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Formal proof systems & logics Hilbert style systems
Se is LK

1** order language

Defined by a set of predicate symbols P, P’, P” ... and a set of function
symbols f, f’, " .... Each one of these symbols is given with a fixed arity.
A predicate symbol of arity 0 is called propositional symbol. A function
symbol of arity 0 is called constant.

Individual terms:
t=x|f(t,....0)f

Formulas:

A= Pt,... . t)l |[A=A|ANA|AVA|-A|VxA|3x A
T The arity of the symbol must be respected.
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Formal proof systems & logics Hilbert style systems
S,

Hilbert style proof system

In Hilbert style systems, the meaning of the logical symbols is defined by
a lot of axioms, e.g.

A—-B—A

A-B—-C)—-(A—=B)—A—-C (A— B) — =B — —-A
(A—=B)—A) — A -A— A— B

AANB — A

AAB — B Vx A — Alt/x]

A—B—AAB Vx(A— B) - A—VxB, onlyifx¢ A
A— AV B

B— AV B Alt/x] — 3IxA

AVB—(A—C)— (B—C)—C Vx(A— B) — 3xA — B, onlyif x ¢ B
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Formal proof systems & logics Hilbert style systems
S,

Hilbert style proof system

In Hilbert style systems, the meaning of the logical symbols is defined by
a lot of axioms, e.g.

A—-B—A

A-B—-C)—-(A—=B)—A—-C (A— B) — =B — —-A
(A—=B)—A) — A -A— A— B

AANB — A

AAB — B Vx A — Alt/x]

A—B—AAB Vx(A— B) - A—VxB, onlyifx¢ A
A— AV B

B— AV B Alt/x] — 3IxA

AVB—(A—C)— (B—C)—C Vx(A— B) — 3xA — B, onlyif x ¢ B

and only two inference rules are used to articulate these axioms, Modus
Ponens and Universalization:

A—B A A
B MP Vx A
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

In the sequent calculus LK, the formulas are replaced by sequents:

AL Az, A E BBy, ... By (n20,p20)

Intended meaning:

Al/\Az/\.../\An—>Bl\/BQ\/...VBp

In case n = 0:
Bl\/BQ\/...VBp

In case p =0:
“(ALAA AL ANA)

A1, As, ..., A, and By, B,,. .., B, are multisets of formulas.
If r and A are such multisets then r, A denotes the sum of these multisets.
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Formal proof systems & logics
Sequent calculus LK
ural deduction ND

LK rules

Only one axiom rule!

|. Axiom rule: AL A
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

LK rules

Only one axiom rule!
A lot of inference rules (two for every logical symbol)

|. Axiom rule: AL A
Il Logical rul r-AA [,BFA rAFB,A
N —
. Logical rules: FASBLA |— T AisE s
rABFA r-AA T+FBA
—— I\ rA
rLAABF A - AAB, A
T At/x]F A reAA .
TvxAra rrvxAa v

t Only if x does not occur free in ', A.
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

LK rules

Only one axiom rule!
A lot of inference rules (two for every logical symbol and more ...)

|. Axiom rule: AL A
Il Logical rul r-AA [,BFA rAFB,A
N —
. Logical rules: FASBEA |— T AisE s
rABFA r-AA T+FBA
—— IA rA
rLAABF A I AAB, A
T At/x]F A reAA .
TvxArn rrvxAa v
reA reA
I1. Structural rules: mlw m
rAARA r-AAA
—— Ic —_rc
TAFA T-AA

t Only if x does not occur free in ', A.
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

LK rules

Only one axiom rule!
A lot of inference rules (two for every logical symbol and more ...)

I. Axiom rule: A A
Il Logical rules r-Aa rBra rAFB,A
) e
- ogical ruies: rA-BFA - r-A—B,A
rABFA rFAA [FBA
—— I\ rA\
rLAABF A I AAB, A
T Alt/x] - A r-AA .
TvxArn rrvxAa v
reA reA
I1l. Structural rules: mlw m
rAAFA rHAAA
—— Ic —_rc
rAFA TFAA
FT-AA [ ARA
IV. Cut rule: - - cut
rreAaA

t Only if x does not occur free in ', A.
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Formal proof systems & logics

Cut elimination

The main property of LK (with quite a few consequences in proof theory):

Cut rule is redundant
(i.e. all what can be proved by using it can be proved without).

~> Subformula property: In a cut free proof, all the formulas are
subformulas of a formula of the conclusion.

