γ′ ` u :A

Γ, Γ′ ` t[x :=u] :C

def
=

.

.

. Π

Γ ` t :C

Γ, Γ′ ` t :C
if x :A /∈ Γ, hence t[x :=u] = t if x/∈ t

and otherwise:
.
.
. Π

Γ, x :A, z :C ` t :D

Γ, x :A ` λz t :C→D

.

.

. Π′y

x Γ′ ` u :A

Γ, Γ′ ` (λz t)[x :=u] :C→D

def
=

.

.

. Π

Γ, x :A, z :C ` t :D

.

.

. Π′y

x Γ′ ` u :A

Γ, z :C , Γ′ ` t[x :=u] :D

Γ, Γ′ ` λz (t[x :=u]) :C→D

hence
(λz t)[x :=u]
=λz (t[x :=u])

.

.

. Π1

Γ1 ` t :C→D

.

.

. Π2

Γ2 ` t′ :C

Γ, x :A ` tt′ :C

.

.

. Π′y

x Γ′ ` u :A

Γ, Γ′ ` (tt′)[x :=u] :C

def
=

.

.

. Π1

Γ1 ` t :C→D

.

.

. Π′y

x Γ′ ` u :A

Γ1 r{x :A}, Γ′ ` t[x :=u] :C→D

.

.

. Π2

Γ2 ` t′ :C

.

.

. Π′y

x Γ′ ` u :A

Γ2 r{x :A}, Γ′ ` t′[x :=u] :C

Γ, Γ′ ` t[x :=u] t′[x :=u] :C

hence (tt ′)[x :=u] = t[x :=u] t ′[x :=u]
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The effect of normalisation on the λ-terms

Summing up:

x [x :=u] = u

t[x :=u] = t, if x /∈ t

(λz t)[x :=u] = λz (t[x :=u])

(tt ′)[x :=u] = t[x :=u] t ′[x :=u]

 t[x :=u] is just the λ-term t after replacing x by u!
.
.
. Π

Γ, x :A ` t :B

Γ ` λx t :A→B

.

.

. Π′

Γ′ ` u :A

Γ, Γ′ ` (λx t)u :B
→

.

.

. Π

Γ, x :A ` B

.

.

. Π′y

x Γ′ ` u :A

Γ, Γ′ ` t[x :=u] :B

 The normalization corresponds to a sequence of rewritings of the form:

(λx t)u →β t[x :=u]

which are called β-reductions.
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Summing up

λ-terms:

t = x (variable)
∣∣ λx t (abstraction)

∣∣ tt (application)

Precedence: application > λ

Reduction rule:
(λx t)u →β t[x :=u]

By this single line, we actually mean that t1 →β t2 whenever t2 is
obtained by replacing a subterm of t1 of the form (λx t)u (corresponding
to a subproof ending with a cut) by t[x :=u].

→→β
def
= reflexive & transitive closure of →β .

=β
def
= equivalence relation generated by →→β .
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Exercise 2

Write down the λ-term extracted from the proof in minimal ND of

(((A→ B)→ A)→ A)→ (C → A)→ ((C → B)→ A)→ A

obtained at question 3 of Exercise 1 and normalize it (in case it is not
already a normal λ-term).
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The untyped λ-calculus on its own

λ-calculus (Church, 1932) was already living its own life before ND was
invented by Gentzen in 1934!

λ-calculus was first conceived as a formal system about functions.

not functions in the so called Dedekind style ( = defined by an
arbitrary set theoretical graph): extensional point of view

but functions as something that can be computed accordingly to
some algorithm: intensional point of view.
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The untyped λ-calculus as a naive function theory
(v. naive set theory)

Just as in set theory every object is a set (of sets!), every λ-term denotes
some function . . . to be applied to other functions!

Examples:

I
def
= λx x , a universal identity function: IF =β F for all F .

B
def
= λf λgλx f (gx), a universal composition function:

BF G =β F ◦ G
def
= λx F (Gx)

n
def
= λf λx f (f (. . . (f︸ ︷︷ ︸

n

x))) ( = λf λx f nx for short), iterating n times:

n F =β F ◦ · · · ◦ F︸ ︷︷ ︸
n

.

n is the natural incarnation of the numeral n within λ-calculus and is
called a Church numeral.

Every recursive function f : Nk → N can be represented by a λ-term F :
for all n1, . . . , nk , we have Fn1 . . . nk =β f (n1, . . . , nk) (iff f (n1, . . . , nk)
is defined, of course).
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Some extensionality in untyped λ-calculus

The following infinitary inference rule (expressing some purely syntactical
extensionality): ∀u tu = t ′u ⇒ t = t ′

is actually equivalent to the axiom scheme:

λx tx = t where x /∈ t.

This leads to the following definitions.
Reduction rule:

λx tx →η t only if x /∈ t.

(By the latter, we mean as for →β that t1 →η t2 whenever t2 is obtained
by replacing a subterm of t1 of the form λx tx by t.)

→βη
def
=→β ∪ →η.

→→βη
def
= reflexive & transitive closure of →βη.

=βη
def
= equivalence relation generated by →→βη.
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About properties of untyped λ-calculus

CR Property If t →→β(η) t1 and t →→β(η) t2 then there is t ′ such that
t1 →→β(η) t ′ and t2 →→β(η) t ′.

. . . But we have no SN Property for the untyped λ-calculus:

(λx xx)(λx xx)→β (λx xx)(λx xx)→β . . .

This term endlessly rewriting into itself is the λ-equivalent of Russell’s
paradox (about the set of the x ’s such that x /∈ x : does it belong to
itself?).
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Back to logic: Typing derivation systems (minimal logic)

(2nd order logic)

Typing rules:

x : A ` x : A
Γ ` C

w
Γ, Γ′ ` C

Γ, x : A ` t : B
→i

Γ ` λx t : A→B

Γ ` t : A→B Γ′ ` u : A →e
Γ, Γ′ ` tu : B

Γ ` t : A
∀i†

Γ ` t : ∀x A

Γ ` t : ∀x A ∀e
Γ ` t : A[u/x]

Γ ` t : A
∀i†

Γ ` t : ∀X A

Γ ` t : ∀X A ∀e
Γ ` t : A[F/X~x ]

† only if x (resp. X ) /∈ Γ

SN Property If Γ ` t : A can be derived from the above typing rules
then every reduction sequence t →βη t1 →βη t2 →βη . . . is finite.

Subject reduction Property If Γ ` t : A is derivable from the above
typing rules and t →→βη t ′ then Γ ` t : A is also derivable.
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Back to logic: Typing derivation systems

(minimal logic)

(2nd order logic)

Typing rules:

x : A ` x : A
Γ ` C

w
Γ, Γ′ ` C

Γ, x : A ` t : B
→i

Γ ` λx t : A→B

Γ ` t : A→B Γ′ ` u : A →e
Γ, Γ′ ` tu : B

Γ ` t : A
∀i†

Γ ` t : ∀x A

Γ ` t : ∀x A ∀e
Γ ` t : A[u/x]

Γ ` t : A
∀i†

Γ ` t : ∀X A

Γ ` t : ∀X A ∀e
Γ ` t : A[F/X~x ]

† only if x (resp. X ) /∈ Γ

SN Property If Γ ` t : A can be derived from the above typing rules
then every reduction sequence t →βη t1 →βη t2 →βη . . . is finite.

Subject reduction Property If Γ ` t : A is derivable from the above
typing rules and t →→β

η

t ′ then Γ ` t : A is also derivable.
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. . .λ-calculus had itself an elder brother!

In the early 20’s, Shonfinkel had already conceived Combinatory Logic
(CL for short), a calculus close to λ-calculus where two constants K , S
play the role of the abstractor λ.

Syntax of CL:
t = x

∣∣ K
∣∣ S

∣∣ tt

Reduction rules:
Ktu → t
Stuv → tv(uv)

As usual, t1 → t2 means that t2 is obtained by replacing a subterm of t1

of the form of the l.h.s. of a rule by its r.h.s. and →→ is the reflexive &
transitive closure of →.
An applicative combination of say u1, . . . , un is a term t = u1

∣∣ · · · ∣∣ un

∣∣ tt
Combinatorial completeness For every applicative combination t of
x1, . . . , xn, there is a closed term C of CL (i.e. an applicative combination
of K , S) such that:

Cx1 . . . xn →→ t
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Correspondence: CL ↔ λ-calculus

The constants K , S with their reduction rules Kxy → x , Sxyz → xz(yz)
are naturally played by the λ-terms:

K
def
= λxλy x S

def
= λxλyλz xz(yz)

If t →→ u in CL, then t[K :=K,S :=S]→→β u[K :=K,S :=S] in λ-calculus.

There is a converse translation
{ }−→ of λ-calculus into CL inductively

given by:

{x} = x

{tu} = {t}{u}
{λx t} = λ∗x {t}

where for any term t of CL, λ∗x t is defined by an inner induction as:

λ∗x x = SKK

λ∗x t = Kt if x /∈ t

λ∗x tu = S(λ∗x t)(λ∗x u)

Proposition For every λ-term t: {t}[K :=K,S :=S]→→β t.
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Exercise 3

Prove the Proposition of the previous slide.
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Curry-Howard correspondence

Since λ-calculus was invented before ND, it had to be noticed that the
former could have been extracted from the latter as we did here.

Historically, this was remarked in the 50’s by H. Curry who was studying
CL, which actually is the computional counterpart of a Hilbert style
system for intuitionistic minimal logic.

Computational systems Formal proof systems

CL Hilbert style system
application Modus Ponens inference rule

constants K , S axioms A→B→A , (A→B→C)→ (A→B)→A→C

term SKK of CL proof of A→A from the just above axioms
closed λ-terms K, S proofs of the same axioms in ND

λ-abstraction →-introduction rule of ND
λ-calculus ND
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Exercise 4

Justify the 7 line table of the previous slide. The explanations can be
totally inexistent for lines 2, 6 and 7 of the table (which have already
been treated here) but should be accurate about the other lines.

In particular:

• A typing derivation system for CL (and minimal logic) should be
described to justify line 1 (about CL & Hilbert style) and used to
justify line 4 (about the term SKK ).

• Line 5 should be justified by typing the closed λ-terms K, S with
their corresponding formulas as types in the minimal logic typing
derivation system.
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The platonician world

U = “mathematical universe” which may contain anything:
integers, rational numbers, ordinals, trees ( lists, matrices . . . ) . . .
We may only access to U through 1st order syntax:

constants & function symbols to denote its elements,
equations between individual terms to give the intended meaning of
these symbols.

In general these function symbols denote partial functions
 some individual terms are meaningless.

Very simple example:

1st order symbols: 0, s (successor), p (predecessor), +, −, . and !.
equations:»

psx = x
spx = x

264 x + 0 = x
x + sy = s(x + y)
(x +y)+z = x +(y +z)
x + y = y + x

264 x − 0 = x
x − sy = p(x − y)
(x +y)−z = x +(y−z)
x − x = 0

»
x.0 = 0
x.sy = x.y + x

»
0! = s0
x! = x.(px)!

The meaningful terms denote the elements of Z.
E.g. the term (p0)! is meaningless.
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The platonician world: Formally
L: set of function symbols (of fixed arities > 0).
E : set of equations built from L and variables.

 C: set of the closed terms built from L.
 ∼: equivalence relation on C generated by:

t ∼ u whenever t = u is an equation of E in which every variable
has been replaced by a closed term of C.
t1 ∼ u1, . . . , tn ∼ un ⇒ f (t1, . . . , tn) ∼ f (u1, . . . , un) for every
function symbol f ∈ L of arity n.

 U = C/ ∼.
As usual, we represent the elements of U by anyone of their terms.
U is obviously interesting only if it does not collapse into a single class.

The same very simple example, formally:
L = {0, s, p,+,−, . , !}
E : the same set of equation as previously given.

 U is an abelian group containing Z with two additional complex
operations . , !. Multiplication is well defined on Z, but does not even
make U a ring because 0.(pp0)! 6= 0 in U .
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The platonician world considered in the rest of this lecture

L contains at least the function symbols of the previous very simple
example and a function symbol for every (possibly partial) recursive
function (on the positive integers).

E contains at least the equations of the previous very simple example and
equations defining every recursive function (in a sensible way, i.e. such
that we do not get sk0 ∼ sn0 for some k 6= n).

Every element sn0 of U will simply be denoted by n.
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Realizability semantics

Notations:
Λ = set of the λ-terms, Pβ(Λ) = set of the parts of Λ closed under =β .

For all K , L ∈ Pβ(Λ), K→L
def
= {t ∈ Λ ; ∀u ∈ K tu ∈ L} ∈ Pβ(Λ).

Every 2nd order formula is going to be interpreted by an element of Pβ(Λ).
For convenience in the definition of this interpretation, for every map
P ∈ Pβ(Λ)U

n

(n > 0) we add to the language a predicate symbol of
arity n that we denote the same.

Every closed 2nd order formula A built from these predicate symbols
and the individual terms in C then is interpreted by a set |A| ∈ Pβ(Λ)
as follows:

|P(~u)| = P(~u) for every P ∈ Pβ(Λ)U
n

|A→ B| = |A| → |B|
|∀x A| =

⋂
u∈U |A[u/x ]|

|∀Xn A| =
⋂

P∈Pβ(Λ)Un |A[X :=P]|
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Data correctness

Recall that N(u)
def
= ∀X (∀z (X (z)→ X (sz))→ X (0)→ X (u)).

Correctness of numerical data If for any t ∈ Λ and u ∈ C:
t ∈ |N(u)|, then there is n ∈ N such that u = n in U and t =βη n.

Proof Let P ∈ Pβ(Λ)U be defined by: r ∈ P(n)
def⇔ r =β f nx and

P(w) = ∅ for every w ∈ U r N.
For all w ∈ U : ∀r ∈ |P(w)| fr ∈ |P(sw)| f ∈ |P(w)→ P(sw)|
 f ∈ |∀z (P(z)→ P(sz))|.
By assumption: t ∈ |∀z (P(z)→ P(sz))→ (P(0)→ P(u))|
 tf ∈ |P(0)→ P(u)|. Moreover x ∈ |P(0)|,
 tfx ∈ |P(u)|.
 By definition of P, there is n such that u = n in U and tfx =β f nx
 t =η λf tf =η λf λx tfx =β λf λx f nx = n.

�
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Substitutions

Let us call (2nd order formula) closure an application · mapping

every individual variable x to some closed individual term x ∈ C
every predicate variable X of arity say n to some X ∈ Pβ(Λ)U

n

For every 2nd order formula A, A then denotes the closed formula
obtained by substituting x for every free individual variable x of A
and X for every free predicate variable X .

Substitution lemma For any closure · , all P ∈ Pβ(Λ)U
n

defined by

P(~u) =
∣∣F [~u/~x ]

∣∣ where F is any 2nd order formula, then∣∣A[F/X~x ]
∣∣ =

∣∣A[X :=P]
∣∣

Proof By a straightforward induction on the 2nd order formula A. �
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The engine

Typing rules:

x : A ` x : A
Γ ` t : A

w
Γ, Γ′ ` t : A

Γ, x : A ` t : B
→i

Γ ` λx t : A→B

Γ ` t : A→B Γ′ ` u : A →e
Γ, Γ′ ` tu : B

Γ ` t : A
∀i†

Γ ` t : ∀x A

Γ ` t : ∀x A ∀e
Γ ` t : A[u/x]

Γ ` t : A
∀i†

Γ ` t : ∀X A

Γ ` t : ∀X A ∀e
Γ ` t : A[F/X~x ]

† only if x (resp. X ) /∈ Γ

Adequacy lemma For any closure · and all t1 ∈
∣∣C1

∣∣, . . . , tn ∈ ∣∣Cn

∣∣:
x1 :C1, . . . , xn :Cn ` t :A ⇒ t[x1 := t1, . . . , xn := tn, ] ∈

∣∣A∣∣
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Exercise 5

Prove the adequacy lemma of the previous slide by assuming

the substitution lemma of the last but one slide.
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Program correctness

Adequacy lemma (weak form) For every closed formula A:

` t :A ⇒ t ∈ |A|

Correctness of numerical data (recall) If for any t ∈ Λ and u ∈ C:
t ∈ |N(u)|, then there is k ∈ N such that u = k in U and t =βη k.

Correctness of the programs int → int

If ` t : ∀x (N(x)→ N(f (x))) then for all n ∈ N: t n =βη f (n).

Proof For all n ∈ N, ` n : N(n). Moreover ` t : N(n)→ N(f (n)),
hence ` t n : N(f (n))  by the adequacy lemma: t n ∈ |N(f (n))|
 by the correctness of data, there is k ∈ N such that f (n) = k in U
and t n =βη k. �
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Executing the programs

Undeterministic execution of the programs

If ` t : ∀x (N(x)→ N(f (x))) then for all n ∈ N:

Program halting. Every rewrite sequence t n→βη u1 →βη u2 →βη · · ·
ultimately stops at a λ-term that can no more be rewritten, i.e. a
βη-normal λ-term r .

Result correctness. This λ-term r is the result of execution: r = f (n)
(except in case f (n) = 1 where we then have r = I).

Proof The halting property is just SN property applied to ` t n :N(f (n)).