Moreover:

Cut rules can recursively be removed from any proof throughout a rewrite
sequence of the proof.
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The formula that is erased from the premisses to the conclusion of a cut
rule is called cut formula:

FrFAA [, AFA
rrFAa A

cut

3 kinds of cuts:
@ ax-cut (axiomatic cut): one of the premisses (at least) is an axiom.
o /-cut (logical cut): in every pemiss the cut formula has just been
built by a logical rule.

@ s-cut (structural cut): otherwise.

Axiomatics cut are removed at once:
n n n
AFA T,AFA r-AA AFA

—cut rAFA
r|-A ax-cu H r}_A

n
ax-cut —» [LAFA
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

Elimination of the logical cuts

Every logical cut can be replaced by cuts with smaller cut formulas:

n :
-|‘| :rl/ :I—ll ‘nl n .
: M L) , ’ n
rAFB A rMeAA T ,BFA r FA’,A RAF/B,A ct
T - - | — rLr'eB,AA M BkFA :
r’-A—B,A MNA—BFA cu
: — leut T L reaa, o
rr=aA Ic/rc
rre=aAa"
n n o Enl n’
h cli2 : . 7 ’
FLAA FEBA FoABE A My r-AA T ABFA cut
2 > r/\%//\ r-B,A rr',BrA,A .
= AAB, A M ANBF A — cu
: : I-cut r,rr'ena, A A
r7 e A’A/ P—— IC/YC
rreAa A
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: . .
N n
reAA I, AF Ag
s-cut
rrFA, A
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Formal proof systems & logics Hilbert st st
Sequent calculus
\ ral ded

Elimination of the structural cuts

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: . .
n S

FrEAA\NT, AE Ay
rrFA, A

s-cut

Then we make n climb up n’ as follows:
:n/
m ' ABFC,A
—_—— r—
M-A A\ NPT, AFB—=C,A
s-cut
' -B—C,A A
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Formal proof systems & logics Hilbert st st
Sequent calculus
\ ral ded

Elimination of the structural cuts

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: : .
n o
THAA N, AL A
s-cut
M F A, A
Then we make n climb up n’ as follows:
- o -
n r' A BFC,A A A r' A BFC,A
—_— cut
r-AA\ NI AFB—C,A — r,r',BrC,AA
s-cut r—
' +-B—C, AN ' +-B—C, A A
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Formal proof systems & logics Hilbert st st
Sequent calculus
\ ral ded

Elimination of the structural cuts

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: : .
n o
THAA N, AL A
s-cut
M F A, A
Then we make n climb up n’ as follows:
- o -
n r' A BFC,A THAA\NT, ABEC,A
—_— cut
r-AA\ NI AFB—C,A — r,r',BrC,AA
s-cut r—
' +-B—C, AN ' +-B—C, A A
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Formal proof systems & logics Hilbert st st
Sequent calculus
\ ral ded

Elimination of the structural cuts

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: : .
n o
THAA N, AL A
s-cut
M F A, A
Then we make n climb up n’ as follows:
- o -
n r' A BFC,A FTEAAN\ANT,ABFC, A
—_— cut
M-A A\ NPT, AFB—=C,A r,r,BrC,A A
—
s-cut r—
rrFB—C,A, A r,rFB—C,A,A
o My
‘N M AFB,A T',ACHA
l—)

FrEA A\, [ AB—CHA
rr',B—CkrA N

s-cut
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Formal proof systems & logics Hilbert st st
Sequent calculus
\ ral ded

Elimination of the structural cuts

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: . .
n S
TEAANNT, AR A
s-cut
M A, A
Then we make n climb up n’ as follows:
- o -
n ', A BFC,A THFAANNT A BFC,A
—_— cut
r-AA\ NI AFB—C,A — r,r',BrC,AA
s-cut r—
rr+B—C,A N I +B—C,A N
N s n N n LA
il I Ak B,A F’,A,C)—A/l rEAA I AkB,A TFAA I A CFA
FrEA A\, [ AB—CHA _’_> I+ B,A A rr,CrA N
s-cut | —
rr',B—CkrA N rr,B—CkA A
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Formal proof systems & logics Hilbert st st
Sequent calculus
\ ral ded

Elimination of the structural cuts

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: . .
n S
TEAANNT, AR A
s-cut
M A, A
Then we make n climb up n’ as follows:
- o -
n ', A BFC,A THFAANNT A BFC,A
—_— cut
r-AA\ NI AFB—C,A — r,r',BrC,AA
s-cut r—
rr+B—C,A N I +B—C,A N
N s n N n LA
il I Ak B,A F’,A,C)—A/l TEAANT AFB,A THAA\NT A CFA
FrEA A\, [ AB—CHA _’_> I+ B,A A rr,CrA N
s-cut | —
rr',B—CkrA N rr,B—CkA A
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Formal proof systems & logics Hilbert st st
Sequent calculus
\ ral ded