By the correctness of the program: f (n) =βη t n =βη r . Therefore by CR

property r is the βη-normal form of f (n), i.e. the λ-term f (n) itself

(except for f (n) = 1 which has the βη-normal form I).
�
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But how to prove ∀x (N(x)→ N(f (x)))?

Let us call instance of an equation u1 = u2 ∈ E an equation ũ1 = ũ2

where ũi denotes the term obtained from ui by replacing its variables x
with fixed (possibly open) terms x̃ ∈ C.
For every instance ũ1 = ũ2 of some u1 = u2 ∈ E and every closure · we
have ũ1 = ũ2 in U , hence

∣∣A[ũ1/x ]
∣∣ =

∣∣A[ũ2/x ]
∣∣. It follows that we may

add to the typing system (and we do!) the derivation rules:

Γ ` t :A[ũ1/x]

Γ ` t :A[ũ2/x]

Γ ` t :A[ũ2/x]

Γ ` t :A[ũ1/x]
for any instance ũ1 = ũ2 of some u1 = u2 ∈ E .

Equality can also be used within the formulas. Indeed, its usual axioms:
reflexivity, symetry, transitivity and t = u → A[t/x ]→ A[u/x ] are obtained

at once in the system from the definition (t = u)
def
= ∀X (X (t)→ X (u)).

In the same way, the induction principle comes at once from the

definition N(u)
def
= ∀X (∀z (X (z)→ X (sz))→ X (0)→ X (u)).
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Exercise 6

1. Derive the typings:

` Succ : ∀x (N(x)→ N(sx))

` Add : ∀x∀y (N(x)→ N(y)→ N(x + y))

where Succ = λxλf λz xf (fz) and Add = λxλyλf λz xf (yfz)
with the help of the two derivation rules of the previous slide
and the set E of equations of the “very simple example”.

2. Check without the help of realizability semantics that for all
n ∈ N, p ∈ N:

Succ n →→β n + 1

Add n p →→β n + p
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An idea

Before defining a λ-calculus out of ND (as we did previously),

adding to ND a minimal stuff from LK to get classical logic

,

i.e. to get a proof of Peirce Law.

In LK:

A ` A
rw

A ` B, A
r→

` A→B, A A ` A
l→

(A→B)→A ` A
r→

` ((A→B)→A)→A
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3 Big Problems

1© A fundamental one: How to carry computations? i.e. how to
normalize?

2© A technical one: How to know the active formula of a sequent,
i.e. the formula used in the next rule? E.g. if t expresses a proof of
A ` B,C , the assumption A being represented by the variable x ,
does λx t represent a proof of ` A→B,C or a proof of ` B,A→C?

3© A semantical one: If the λ-terms no longer express a proof of a
well-defined active formula, what do they mean?
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1© How to normalize this?

A ` A
rw

A ` B, A
r→

` A→B, A A ` A
l→

(A→B)→A ` A
r→

` ((A→B)→A)→A

.

.

. Π

Γ ` (A→B)→A
→e

Γ ` A

 

A ` A
rw

A ` B, A
r→

` A→B, A A ` A
l→

(A→B)→A ` A
r→

` ((A→B)→A)→A

.

.

. Πy

? Γ ` (A→B)→A

Γ ` A
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1© Normalizing with explicit cut rules ( small steps)

A ` A
w

A ` B, A

` A→B, A A ` A

(A→B)→A ` A

` ((A→B)→A)→A

.

.

. Π

Γ ` (A→B)→A

Γ ` A

 .
.
. Π

Γ ` (A→B)→A

A ` A
w

A ` B, A

` A→B, A A ` A

y

(A→B)→A ` A
s-cut

Γ ` A

.

.

. Π′

Γ′, A→B ` A

Γ′ ` (A→B)→A

A ` A
w

A ` B, A

` A→B, A A ` A

(A→B)→A ` A
l-cut

Γ′ ` A

 
A ` A

w
A ` B, A

` A→B, A

.

.

. Π′

Γ′, A→B ` A
s-cut

Γ′ ` A
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 .
.
. Π
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y
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.

. Π′
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Γ′ ` (A→B)→A

A ` A
w

A ` B, A

` A→B, A A ` A
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A ` A

w
A ` B, A

` A→B, A

.

.

. Π′
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1© Normalizing with explicit cut rules ( small steps)

.

.

. Π′

Γ′, A→B ` A

Γ′ ` (A→B)→A

A ` A
w

A ` B, A

` A→B, A A ` A

(A→B)→A ` A
l-cut

Γ′ ` A

 
A ` A

w
A ` B, A

` A→B, A

x

.

.

. Π′

Γ′, A→B ` A
s-cut

Γ′ ` A

A ` A
w

A ` B, A

` A→B, A

.

.

. Π′′1

Γ′′ ` A

.

.

. Π′′2

Γ′′, B ` A

Γ′′, A→B ` A
l-cut

Γ′′ ` A

 .
.
. Π′′1

Γ′′ ` A
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2© How to manage active formulas?

The active formula in a premiss of a logical rule is the formula used to
build the new formula in the conclusion. Classical λ-terms will have to
keep track of them in order to make the difference between e.g.

` A→B, A A ` A
l→

(A→B)→A ` A
and

` A→B, A A ` A
l→

A→A ` A

In ND, this new formula is at the same time the active formula relatively
to the next rule, because it is always the (unique) right hand side formula:

Γ ` A→B Γ′ ` A →e
Γ, Γ′ ` B

Γ,A ` B
→i

Γ ` A→B

In LK, the active formula may change from a rule to the next one:

A ` A. . . . . . . . .
A ` B, A

r→
` A→B, A A ` A

l→
(A→B)→A ` A

. . . . . . . . . . . . . . .
(A→B)→A ` A

r→
` ((A→B)→A)→A
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2© Changing the active formula

Warning From now on, the difference between active formulas A and
normal ones A becomes a formal feature of the syntax of the sequents:
Γ ` A,A1, . . . ,An (other notations: Γ ` A,A1, . . . ,An, Γ ` A; A1, . . . ,An)

It is natural to consider that the cut formula of a cut rule is the active
formula of both premisses and that the conclusion has no active formula:

Γ ` A,∆ Γ′,A ` ∆′
cut

Γ, Γ′ ` ∆,∆′

Together with axiom rules having their active formula on the right hand
side: A ` A or on the left hand side: A ` A (← used in Peirce Law proof),
this yields a way to unselect the active formula:

A ` A Γ,A ` ∆
cut

Γ,A ` ∆

Γ ` A,∆ A ` A
cut

Γ ` A,∆

Peirce Law proof requires the selection of new active formulas on the
right hand side only:

Γ ` A,∆
µ

Γ ` A,∆

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

In search of a classical λ-calculus
Classical realizability
Classical combinatory logic
Classical dialects

2© Classical ND with explicit active formulas
(summing up)

A ` A

α

A

x

` A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ ` A,∆ Γ′,B ` ∆′

l→i
Γ, Γ′,A→B ` ∆,∆′

Γ,A

x

` B,∆
r→i

Γ ` A→B,∆

Γ ` A→B,∆ Γ′ ` A,∆′
→e

Γ, Γ′ ` B,∆,∆′

Γ ` A,∆ Γ′,A ` ∆′
cut

Γ, Γ′ ` ∆,∆′

Γ ` A

α

,∆
µ

Γ ` A ,∆

To be exact:
Every non active l.h.s. formula is labelled by a small latin letter as previously.
Every non active r.h.s. formula is labelled by a small greek letter.

Γ, Γ′, ∆, ∆′ = sets of labelled formulas. Γ, Γ′
def
= Γ ∪ Γ′, Aα,∆

def
= {Aα} ∪∆ . . .
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2© Classical ND with explicit active formulas
(summing up)

A ` A

α
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2© Classical ND with explicit active formulas
(summing up)
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To be exact:
Every non active l.h.s. formula is labelled by a small latin letter as previously.
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def
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3© Logical intrepretation of the sequents
with explicit active formulas

Γ ` A,∆ = Proof of A:

“If Γ then A unless one of ∆ holds”

Γ,A ` ∆ = Refutation of A:

“If Γ then A does not hold unless one of ∆ does”

Γ ` ∆ = Contradiction:

“Γ is contradictory unless one of ∆ holds”
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Back to 1©. Elimination of the implicit cuts: as previously
.
.
. Π

Γ,Ax ` B, ∆

Γ ` A→B, ∆

.

.

. Π′

Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′
→

.

.

. Π

Γ,Ax ` B,∆

.

.

. Π′y

x Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′
where

Ax ` A

.

.

. Π′y

x Γ′ ` A,∆′

Γ′ ` A,∆′
def
=

.

.

. Π′

Γ′ ` A,∆′

.

.

. Π

Γ0 ` ∆0 w
Γ,Ax ` ∆

.

.

. Π′y

x Γ′ ` A, ∆′

Γ, Γ′ ` ∆,∆′

def
=

.

.

. Π

Γ0 ` ∆0 w
Γ, Γ′ ` ∆,∆′

if Ax /∈ Γ0

.

.

. Π1

Γ1 ` ∆1 · · ·

.

.

. Πn

Γn ` ∆n
R

Γ ` ∆

.

.

. Π′y

x Γ′ ` A,∆′

Γr{Ax}, Γ′ ` ∆,∆′

def
=

.

.

. Π1

Γ1 ` ∆1

.

.

. Π′y

x Γ′ ` A,∆′

Γ1 r{Ax}, Γ′ ` ∆1,∆′ · · ·

.

.

. Πn

Γn ` ∆n

.

.

. Π′y

x Γ′ ` A,∆′

Γn r{Ax}, Γ′ ` ∆n,∆′

R
Γr{Ax}, Γ′ ` ∆,∆′

otherwise (n = 1, 2)
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Back to 1©. Elimination of the explicit cuts: same way
.
.
. Π

Γ ` Aα,∆
µ

Γ ` A, ∆

.

.

. Π′

Γ′,A ` ∆′

Γ, Γ′ ` ∆,∆′
→

.

.

. Π

Γ ` Aα,∆

.

.

. Π′y

α Γ′,A ` ∆′

Γ, Γ′ ` ∆,∆′
where

A ` Aα

.

.

. Π′y

α Γ′, A ` ∆′

Γ′,A ` ∆′
def
=

.

.

. Π′

Γ′, A ` ∆′

.

.

. Π

Γ0 ` ∆0 w
Γ ` Aα,∆

.

.

. Π′y

α Γ′, A ` ∆′

Γ, Γ′ ` ∆,∆′

def
=

.

.

. Π

Γ0 ` ∆0 w
Γ, Γ′ ` ∆,∆′

if Aα/∈ ∆0

.

.

. Π1

Γ1 ` ∆1 · · ·

.

.

. Πn

Γn ` ∆n
R

Γ ` ∆

.

.

. Π′y

α Γ′,A ` ∆′

Γ, Γ′ ` ∆r{Aα},∆′

def
=

.

.

. Π1

Γ1 ` ∆1

.

.

. Π′y

α Γ′,A ` ∆′

Γ1, Γ′ ` ∆1 r{Aα},∆′ · · ·

.

.

. Πn

Γn ` ∆n

.

.

. Π′y

α Γ′,A ` ∆′

Γn, Γ′ ` ∆n r{Aα},∆′

R
Γ, Γ′ ` ∆r{Aα},∆′

otherwise (n = 1, 2)
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Back to 1©. Elimination of the explicit cuts (continued)

In case the l.h.s. premiss of the cut rule is not the conclusion of a µ-rule,
we look at the r.h.s. premiss: it can only be the conclusion of a w -rule, of
a l→i-rule or an axiom.

If it is the conclusion of a w -rule:

.

.

. Π

Γ ` A, ∆

.

.

. Π′

Γ′,A ` ∆′

Γ′, Γ′′,A ` ∆′,∆′′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′
→

.

.

. Π

Γ ` A, ∆

.

.

. Π′

Γ′,A ` ∆′

Γ, Γ′ ` ∆,∆′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′

The cut moves up.
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Back to 1©. Elimination of the explicit cuts (continued)

If the r.h.s. premiss is the conclusion of a l→i-rule:

.

.

. Π

Γ ` A→B, ∆

.

.

. Π′

Γ′ ` A,∆′

.

.

. Π′′

Γ′′,B ` ∆′′

Γ′, Γ′′,A→B ` ∆′,∆′′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′
→

≡

.

.

. Π

Γ ` A→B,∆

.

.

. Π′

Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′

.

.

. Π′′

Γ′′,B ` ∆′′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′

The cut formula get smaller.

Remark. If Γ ` A→B, ∆ is the conclusion of a µ-rule, we may do the
inverse rewriting in order to get rid of the explicit cut rule as previously.

 We do not want to choose the direction of this rewriting.
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Back to 1©. Elimination of the explicit cuts (continued)

If the r.h.s. premiss is the conclusion of a l→i-rule:

.

.

. Π

Γ ` A→B, ∆

.

.

. Π′

Γ′ ` A,∆′

.

.

. Π′′

Γ′′,B ` ∆′′

Γ′, Γ′′,A→B ` ∆′,∆′′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′

→

≡

.

.

. Π

Γ ` A→B,∆

.

.

. Π′

Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′

.

.

. Π′′

Γ′′,B ` ∆′′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′

The cut formula get smaller.

Remark. If Γ ` A→B, ∆ is the conclusion of a µ-rule, we may do the
inverse rewriting in order to get rid of the explicit cut rule as previously.

 We do not want to choose the direction of this rewriting.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

In search of a classical λ-calculus
Classical realizability
Classical combinatory logic
Classical dialects

Back to 1©. Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):
.
.
. Π

Γ ` A,∆ A ` A

Γ ` Aα,∆

Γ ` A,∆
µ →

.

.

. Π

Γ ` A,∆

only if Aα /∈ ∆

This is just the way of desactivating A (before activating a new formula
with a µ-rule).

 Unlike in LK, an ax-cut cannot be removed in our calculus . . .
. . . unless the same formula is activated immediatly afterwards
. . . and Aα /∈ ∆! (otherwise the µ-rule makes an explicit contraction of the
active formula with one of ∆).
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Back to 1©. Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):
.
.
. Π

Γ ` A,∆ A ` A

Γ ` Aα,∆

Γ ` A,∆
µ →

.

.

. Π

Γ ` A,∆

only if Aα /∈ ∆

This is just the way of desactivating A (before activating a new formula
with a µ-rule).

 Unlike in LK, an ax-cut cannot be removed in our calculus . . .

. . . unless the same formula is activated immediatly afterwards

. . . and Aα /∈ ∆! (otherwise the µ-rule makes an explicit contraction of the
active formula with one of ∆).
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Back to 1©. Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):
.
.
. Π

Γ ` A,∆ A ` A

Γ ` Aα,∆

Γ ` A,∆
µ →

.

.

. Π

Γ ` A,∆

only if Aα /∈ ∆

This is just the way of desactivating A (before activating a new formula
with a µ-rule).

 Unlike in LK, an ax-cut cannot be removed in our calculus . . .
. . . unless the same formula is activated immediatly afterwards

. . . and Aα /∈ ∆! (otherwise the µ-rule makes an explicit contraction of the
active formula with one of ∆).
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Back to 1©. Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):
.
.
. Π

Γ ` A,∆ A ` A

Γ ` Aα,∆

Γ ` A,∆
µ →

.

.

. Π

Γ ` A,∆
only if Aα /∈ ∆

This is just the way of desactivating A (before activating a new formula
with a µ-rule).

 Unlike in LK, an ax-cut cannot be removed in our calculus . . .
. . . unless the same formula is activated immediatly afterwards
. . . and Aα /∈ ∆! (otherwise the µ-rule makes an explicit contraction of the
active formula with one of ∆).
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Back to 1©. Elimination of the explicit cuts (continued)

Here again, the inverse rewriting is useful to get rid of the cut rule:

.

.

. Π

Γ ` A→B α,∆
µ

Γ ` A→B,∆

.

.

. Π′

Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′
→−1

.

.

. Π

Γ ` A→B α,∆
µ

Γ ` A→B,∆

.

.

. Π′

Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′ B ` B

Γ, Γ′ ` Bβ,∆,∆′
µ

Γ, Γ′ ` B,∆,∆′

≡

.

.

. Π

Γ ` A→B α,∆
µ

Γ ` A→B,∆

.

.

. Π′

Γ′ ` A,∆′ B ` B

Γ′,A→B ` B,∆′

Γ, Γ′ ` Bβ,∆,∆′
µ

Γ, Γ′ ` B,∆,∆′

→
.
.
. Π

Γ ` A→B α,∆

.

.

. Π′

Γ′ ` A,∆′ B ` By

α Γ′,A→B ` B,∆′

Γ, Γ′ ` Bβ,∆,∆′
µ

Γ, Γ′ ` B,∆,∆′

 We do not want to choose the direction of this rewriting either.
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Cut elimination rules (summing up)

.

.

. Π

Γ,Ax ` B, ∆

Γ ` A→B, ∆

.

.

. Π′

Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′
→

.

.

. Π

Γ,Ax ` B,∆

.

.

. Π′y

x Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′

.

.

. Π

Γ ` Aα,∆
µ

Γ ` A, ∆

.

.

. Π′

Γ′,A ` ∆′

Γ, Γ′ ` ∆,∆′
→

.

.

. Π

Γ ` Aα,∆

.

.

. Π′y
α Γ′,A ` ∆′

Γ, Γ′ ` ∆,∆′

.