Elimination of the structural cuts

Suppose that the last rule of n creates the cut formula A but not the last

rule of n’: . .
n S
TEAANNT, AR A
s-cut
M A, A
Then we make n climb up n’ as follows:
- o -
n ', A BFC,A THFAANNT A BFC,A
—_— cut
r-AA\ NI AFB—C,A — r,r',BrC,AA
s-cut r—
rr+B—C,A N I +B—C,A N
N s n N n LA
il I Ak B,A F’,A,C)—A/l TEAANT AFB,A THAA\NT A CFA
FrEA A\, [ AB—CHA _’_> I+ B,A A rr,CrA N
s-cut | —
rr',B—CkrA N rr,B—CkA A

e o o
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Formal proof systems & logics Hilbert style systems
Sequent calculus LK
N al deduction ND

:n/

:n re A
-, 1w

TrEAANAST AF A

s-cut
rrea A

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

Elimination of the structural ¢

En/ :I-I/
n L :
FeAA\f r’r AFI—AA’ v _rea’ /
w/rw
? ! scut 7 rre=Aa A

rrea,A
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

Elimination of the structural ¢

En/ :I-I/
n N :
F)—A.AKJ‘F’FAI—AA’ " rea Iw/
: : s-cut > T En A

rr=an

... until all the remaining copies of the cut reach on their r.h.s. premisses
either an axiom or a logical rule creating the cut formula A
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

Elimination of the structural ¢

. EI'I/ n

:|'| e A .
F)—AA\]‘F'FAI—AA’ " rea Iw/

: : s-cut > T En A

rr=an

... until all the remaining copies of the cut reach on their r.h.s. premisses
either an axiom or a logical rule creating the cut formula A, and then
become rules ax-cut or I-cut that we eliminate as previously.
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:n/

: : n

N / ’ .

: A, A
FTFAANNT, AF A Ly =/

rr' - A, A seut rrk-aa

... until all the remaining copies of the cut reach on their r.h.s. premisses
either an axiom or a logical rule creating the cut formula A, and then
become rules ax-cut or I-cut that we eliminate as previously.

If the last rule of n creates the cut formula A but not the last rule of n':
n o
reAA I, AF A
M F A, A

s-cut
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n

: : o
-1 ’ ’ .
: i F/FAI
FTFAANNT, AF A y = lw/rw
YN seut rrikaal

... until all the remaining copies of the cut reach on their r.h.s. premisses
either an axiom or a logical rule creating the cut formula A, and then
become rules ax-cut or I-cut that we eliminate as previously.

If the last rule of n creates the cut formula A but not the last rule of n':
n o
THFAAA [, AF A,
M F A, A

s-cut

then we symetrically make n’ climb up n’.
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Formal proof systems & logics Hilbert st st
Sequent calculus
Ve i

al d

Elimination of the structural cuts

At last, if none of the subproofs n,n’ creates the cut formula A:

:n .
r=AA I, Ak A
s-cut
rr'EA A
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Formal proof systems & logics

Elimination of the structural cuts

At last, if none of the subproofs n,n’ creates the cut formula A:
n n
FTEAA\ST, AR A
M FA, A

s-cut

we may

@ first make n climb up 1’ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A
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Formal proof systems & logics

Elimination of the structural cuts

At last, if none of the subproofs n,n’ creates the cut formula A:
n n
FEAAR T, AF Ay
M FA, A

s-cut
we may

@ first make n climb up 1’ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

@ and then make these cuts go up left until each of their copies
becomes an ax-cut or a /-cut.
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Formal proof systems & logics

Elimination of the structural cuts

At last, if none of the subproofs n,n’ creates the cut formula A:

:n .
r=AA I, Ak A
s-cut
rr'EA A

we may
@ first make n climb up 1’ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

@ and then make these cuts go up left until each of their copies
becomes an ax-cut or a /-cut.

or we may
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Formal proof systems & logics

Elimination of the structural cuts

At last, if none of the subproofs n,n’ creates the cut formula A:
n n
FEAAR T, AF Ay
M FA, A

s-cut
we may

@ first make n climb up 1’ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

@ and then make these cuts go up left until each of their copies
becomes an ax-cut or a /-cut.