.

. Π

Γ ` A→B, ∆

.

.

. Π′

Γ′ ` A,∆′

.

.

. Π′′

Γ′′,B ` ∆′′

Γ′, Γ′′,A→B ` ∆′,∆′′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′
≡

.

.

. Π

Γ ` A→B,∆

.

.

. Π′

Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′

.

.

. Π′′

Γ′′,B ` ∆′′

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′

.

.

. Π

Γ ` A,∆ A ` A

Γ ` Aα,∆
µ

Γ ` A,∆
≡

.

.

. Π

Γ ` A,∆
only if Aα /∈ ∆
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Cut elimination rules (summing up)

These four rewrite rules and the commutation rule between w and cut:

.

.

. Π

Γ ` A, ∆

.

.

. Π′

Γ′,A ` ∆′
w

Γ′, Γ′′,A ` ∆′,∆′′
cut

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′
→

.

.

. Π

Γ ` A, ∆

.

.

. Π′

Γ′,A ` ∆′
cut

Γ, Γ′ ` ∆,∆′
w

Γ, Γ′, Γ′′ ` ∆,∆′,∆′′

are enough to remove all the implicit cuts and all the explicit cut rules
except the rules ax-cut.

Moreover:

SN Property For every rewrite sequence Π1 or→
≡ Π2 or→

≡ Π3 or→
≡ Π4 or→

≡ · · ·
there is n such that Πn ≡ Πn+1 ≡ Πn+2 ≡ · · ·
CR Property If Π→→ Π1 and Π→→ Π2 (→→ = refl. trans. closure of or→

≡ )
then there is Π′ such that Π1 →→ Π′ and Π2 →→ Π′.

 Every Π has a normal form up to ≡.

Conclusion: Our hybrid of ND and LK is a well born natural deduction.
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λµσ-calculus: Syntax

The λ-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

The labels of the non active formulas are the variables of the
λ-calculus.

At any step, the active formula is the type of the λ-term built so far.

Every new inference rule correspond to a new specific constructor or
binder of the λ-calculus.

α :

A `

α :

Aα

x :

Ax `

x :

A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

B ` ∆′

l→i
Γ, Γ′,

t.σ :

A→B ` ∆,∆′
Γ,

x :

Ax `

t :

B,∆
r→i

Γ `

λx t :

A→B,∆

Γ `

t :

A→B,∆ Γ′ `

u :

A,∆′
→e

Γ, Γ′ `

tu :

B,∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

A ` ∆′
cut

t ? σ : [

Γ, Γ′ ` ∆,∆′

]

 
c : [ Γ ` ∆ ]

w
c : [ Γ, Γ′ ` ∆,∆′ ]

!

c : [

Γ `

α :

Aα,∆

]

µ
Γ `

µα c :

A ,∆
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λµσ-calculus: Syntax

The λ-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

The labels of the non active formulas are the variables of the
λ-calculus.

At any step, the active formula is the type of the λ-term built so far.

Every new inference rule correspond to a new specific constructor or
binder of the λ-calculus.

α :

A ` α : A

α

x : A

x

`

x :

A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

B ` ∆′

l→i
Γ, Γ′,

t.σ :

A→B ` ∆,∆′
Γ, x : A

x

`

t :

B,∆
r→i

Γ `

λx t :

A→B,∆

Γ `

t :

A→B,∆ Γ′ `

u :

A,∆′
→e

Γ, Γ′ `

tu :

B,∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

A ` ∆′
cut

t ? σ : [

Γ, Γ′ ` ∆,∆′

]

 
c : [ Γ ` ∆ ]

w
c : [ Γ, Γ′ ` ∆,∆′ ]

!

c : [

Γ ` α : A

α

,∆

]

µ
Γ `

µα c :

A ,∆
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λµσ-calculus: Syntax

The λ-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

The labels of the non active formulas are the variables of the
λ-calculus.

At any step, the active formula is the type of the λ-term built so far.

Every new inference rule correspond to a new specific constructor or
binder of the λ-calculus.

α :

A ` α : A

α

x : A

x

` x : A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

B ` ∆′

l→i
Γ, Γ′,

t.σ :

A→B ` ∆,∆′
Γ, x : A

x

` t : B,∆
r→i

Γ ` λx t : A→B,∆

Γ ` t : A→B,∆ Γ′ ` u : A,∆′
→e

Γ, Γ′ ` tu : B,∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

A ` ∆′
cut

t ? σ : [

Γ, Γ′ ` ∆,∆′

]

 
c : [ Γ ` ∆ ]

w
c : [ Γ, Γ′ ` ∆,∆′ ]

!

c : [

Γ ` α : A

α

,∆

]

µ
Γ `

µα c :

A ,∆
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λµσ-calculus: Syntax

The λ-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

The labels of the non active formulas are the variables of the
λ-calculus.

At any step, the active formula is the type of the λ-term built so far.

Every new inference rule correspond to a new specific constructor or
binder of the λ-calculus.

α : A ` α : A

α

x : A

x

` x : A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

B ` ∆′

l→i
Γ, Γ′,

t.σ :

A→B ` ∆,∆′
Γ, x : A

x

` t : B,∆
r→i

Γ ` λx t : A→B,∆

Γ ` t : A→B,∆ Γ′ ` u : A,∆′
→e

Γ, Γ′ ` tu : B,∆,∆′

Γ `

t :

A,∆ Γ′,

σ :

A ` ∆′
cut

t ? σ : [

Γ, Γ′ ` ∆,∆′

]

 
c : [ Γ ` ∆ ]

w
c : [ Γ, Γ′ ` ∆,∆′ ]

!

c : [

Γ ` α : A

α

,∆

]

µ
Γ `

µα c :

A ,∆
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λµσ-calculus: Syntax

The λ-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

The labels of the non active formulas are the variables of the
λ-calculus.

At any step, the active formula is the type of the λ-term built so far.

Every new inference rule correspond to a new specific constructor or
binder of the λ-calculus.

α : A ` α : A

α

x : A

x

` x : A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ ` t : A,∆ Γ′, σ : B ` ∆′

l→i
Γ, Γ′,

t.σ :

A→B ` ∆,∆′
Γ, x : A

x

` t : B,∆
r→i

Γ ` λx t : A→B,∆

Γ ` t : A→B,∆ Γ′ ` u : A,∆′
→e

Γ, Γ′ ` tu : B,∆,∆′

Γ ` t : A,∆ Γ′, σ : A ` ∆′
cut

t ? σ : [

Γ, Γ′ ` ∆,∆′

]

 
c : [ Γ ` ∆ ]

w
c : [ Γ, Γ′ ` ∆,∆′ ]

!

c : [

Γ ` α : A

α

,∆

]

µ
Γ `

µα c :

A ,∆
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λµσ-calculus: Syntax

The λ-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

The labels of the non active formulas are the variables of the
λ-calculus.

At any step, the active formula is the type of the λ-term built so far.

Every new inference rule correspond to a new specific constructor or
binder of the λ-calculus.

α : A ` α : A

α

x : A

x

` x : A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ ` t : A,∆ Γ′, σ : B ` ∆′

l→i
Γ, Γ′,

t.σ :

A→B ` ∆,∆′
Γ, x : A

x

` t : B,∆
r→i

Γ ` λx t : A→B,∆

Γ ` t : A→B,∆ Γ′ ` u : A,∆′
→e

Γ, Γ′ ` tu : B,∆,∆′

Γ ` t : A,∆ Γ′, σ : A ` ∆′
cut

t ? σ : [

Γ, Γ′ ` ∆,∆′

]

 
c : [ Γ ` ∆ ]

w
c : [ Γ, Γ′ ` ∆,∆′ ]

!

c : [

Γ ` α : A

α

,∆

]

µ
Γ `

µα c :

A ,∆
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λµσ-calculus: Substitutions

As for intuitionistic ND, the proof

.

.

. Π

Γ,Ax ` B,∆

.

.

. Π′y

x Γ′ ` A,∆′

Γ, Γ′ ` B,∆,∆′

is naturally lifted to a derivation

.

.

. Π

Γ, x : A ` t : B,∆

.

.

. Π′y
x Γ′ ` u : A,∆′

Γ, Γ′ ` t[x :=u] : B,∆,∆′

and similarly the proof

.

.

. Π

Γ ` Aα,∆

.

.

. Π′y

α Γ′,A ` ∆′

Γ, Γ′ ` ∆,∆′

is lifted to a derivation

.

.

. Π

c : [ Γ ` α : A,∆ ]

.

.

. Π′y

α Γ′, σ : A ` ∆′

c[α :=σ] : [ Γ, Γ′ ` ∆,∆′ ]
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λµσ-calculus: Reduction rules

The commutation cut-rule/w -rule has no effect on the λ-terms:

.

.

. Π

Γ ` t : A,∆

.

.

. Π′

Γ′, σ : A ` ∆′
w

Γ′, Γ′′, σ : A ` ∆′,∆′′
cut

t ? σ : [ Γ, Γ′, Γ′′ ` ∆,∆′,∆′′ ]
→

.

.

. Π

Γ ` t : A,∆

.

.

. Π′

Γ′, σ : A ` ∆′
cut

t ? σ : [ Γ, Γ′ ` ∆,∆′ ]
w

t ? σ : [ Γ, Γ′, Γ′′ ` ∆,∆′,∆′′ ]

Other rewritings:
.
.
. Π

Γ, x : A ` t : B, ∆

Γ ` λx t : A→B, ∆

.

.

. Π′

Γ′ ` u : A,∆′

Γ, Γ′ ` (λx t)u : B,∆,∆′
→

.

.

. Π

Γ, x : A ` t : B,∆

.

.

. Π′y

x Γ′ ` u : A,∆′

Γ, Γ′ ` t[x :=u] : B,∆,∆′

When removing the logical part: (λx t)u →β t[x :=u]
.
.
. Π

c : [ Γ ` α : A,∆ ]
µ

Γ ` µα c : A, ∆

.

.

. Π′

Γ′, σ : A ` ∆′

(µα c) ? σ : [ Γ, Γ′ ` ∆,∆′ ]

→
.
.
. Π

c : [ Γ ` α : A,∆ ]

.

.

. Π′y

α Γ′, σ : A ` ∆′

c[α :=σ] : [ Γ, Γ′ ` ∆,∆′ ]

When removing the logical part: (µα c) ? σ →γ c[α :=σ]
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λµσ-calculus: Reduction rules

.

.

. Π

Γ ` t : A→B,∆

.

.

. Π′

Γ′ ` u : A,∆′

.

.

. Π′′

Γ′′, π : B ` ∆′′

Γ′, Γ′′, u.π : A→B ` ∆′,∆′′

t ? u.π : [ Γ, Γ′, Γ′′ ` ∆,∆′,∆′′ ]

≡

.

.

. Π

Γ ` t : A→B,∆

.

.

. Π′

Γ′ ` u : A,∆′

Γ, Γ′ ` tu : B,∆,∆′

.

.

. Π′′

Γ′′, π : B ` ∆′′

tu ? π : [ Γ, Γ′, Γ′′ ` ∆,∆′,∆′′ ]

When removing the logical part: t ? u.π =σ tu ? π
.
.
. Π

Γ ` t : A,∆ α : A ` A

t ? α : [ Γ ` A,∆ ]
µ

Γ ` µα t ? α : A,∆

≡
.
.
. Π

Γ ` t : A,∆ only if α :A /∈ ∆

When removing the logical part: µα t ? α =θ t only if α /∈ t

In summary:

(λx t) u →β t[x :=u] t ? u.π =σ tu ? π
(µα c) ? σ →γ c[x :=σ] µα t ? α =θ t only if α /∈ t

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

In search of a classical λ-calculus
Classical realizability
Classical combinatory logic
Classical dialects

λµσ-calculus (summing up)

The original intuitionistic calculus:

λ-terms: t = x
∣∣ tt

∣∣ λx t

∣∣ µα c

(assumption) (Modus (abstraction

(Reductio ad

Ponens) of a hyp.)

Absurdum)

(proofs)

c-terms: c = t ? σ (contradictions)

σ-terms: σ = α

∣∣ t.σ
(assumption (refutation
to the cont.) of an impl.)

(refutations)

 3 sorted calculus

Notations λ-variables: x , y , z . . . λ-terms: t, u, v . . .

σ-variables: α, β, γ . . .

σ-terms: π, ρ, σ . . .

Precedences application > λ

> . > ? > µ

Reduction rules

(λx t) u →β t[x :=u]

t ? u.σ =σ tu ? σ
(µα c) ? σ →γ c[x :=σ] µα t ? α =θ t only if α /∈ t
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Exercise: from Peirce Law to its λµσ-term

Write down the simplest λµσ-term of a proof of Peirce Law.

We start from its simplest proof in LK:

A ` A
w

A ` B, A

` A→ B, A A ` A

(A→ B)→ A ` A

` ((A→ B)→ A)→ A
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Exercise: from Peirce Law to its λµσ-term

(A→ B)→ A ` (A→ B)→ A

A ` A
w

A ` B, A
µ

A ` B, A

` A→ B, A A ` A

(A→ B)→ A ` A
cut

(A→ B)→ A ` A

` ((A→ B)→ A)→ A
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Classical realizability: Orthogonality

Let ⊥⊥ be any set of c-terms closed under =βγσ.

Notations:

Λ: set of the λ-terms Σ: set of the σ-terms t ⊥⊥σ def⇔ t ? σ ∈ ⊥⊥

For all L ⊆ Λ, S ⊆ Σ:

L⊥⊥S
def⇔ ∀t∈L ∀σ∈S t ⊥⊥σ

L⊥⊥
def
= {σ∈Σ ; ∀t∈L t ⊥⊥σ}, S⊥⊥

def
= {t∈Λ ; ∀σ∈S t ⊥⊥σ}

L.S
def
= {t.σ ; t ∈ S and σ ∈ S}

L is said classical if(f) L⊥⊥⊥⊥ = L, equivalently: L ∈ P(Σ)⊥⊥ (i.e. L of
the form S⊥⊥), because S⊥⊥⊥⊥⊥⊥ = S⊥⊥ for all S .
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Classical realizability: Sorted formulas

2nd order formulas defined as previously, but now using two sorts of
predicate variables:

intuitionistic ones as before, that we now denote iX , iY , iZ . . .

classical ones, that we denote X ,Y ,Z . . .

Intuitionistic predicate variables are meant for any P ∈ Pβ(Λ)U
n

as before
whereas classical predicate variables are meant for P ∈ (P(Σ)⊥⊥)U

n

only.

In particular, from now on 2nd order formula closures · are assumed to
map the classical predicate variables to functions ranging over P(Σ)⊥⊥ only.

A 2nd order formula is said classical if its rightmost predicate variable
occurrence is classical and intuitionistic otherwise.
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Classical realizability: Semantics & Typing rules

|P(~u)| = P(~u)

|A→ B| = |A| → |B|
|∀x A| =

⋂
u∈U |A[u/x ]|

|∀iXn A| =
⋂

P∈Pβ(Λ)Un |A[iX :=P]|
|∀Xn A| =

⋂
P∈(P(Σ)⊥⊥)Un |A[X :=P]|

‖P(~u)‖ = P(~u)⊥⊥

‖A→ B‖ = |A|.‖B‖
‖∀x A‖ =

⋃
u∈U ‖A[u/x ]‖

‖∀iXn A‖ =
⋃

P∈Pβ(Λ)Un ‖A[iX :=P]‖
‖∀Xn A‖ =

⋃
P∈(P(Σ)⊥⊥)Un ‖A[X :=P]‖

α : A ` α : A x : A ` x : A
Γ ` ∆

w
Γ, Γ′ ` ∆,∆′

Γ ` t : A,∆ Γ′, σ : B ` ∆′

l→i
Γ, Γ′, t.σ : A→B ` ∆,∆′

Γ, x : A ` t : B,∆
r→i

Γ ` λx t : A→B,∆

Γ ` t : A→B,∆ Γ′ ` u : A,∆′
→e

Γ, Γ′ ` tu : B,∆,∆′

Γ, t : A[u/x] ` ∆
l∀i

Γ, t : ∀x A ` ∆

Γ ` t : A,∆
r∀i†

Γ ` t : ∀x A,∆

Γ ` t : ∀x A,∆
∀e

Γ ` t : A[u/x],∆

Γ, t : A[F/iX~x ] ` ∆
l∀i i

Γ, t : ∀iX A ` ∆

Γ ` t : A,∆
r∀i i†

Γ ` t : ∀iX A,∆

Γ ` t : ∀iX A,∆
∀ie

Γ ` t : A[F/iX~x ],∆

Γ, t : A[F/X~x ] ` ∆
l∀ci‡

Γ, t : ∀X A ` ∆

Γ ` t : A,∆
r∀ci†

Γ ` t : ∀X A,∆

Γ ` t : ∀X A,∆
∀ce‡

Γ ` t : A[F/X~x ],∆

Γ ` t : A,∆ Γ′, σ : A ` ∆′
cut

t ? σ : [ Γ, Γ′ ` ∆,∆′ ]

c : [ Γ ` α : F ,∆ ]
µ‡

Γ ` µα c : F ,∆

† only if x (resp. iX , X ) /∈ Γ,∆
‡ only if F is classical
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Classical realizability: Adequacy lemma

Remark
∣∣F ∣∣ is classical for every classical formula F and every closure ·

because of the relations: L→ S⊥⊥ = (L.S)⊥⊥,
⋂

i∈I S⊥⊥i = (
⋃

i∈I Si )
⊥⊥.