or we may first make the cut go up left
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Formal proof systems & logics

Elimination of the structural cuts

At last, if none of the subproofs n,n’ creates the cut formula A:
n n
FTEAA\ST, AR A
M FA, A

s-cut
we may

@ first make n climb up 1’ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

@ and then make these cuts go up left until each of their copies
becomes an ax-cut or a /-cut.

or we may first make the cut go up left then right.
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Formal proof systems & logics

Elimination of the structural cuts

At last, if none of the subproofs n,n’ creates the cut formula A:
n n
FEAAXIT A Ay
M FA, A

s-cut
we may

@ first make n climb up 1’ until all the copies of the cut reach on their
r.h.s. premisses an axiom or a logical rule creating A

@ and then make these cuts go up left until each of their copies
becomes an ax-cut or a /-cut.

or we may first make the cut go up left then right.

THIS SINGLE CHOICE LEADS IN GENERAL
TO ESSENTIALLY DIFFERENT CUT FREE PROOFS.
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Formal proof systems & logics

ics

Natural deduction ND: the differences between LK and ND

In ND:

@ Only one formula on the r.h.s. of a sequent: r+ c.

@ No more logical left introduction rules, right elimination rules instead

rLABrC . - AAB I+ AAB
_ — A€ —F—— Ne
TANBEC NS replaced by the rules —— vand ——¢ 2

@ No explicit structural rule: the l.h.s. sides of the sequents are now
sets of labelled formulas r = {¢*,...,C"} ~> in binary rules such as
r-A-B T'FA

T T B —e (r,r ¥rur), contraction rules are implicitly

C\D'FA—B  C5D'FA
C, D', D F B -
@ No explicit cut rule: a cut is now just a (right) introduction rule
immediatly followed by a (right) elimination rule destroying the
created formula, that we still call cut formula.

performed, e.g. e.

rkA r'es . LARB
Eg. TI.'FAAB rFA—B ' 'FA
—_— Nep — e
rreA r,r'-B
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Formal proof systems & logics

ND rules

Only one axiom rule as in LK and still a lot of inference rules.

|. Axiom rule: A A
. Logical rules: rFA-B "EA rars i
- 08 : rr'es r-A-B '
I+ AAB I+ AAB r-A r-B .
Aep Ae SLELR. B LAY
TFA rrB TFAAB
I VxA rFA
—— Ve 7v"T
I+ Alt/x] M- VxA
recC

[11. Structural rule: Trrc

t Only if x does not occur free in .
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Formal proof systems & logics

Intuiti
5

But we just said: No structural rule in ND!

Well, in the more traditional formulation of ND with single formulas
(i.e. as for Hilbert style systems), there is no rule w.

But we chose the sequent formulation of ND in order to make it look
closer to LK.

Even in the sequent formulation of ND, rule w is not necessary
in case we adopt axiom rules of the form: r, A<+ A.

Nevertheless, ND is more natural when introducing additional
assumptions only at the point where they are required, e.g.

crc A CE C

reg instead of : (material implication)
AT E " ATEB
Trasg ! r-A-B '
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Formal proof systems & logics

Cuts & subformula property in ND

Since we consider ND with an explicit rule w, cuts are slightly more
complex than previously stated: rules w may occur between the
introduction rule and the elimination rule below.

rA+B r-A res .
i — A
rFA—B r,r’ +AAB
—_—w _— e e .
rr’'-A—B reA r,r',r' v+ AAB
—e —_— Ne
r,r,res r,r,reA

If there is no such cut in the proof, then every formula not in the last
sequent is either a subformula of a formula in the sequent just below
or a proper subformula of another formula in the proof.

~~ Every formula is a subformula of a formula in the last sequent.

Hence, subformula property holds for this definition of a cut.
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Formal proof systems & logics

Eliminating cuts in ND

In order to get rid of the rules w between the introduction rule
and the elimination rule of a cut, we can always commute them
with the elimination rule:

:n n .

rA B . ) r A+~ B ] n

rFA-B ., I TrA-B ' rra
rr'+-A—B A r,r'es

T —e ror w
r,r,r’vs rrireB

N n
reA kB, reA r'ee .

T.T'F AAB L FAnB
—w —_— #/\61
rr,r'+AnB ne rrir-A

LA ! rr.reA
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Formal proof systems & logics

Eliminating cuts in ND

It remains to eliminate the cuts as formerly defined:

I_I . . ’
. . . |
_LAars . s FAX.EB’\XJ F/')—A
rFA-B ' [MrA _  — -2 =
T B ¢ rre-s
-n - n
A r'ee . CCa
r,r'FAAB — =
A e rrrA
n o

MAFBAY A . .
Here, -'= - -5 =2 --"- does not denote an explicit rule s-cut with cut

formula 4 on the point to climb up its left premiss. It is a notation for
the proof obtained by removing every occurrence of A< in the proof n and
by plugging at once the proof N’ to every axiom rule [aA*]+ A of n.
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Formal proof systems & logics

Eliminating cuts in ND

2l -
. . e X X !
Recursive definition of JA P B Y A
rres
n’ oy
x x 4 def ’
*A*F*AF:\;/Z A = I'rA
|_| ) :I_I
o C n :
—_— o .
TATC A rra df Cw if 4,
rrec -
nl I-In C, nl n/ nn n/
NEGhEG :n hFGAYIEA  LECAYTEA
TEC__"Nrea & AN rra - AL TG
T~ {A}, T+ C F AT FC
otherwise
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Formal proof systems & logics
Se
Natural deduct
Intuiti
2

Eliminating cuts in ND

Church-Rosser Property (CR) If T — Iy and M — My (i.e. if a proof
I can be rewritten into proofs My and My, possibly M =My or N = My)
then there is a proof N’ such that My — M’ and My, — I,

~ If My and Ty are cut free then My = I5.

In other words, all the rewrite sequences may lead to a unique cut free
proof, called normal form of the proof I1.

A rewrite sequence leading to this cut free proof is called normalization of I1.

Strong Normalization Property (SN) Every rewrite sequence

MN—"nN; — My —MN3—--- is finite.

~ Every rewrite sequence leads to the normal form of 1.
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Formal proof systems & logics Hilbert s

ND is not classically complete

Unfortunately, ND does not prove every classically true formula. It is a
system for intuitionistic logic.

Every intuitionistically provable statement is classically provable but not
vice versa.

Eg. (A—-BVC(C)— (A— B)V(A— (C)is classically provable but not
intuitionistically.
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Formal proof systems & logics

Heyting semantics

A proof of AA B is an ordered pair (m, '), where 7 is a proof of A
and 7’ a proof of B.

@ A proof of AV B is either left m where 7 proves A or right ' where
7’ proves B.
@ A proof of A — B is a procedure! f which maps any proof 7 of A to

a proof f(r) of B.

A proof of —A is a procedure! f which maps any couple (7, B)
where 7 proves A to a proof of B.

o A proof of Vx A is a procedure’ f taking any individual t to a proof
f(t) of Alt/x].
@ A proof of Ix A is a couple (t,7) where t is an individual and 7 a

proof of A[t/x].

T By a procedure, we mean a constructive one.
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Formal proof systems & logics

The usual way to handle negation in intuitionistic logic

According to Heyting semantics:

@ A proof of —A is a procedure f which maps any couple (7, B) where
7 proves A to a proof of B.
@ A proof of A — B is a procedure f which maps any proof 7 of A to
a proof f(r) of B.
~» There is a formula L together with a procedure g which maps any
couple (7, A) where 7 proves L to a proof of A. Takee.g. L = P A =P,
where P is any formula.
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Formal proof systems & logics

The usual way to handle negation in intuitionistic logic

According to Heyting semantics:
@ A proof of —A is a procedure f which maps any couple (7, B) where
7 proves A to a proof of B.
@ A proof of A — B is a procedure f which maps any proof 7 of A to
a proof f(r) of B.
~» There is a formula L together with a procedure g which maps any
couple (7, A) where 7 proves L to a proof of A. Takee.g. L = P A =P,
where P is any formula.
~~ Proving =A amounts to proving A — L.
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Formal proof systems & logics

The usual way to handle negation in intuitionistic logic

According to Heyting semantics:

@ A proof of —A is a procedure f which maps any couple (7, B) where
7 proves A to a proof of B.
@ A proof of A — B is a procedure f which maps any proof 7 of A to
a proof f(r) of B.
~» There is a formula L together with a procedure g which maps any
couple (7, A) where 7 proves L to a proof of A. Takee.g. L = P A =P,
where P is any formula.
~~ Proving =A amounts to proving A — L.
In the intuitionistic systems, L is usually taken as a primitive instead of —.
The corresponding procedure g then has to be explicited by a formal rule,
called rule of intuitionistic absurdity, e.g. in ND:

re. .
TFA int.abs.
and —A then is just a notation:
SAZA L
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Formal proof systems & logics

Ways & means

Besides the classical and intuitionistic variants, we may play on the
expressivity of the logical language:

o We may quantify over the predicates just as we quantify over
the individuals
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Formal proof systems & logics Hilbert s stems

culus LK

Ways & means

Besides the classical and intuitionistic variants, we may play on the
expressivity of the logical language:

o We may quantify over the predicates just as we quantify over
the individuals: Let us add to the language predicate variables
X", YP Z9 ... of fixed arities n,p,q... (X(u1,...,u,) is now a
well formed formula; if n = 0 then X is a propositional variable
and a well formed formula on its own). Let us allow quantification
over these variables (e.g. VX(Vx X(x) — X(0)) is a well formed
formula).