Orthogonality lemma For every closed formula A:
∣∣A∣∣⊥⊥∥∥A∥∥

Substitution lemma If P ∈ Pβ(Λ)U
n

is defined by: P(~u) =
∣∣F [~u/~x ]

∣∣ then∣∣A[F/X~x ]
∣∣ =

∣∣A[X :=P]
∣∣ and

∥∥A[F/X~x ]
∥∥ =

∥∥A[X :=P]
∥∥.

Adequacy lemma For any closure · and all t1 ∈
∣∣C1

∣∣, . . . , tn ∈ ∣∣Cn

∣∣,
σ1 ∈

∥∥D1

∥∥, . . . , σp ∈
∥∥Dp

∥∥, T [x1 := t1, . . . , xn := tn, α1 :=σ1, . . . , αp :=σp]
belongs to:∣∣A∣∣ if x1 :C1, . . . , xn :Cn ` T :A, α1 :D1, . . . , αn :Dn

⊥⊥ if T : [ x1 :C1, . . . , xn :Cn ` α1 :D1, . . . , αn :Dn ]∥∥A∥∥ if x1 :C1, . . . , xn :Cn,T :A ` α1 :D1, . . . , αn :Dn
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Exercise 7

1. Prove the orthogonality lemma of the previous slide.

2. Assume the substitution lemma and prove the adequacy lemma
of the previous slide.
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Classical realizability: Data correctness problem

. . . We now have two sorts of numeral types:

iN(u)
def
= ∀iX (∀z (iX (z)→ iX (sz))→ iX (0)→ iX (u))

N(u)
def
= ∀X (∀z ( X (z)→ X (sz))→ X (0)→ X (u))

Fact: |iN(u)| ⊂ |N(u)| and N(u) contains a lot of λ-terms not reducible
to Church numerals, e.g. λf λxµα f (µβ f (f (µδ fx ? β)) ? α) ? α ∈ |N(2)|.
` I : ∀x (iN(x)→ N(x)) but ` ? : ∀x (N(x)→ iN(x)) impossible.

Problem 1: How are we going to recycle all our intuitionistic programming(
i.e. λ-terms of types ∀x (iN(x)→ iN(f (x)))

)
in this classical system?

Solution: ` T : ∀X
(
∀x (iN(x)→ X (x))→ ∀x (N(x)→ X (x))

)
where

T = λf λx x(λgλy g(Succ y))f 0, Succ being any λ-term such that
` Succ : ∀x (iN(x)→ iN(sx))

 ` t : ∀x (iN(x)→ N(f (x))) ⇒ `Tt : ∀x (N(x)→ N(f (x)))
. . . but the result is still in the undecipherable set |N(f (n))|.
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Exercise 8

Derive the typing stated in the previous slide, i.e.

` T : ∀X
(
∀x (iN(x)→ X (x))→ ∀x (N(x)→ X (x))

)
,

where
T = λf λx x(λgλy g(Succ y))f 0,

with the help of the set E of equations of the “very simple example”
and the two additional equational derivation rules (see Section 3 about
intuitionistic realizability).
No need to detail again the subterm Succ found in Exercise 6.[

Hint: First derive

` λgλy g(Succ y) : ∀z
(
(iN(x−z)→ X (x))→ (iN(x−sz)→ X (x))

) ]
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Classical realizability: Data correctness (a last trick)

Problem 2: How are we going to read the result in |N(f (n))|?
Recall that in the purely intuitionistic system, it was possible because

r ∈ |iN(f (n))| ⇒ r =βη f (n).

Solution: We let ⊥⊥ = {c ; ∃t∈|iN(f (n))| ∃σ∈Σ c =βγσ k ? t.σ}.
In other words, we let ⊥⊥ guess the solution |iN(f (n))| ! It is possible
because |iN(f (n))| does not depend on the choice of ⊥⊥ and because
although we pretended to have fixed ⊥⊥, we never said how.

In that way, we get k ∈ |iN(f (n))→ ⊥| where ⊥ = Σ⊥⊥. Since ⊥ is
classical, we obtain Tk ∈ |N(f (n))→ ⊥|. Hence for all r ∈ |N(f (n))|,
Tkr ∈ |⊥| = Σ⊥⊥. It then follows for all π ∈ Σ: Tkr ? π ∈ ⊥⊥, i.e. for
some σ ∈ Σ: Tkr ? π =βηγσ k ? f (n).σ. To sum up:

r ∈|N(f (n))|, π∈Σ ⇒ ∃σ∈Σ Tkr ? π =βηγσ k ? f (n).σ.
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CL formulation of λµσ-calculus

Translation λµσ
{ }−→ CL not quite possible by using only λ-terms.

Possible by using λ-terms and σ-terms.

cc
def
= λf µα f ? kα.α kσ

def
= λx µδ x ? σ

Proposition Every λ-term of the λµσ-calculus is βγσ-equal to an
applicative combination of K,S, cc and kα for every σ-variable α.

Translation:

{x} = x

{tu} = {t}{u}
{λx t} = λ∗x {t} where λ∗ is defined as for intuitionistic λ-calculus

{µα c} = cc(λ∗α {c}) where λ∗ is the same no matter term sorts

{t ? u1.u2 . . . un.α} = α({t}{u1}{u2} . . . {un})
Then for every λ-term t with free classical variables α1, . . . , αn:

{t}[α1 :=kα1 , . . . , αn :=kαn ] =βγσ t

Corollary Every closed λ-term of the λµσ-calculus is βγσ-equal to an
applicative combination of K,S, cc.
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Exercise 9

Prove what is stated in the previous slide, i.e. that for every λ-term t of
λµσ-calculus with free classical variables α1, . . . , αn:

{t}[α1 :=kα1 , . . . , αn :=kαn ] =βγσ t
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Classical combinatory logic CLσ

. . . but CL normalization of these terms requires terms of the form kσ.
This naturally comes from the structure of the λ-term cc:

cc
def
= λf µα f ? kα.α kσ

def
= λx µδ x ? σ

Syntax of CLσ:

λ-terms: t = x
∣∣ K

∣∣ S
∣∣ cc

∣∣ tt
∣∣ kσ

σ-terms: σ = α
∣∣ t.σ

Reduction rules:
cc t ? σ → t kσ? σ
kσt ? π → t ? σ
t ? u.σ = tu ? σ

. . . together with the intuitionistic rules:

Ktu → t
Stuv → tv(uv)
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What is λµσ-calculus?

No occurrence of λµσ in the literature. σ is for several S.

?

λµµ̃ Small fragment of Herbelin’s λµµ̃-calculus

λµσ ?

λµ

�
�
���

Slack version of Parigot’s λµ-calculus

A
A
AAU
λcc Study-oriented calculus

λµσ-calculus is indeed the lub of two representative classical dialects:
λµ-calculus and Krivine’s λcc-calculus.
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A classical λ-cube

�
�
�
�� �

�
�
��

�
�

�
��

λµσ

application:
stack constructor:

1© Removing

{

�
�
�
��

YES:

NO:

2© Classical features in CL



�
�
�
��

YES NO
3© Specializing reduction to left reduction
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Next: two opposite corners of our classical λ-cube

�
�
�
�� �

�
�
��

�
�

�
��

application:
stack constructor:

1© Removing

{

�
�
�
��

YES:

NO:

2© Classical features in CL



�
�
�
��

YES NO
3© Specializing reduction to left reduction

λµ

λcc
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λµ-calculus: a purebred classical λ-calculus

By choosing the negative settings:

1© removal of the stack constructor (corresponding to l→i-rule) which
is a redundancy of the application (corresponding to r→e-rule),

2© no CL-like constants for the classical features of the calculus,

3© no specialization of the normalization to any reduction strategy,

λµ-calculus sticks to traditional λ-calculus style:

just a new pair abstractor/application (µ, ?) in addition to the
intuitionistic one (λ, application) to treat the classical features.

λµ-calculus remains an undeterministic rewrite system enjoying
CR property.
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λµ-calculus: disappearance of the stack constructor

In order to remove the stack constructor from λµσ-calculus, we only have
to orient the σ-rule as follows: t ? u.σ →σ tu ? σ.

σ-reduction →→σ has the SN property.
The λ-terms and c-terms in σ-normal form are exactly the ones with
no occurrence of the stack constructor.

 In λµ-calculus, only λ-terms and c-terms in σ-normal form are written.