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics Hilbert s stems

culus LK

Ways & means

Besides the classical and intuitionistic variants, we may play on the
expressivity of the logical language:

o We may quantify over the predicates just as we quantify over
the individuals: Let us add to the language predicate variables
X", YP Z9 ... of fixed arities n,p,q... (X(u1,...,u,) is now a
well formed formula; if n = 0 then X is a propositional variable
and a well formed formula on its own). Let us allow quantification
over these variables (e.g. VX(Vx X(x) — X(0)) is a well formed
formula).
~~ This yields 2"¢ order logic.
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culus LK

Ways & means

Besides the classical and intuitionistic variants, we may play on the
expressivity of the logical language:

o We may quantify over the predicates just as we quantify over
the individuals: Let us add to the language predicate variables
X", YP Z9 ... of fixed arities n,p,q... (X(u1,...,u,) is now a
well formed formula; if n = 0 then X is a propositional variable
and a well formed formula on its own). Let us allow quantification
over these variables (e.g. VX(Vx X(x) — X(0)) is a well formed
formula).
~~ This yields 2"¢ order logic.

e We may also restrict the 1% order language to a (still interesting)
minimum
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Formal proof systems & logics

Ways & means

Besides the classical and intuitionistic variants, we may play on the
expressivity of the logical language:

o We may quantify over the predicates just as we quantify over
the individuals: Let us add to the language predicate variables
X", YP Z9 ... of fixed arities n,p,q... (X(u1,...,u,) is now a
well formed formula; if n = 0 then X is a propositional variable
and a well formed formula on its own). Let us allow quantification
over these variables (e.g. VX(Vx X(x) — X(0)) is a well formed
formula).
~~ This yields 2"¢ order logic.

e We may also restrict the 1% order language to a (still interesting)
minimum: Allow only predicate symbols of arity 0 (i.e. propositional
symbols), no quantifier (since they are now meaningless) and only
the connective —.
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Formal proof systems & logics

Ways & means

Besides the classical and intuitionistic variants, we may play on the
expressivity of the logical language:

o We may quantify over the predicates just as we quantify over
the individuals: Let us add to the language predicate variables
X", YP Z9 ... of fixed arities n,p,q... (X(u1,...,u,) is now a
well formed formula; if n = 0 then X is a propositional variable
and a well formed formula on its own). Let us allow quantification
over these variables (e.g. VX(Vx X(x) — X(0)) is a well formed
formula).
~~ This yields 2"¢ order logic.

e We may also restrict the 1% order language to a (still interesting)
minimum: Allow only predicate symbols of arity 0 (i.e. propositional
symbols), no quantifier (since they are now meaningless) and only
the connective —.
~> This gives the minimal logic.
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Formal proof systems & logics
ilus LK
deduction ND

2 X 3 logics

Classical logic Intuitionistic logic

2" order logic

15t order logic

Minimal logic
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
In a 2" order logic formula: VX((A— B— X)— X).
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
In a 2" order logic formula: VX((A— B— X)— X).
Conversely, suppose that YX((A— B— X)— X). Then in particular for
X=AANB: (A-B—AANB)—AAB, hence AN B.
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
In a 2" order logic formula: VX((A— B— X)— X).

Conversely, suppose that YX((A— B— X)— X). Then in particular for
X=AANB: (A-B—AANB)—AAB, hence AN B.

~» A A B is naturally equivalent to VX((A— B— X)— X).
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Formal proof systems & logics

2 X 3 logics -

A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
In a 2" order logic formula: VX((A— B— X)— X).

Conversely, suppose that YX((A— B— X)— X). Then in particular for
X=AANB: (A-B—AANB)—AAB, hence AN B.

~» A A B is naturally equivalent to VX((A— B— X)— X).

Similarly, 1, AV B, 3z A and 3Z A are naturally and respectively
equivalent to VX X, VX((A— X)—(B— X)— X), YX(Vz(A— X)— X)
and VX(VZ(A— X)— X).
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Formal proof systems & logics

2 X 3 logics -

A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
In a 2" order logic formula: VX((A— B— X)— X).

Conversely, suppose that YX((A— B— X)— X). Then in particular for
X=AANB: (A-B—AANB)—AAB, hence AN B.

~» A A B is naturally equivalent to VX((A— B— X)— X).

Similarly, 1, AV B, 3z A and 3Z A are naturally and respectively
equivalent to VX X, VX((A— X)—(B— X)— X), YX(Vz(A— X)— X)
and VX(VZ(A— X)— X).

~ No need to have 1, A, Vv, 3 (1%t and 2" order versions) as primitives
in the definition of 2"¢ order classical logic.
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Formal proof systems & logics

2 X 3 logics -

A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
In a 2" order logic formula: VX((A— B— X)— X).

Conversely, suppose that YX((A— B— X)— X). Then in particular for
X=AANB: (A-B—AANB)—AAB, hence AN B.

~» A A B is naturally equivalent to VX((A— B— X)— X).

Similarly, 1, AV B, 3z A and 3Z A are naturally and respectively
equivalent to VX X, VX((A— X)—(B— X)— X), YX(Vz(A— X)— X)
and VX(VZ(A— X)— X).

~ No need to have 1, A, Vv, 3 (1%t and 2" order versions) as primitives
in the definition of 2"¢ order classical logic.

By “naturally”, we meant “from natural deductions”, i.e. intuitionistically.
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A nice feature of 2" order logic: Impredicativity

From A A B it follows that for all propositions X, if A— B— X then X.
In a 2" order logic formula: VX((A— B— X)— X).

Conversely, suppose that YX((A— B— X)— X). Then in particular for
X=AANB: (A-B—AANB)—AAB, hence AN B.

~» A A B is naturally equivalent to VX((A— B— X)— X).

Similarly, 1, AV B, 3z A and 3Z A are naturally and respectively
equivalent to VX X, VX((A— X)—(B— X)— X), YX(Vz(A— X)— X)
and VX(VZ(A— X)— X).

~ No need to have 1, A, Vv, 3 (1%t and 2" order versions) as primitives
in the definition of 2"¢ order classical logic.

By “naturally”, we meant “from natural deductions”, i.e. intuitionistically.
~~ No need to have primitives L, A, V, 3 in the definition of 2" order
intuitionistic logic either.
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity (continued)

Leibniz Principle: “From an equality t = u, it follows that t can be
replaced by u in every statement without changing its meaning.”
Hence if t = u then VX (X(t) — X(u)).
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity (continued)

Leibniz Principle: “From an equality t = u, it follows that t can be
replaced by u in every statement without changing its meaning.”
Hence if t = u then VX (X(t) — X(u)).

Conversely, suppose that VX (X(t) — X(u)). Then in particular for
X(-)=(t= "), wehave: t=t—t =u, hence t = u.
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity (continued)

Leibniz Principle: “From an equality t = u, it follows that t can be
replaced by u in every statement without changing its meaning.”
Hence if t = u then VX (X(t) — X(u)).

Conversely, suppose that VX (X(t) — X(u)). Then in particular for
X(-)=(t= "), wehave: t=t—t =u, hence t = u.

~ No need to add a predicate symbol for equality in 2" order
(intuitionistic or classical) logic, we only have to adopt the notation:

(t=u) = VX (X(t) = X(u)).
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity (continued)

Leibniz Principle: “From an equality t = u, it follows that t can be
replaced by u in every statement without changing its meaning.”
Hence if t = u then VX (X(t) — X(u)).

Conversely, suppose that VX (X(t) — X(u)). Then in particular for
X(-)=(t= "), wehave: t=t—t =u, hence t = u.

~ No need to add a predicate symbol for equality in 2" order
(intuitionistic or classical) logic, we only have to adopt the notation:

(t=u) = VX (X(t) = X(u)).
Induction Principle: “If u is an integer, then X(u) holds for every

statement X such that Vz (X(x) — X(sx)) and X(0)."
Hence if u € N, then VX (Vz (X(x) — X(sx)) — X(0) — X(u)).
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity (continued)

Leibniz Principle: “From an equality t = u, it follows that t can be

replaced by u in every statement without changing its meaning.”

Hence if t = u then VX (X(t) — X(u)).

Conversely, suppose that VX (X(t) — X(u)). Then in particular for

X(-)=(t= "), wehave: t=t—t =u, hence t = u.