Problem: γ-reductions usually stuck by σ-normalization, e.g.
c[α :=u.β] γ← (µα c) ? u.β →→σ ((µα c) ? u.β)σ-nf = (µα cσ-nf )u ? β → ?
This can only be overcome by allowing an exceptional σ-conversion in the
“wrong” way: (µα c)u =θ µβ (µα c)u ? β →σ−1 µβ (µα c) ? u.β
→γ µβ c[α :=u.β]→→σ µβ (c[α :=u.β])σ-nf

In λµ-calculus, the last reduction sequence is viewed as a single reduction
step called µ-reduction:

(µα c)u →µ µβ (c[α :=u.β])σ-nf
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λµ-calculus: σ-terms as Streams

In λµ-calculus, every σ-term is just a variable playing the role of a stream
of λ-terms fed by the µ abstractor that binds it:

(µα c)u1u2 . . . un ? β →µ (µα (c[α :=u1.α])σ-nf )u2 . . . un ? β
→µ (µα (c[α :=u1.u2.α])σ-nf )u3 . . . un ? β...
→µ (µα (c[α :=u1 . . . un.α])σ-nf ) ? β

In order to finish the work done by a γ-reduction of λµσ-calculus,
i.e. up to σ-conversions: (µα c)u1 . . . un ? β →γ (c[α :=u1.u2 . . . un.β])σ-nf,
we have to add to the calculus the particular case of γ-reduction where
the substituted σ-term is a variable:

(µα c) ? β →ρ c[α :=β]

which is a stream redirecting.

At last, θ-rule is oriented in λµ-calculus as follows:

µα t ? α→θ t only if α /∈ t

and becomes a stream closure.
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λµ-calculus: complete picture

Syntax:

λ-terms: t = x
∣∣ tt ∣∣ λx t

∣∣ µα c

c-terms: c = t ? σ

σ-terms: σ = α

Reduction rules:

(λx t)u →β t[x :=u]
(µα c)u →µ µβ (c[α :=u.β])σ-nf

(µα c) ? β →ρ c[α := β]
µα t ? α →θ t only if α /∈ t

Actual notations & wording about λµ-calculus in the literature:
The only σ-terms existing in λµ-calculus, i.e. σ-variables, are called
µ-variables or classical variables and are never considered as terms
on their own.
The c-terms are called named terms and written [α]t instead of t ? α.
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λcc-calculus: an imperative calculus

By choosing the opposite settings:

1© removal of the application (corresponding to r→e-rule)
instead of the stack constructor (corresponding to l→i-rule),

2© classical features in CL,

3© normalization only performed by left reduction on c-terms
(i.e. by rewriting at every step the leftmost rewritable subterm),

λcc-calculus is quite different from λµ-calculus.

Because of this choice of the left reduction, λcc-calculus is a deterministic
rewrite system (in which CR property is therefore meaningless) and looks
rather like an imperative programming language than a λ-calculus.

Huge contradiction between 1© and 2©: CL requires application!
 applications will just be morally removed, not formally because of 2©.
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λcc-calculus: trying to combine 1© with 2©
1© We may indeed replace every application by a stack constructor:

tu =θ µα tu ? α =σ µα t ? u.α and keep application just as a
meta-notation for short:

tu
def
= µα t ? u.α

But we then must reformulate β-rule without mention of a primitive
application:

λx t ? u.σ →pop t[x :=u] ? σ

(similar to λµσ-calculus: λx t ? u.σ =σ (λx t)u ? σ →β t[x :=u] ? σ)

2© Now all the µ’s of the resulting calculus without stack constructor
would be hidden in λ-terms cc, kσ by replacing every λ-term t with
{t}[fα1 :=kα1 , fα2 :=kα2 , . . .] (=popγ t) where {t} is defined by:

{x} = x
{λx t} = λx {t}
{µα c} = cc(λfα {c})
{t ? u1.u2 . . . un.α} = fα({t}{u1}{u2} . . . {un})

. . . The µ’s not all hidden in λ-terms cc, kσ, also hidden in the
applicative meta-notation (used in the last two clauses).
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λcc-calculus: σ-terms as Stacks

Conclusion: Ok, we really have to reintroduce a primitive application,
but we just let it play the role of our meta-notation, i.e. according to
choice 3© (= left reduction on c-terms only):

Push:

tu ? σ
def
= (µα t ? u.α) ? σ →γ t ? u.σ

Save current stack:

cc ? t.σ
def
= (λf µα f ? kα.α) ? t.σ →pop (µα t ? kα.α) ? σ →γ t ? kσ.σ

Restore stack:

kσ ? t.π
def
= (λx µδ x ? σ) ? t.π →pop (µδ t ? σ) ? π →γ t ? σ

Now, replace applicative meta-notation back by a primitive application,
cc by a constant cc, kσ by kσ where k is a new σ-term→λ-term construct
and view the above reduction sequences as primitive reduction rules.

This is λcc-calculus.
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λµ-calculus v. λcc-calculus

λµ-calculus

t ? u.σ →σ tu ? σ at once

λ-terms: t = x
∣∣ tt ∣∣ λx t

∣∣ µα c

c-terms: c = t ? σ

σ-terms: σ = α

Reduction rules:

(λx t)u →β t[x :=u]

(µα c)u →µ µβ (c[α :=u.β])σ-nf

(µα c) ? β →ρ c[α := β]

µα t ? α→θ t only if α /∈ t

λcc-calculus

tu ? σ →σ−1 t ? u.σ

λ-terms: t = x
∣∣ cc

∣∣ tt ∣∣ λx t
∣∣ kσ

c-terms: c = t ? σ

σ-terms: σ = α
∣∣ t.σ

Reduction rules:

λx t ? u.σ →pop t[x :=u] ? σ

tu ? σ →push t ? u.σ

cc ? t.σ →save t ? kσ.σ

kσ ? t.π →restore t ? σ

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics
λ-calculus

Realizability
Classical λ-calculus

. . . !

In search of a classical λ-calculus
Classical realizability
Classical combinatory logic
Classical dialects

λµ-calculus v. λcc-calculus:
Minimal typing systems complete for minimal classical logic

λµ-calculus λcc-calculus

x : A ` x : A

Γ ` ∆

Γ, Γ′ ` ∆,∆′

Γ ` t : A→B,∆ Γ′ ` u : A,∆′

Γ, Γ′ ` tu : B,∆,∆′

Γ, x : A ` t : B,∆

Γ,` λx t : A→B,∆

Γ ` t : A,∆

t ? α : [ Γ ` α : A,∆ ]

c : [ Γ ` α : A,∆ ]

Γ ` µα c : A,∆

. . . also a maximal typing system:
one derivation rule for every term construct.

x : A ` x : A

Γ ` t : C

Γ, Γ′ ` t : C

Γ ` t : A→B Γ′ ` u : A

Γ, Γ′ ` tu : B

Γ, x : A ` t : B

Γ,` λx t : A→B

` cc : ((A→B)→A)→A

. . . λcc-calculus shows how to execute proofs
written in intuitionistic ND + Peirce Law!
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Γ,` λx t : A→B

` cc : ((A→B)→A)→A

. . . λcc-calculus shows how to execute proofs
written in intuitionistic ND + Peirce Law!
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Exercise 10

Answer these questions for each typing system of the previous slide:

1. Prove Peirce Law ((A→B)→A)→A in the simplest way as possible,
i.e. get a typing derivation of ` t : ((A→B)→A)→A where the
λ-term t of λµ-calculus (resp. of λcc-calculus) is as small as possible.
Compare this λ-term t with the λ-term cc of λµσ-calculus.

2. Prove (C→A)→((C→B)→A)→A in the simplest way as possible,
i.e. get a typing derivation of ` u : (C→A)→((C→B)→A)→A
where the λ-term u is as small as possible.

3. Derive the typing ` u I : ((A→B)→A)→A where u is the same
λ-term as in previous question and I

def
= λx x .

4. Normalize this λ-term u I within λµ-calculus (resp. within λcc-calculus)
and compare its normal form with the λ-term t found at question 1.
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A play in λcc-calculus

P: I have to use your proof of ((A → B) → A) → A. I give you one of (A → B) → A,

waiting for your proof of A.

cc ? t(A→B)→A. σ
cc (lying) : My proof of ((A → B) → A) → A is fairly simple. I actually have a proof

kσ of A → B, then just apply it your proof of (A → B) → A to get A.

→ t ? kA→B
σ . σ

P (after computing a while) : You gave me a proof of A → B that I now must use.

I have brought a proof u of A. I want one of B in return.

. . .→ kA→B
σ ? uA. π

cc: But you just needed a proof of A some time ago. Remember, precisely when we

were in the context σ.

Here it is.

→ uA ? σ
End of the play

?

Certainly not as long as there are remaining occurrences of kσ in the term.
Everytime one of them comes in head position, followed by an always
newer proof un of A: kσ ? un. πn the show goes on (→ un ? σ → . . .).
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