~ No need to add a predicate symbol for equality in 2" order

(intuitionistic or classical) logic, we only have to adopt the notation:
(t =u) E VX (X(t) — X(v)).

Induction Principle: “If u is an integer, then X(u) holds for every

statement X such that Vz (X(x) — X(sx)) and X(0)."

Hence if u € N, then VX (Vz (X(x) — X(sx)) — X(0) — X(u)).

Conversely, suppose the latter. Then in particular for X(-) =

Vz(zeN — szeN) - 0eN — ueN, hence ueN.

-eN:
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Formal proof systems & logics

A nice feature of 2" order logic: Impredicativity (continued)

Leibniz Principle: “From an equality t = u, it follows that t can be

replaced by u in every statement without changing its meaning.”

Hence if t = u then VX (X(t) — X(u)).

Conversely, suppose that VX (X(t) — X(u)). Then in particular for

X(-)=(t= "), wehave: t=t—t =u, hence t = u.

~ No need to add a predicate symbol for equality in 2" order

(intuitionistic or classical) logic, we only have to adopt the notation:
(t =u) E VX (X(t) — X(v)).

Induction Principle: “If u is an integer, then X(u) holds for every

statement X such that Vz (X(x) — X(sx)) and X(0)."

Hence if u € N, then VX (Vz (X(x) — X(sx)) — X(0) — X(u)).

Conversely, suppose the latter. Then in particular for X(-) =

Vz(zeN — szeN) — 0eN — ueN, hence ueN.

~+ No need to add a predicate symbol for N in 2" order (intuitionistic or

classical) logic, we only have to adopt the notation:

N(u) £ VX (Vz (X(x) — X(sx)) — X(0) — X(u)).

-eN:



Formal proof systems & logics Hilbert s stems

culus LK
\[5}

Just 2 x 2 logics to come!

Although our concern would rather be 15t order logic, in the rest of
this course, we will only consider:

@ 2" order logic, just because it has a lighter syntax. Its formulas
are indeed generated by: A = X(uy,...,up) | A— A | Vx A } VX A
hence only 3 x 2 logical rules in LK or ND.

@ Minimal logic, because it is the kernel of all proof — program

systems. Once this kernel is extended to classical logic, full logic
follows straightfowardly.
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Formal proof systems & logics

2 X 3 logics -

Formal definition of 2" order ND:
Formulas & predicate substitution

Individual terms: as usual from individual variables and function symbols.
Formulas: A = X(u1,...,un)! |A— A|VxA|VX A

Definition of A[F/X(xi,...,x,)]* (A[F/XX] for short):
o X(uy,...,un)[F/XX] = Flui/x1,- -, Un/Xn]
o (A— B)[F/XX] = A[F/XX] — B[F/XX]
o (Vz A)[F/XX]=Vz A[F/XX]
o (VZ A)F/XX]=VZA[F/XX]

 For any 2" order variable X of arity n.

¥ This notation [F/X(x1, ..., xa)] binds the free occurences of x1, ..., x, in the formula F.
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Formal proof systems & logics

Formal definition of 2" order ND: Rules

I. Axiom rule: A EA
Il Logical rules: rFA=B 'rA nAFB
. . —_— —
€ rrrB T-A-B
- VxA r-A
—— Ve ——— it
rF Alt/x] FFVxA
revxa rea
I E A[FR/XX] rEvxA Vi
rec

I11. Structural rule: Trrc

 Only if x does not occur free in T.

¥ Only if X does not occur free in T
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Formal proof systems & logics

ural deduction ND
Intuitionisti i
2 X 3 logi

Formal definition of 2" order ND: Normalization steps

rl . . ’
X . . n
o _LAFBE :m rAX-knBA\XJ M EA
TFASB ' T'FA _, —> - - ==
rrrB rr'rB

where the right hand side is defined as previously.

n ,
@ TFA . SNle/x]
TEYxA | — TF At/
TF Alt/x]

where MM[t/x] denotes the proof obtained by replacing every free
occurrence of x by t in I1.

:n _
° r-A ) M[F/XX]
rEvxA ' —> Tk AF/XR]
I - A[F/XX]

where M[F/XX] denotes the proof obtained by replacing every
formula C by C[F/XX] in .
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Formal proof systems & logics

Formal definition of minimal ND:

In the same way with no rule about quantifiers and no 1% order.
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Formal proof systems & logics

nisi
2 X 3 logics

2" order & minimal classical logics

We have just given in terms of ND a definition of 2"¢ order & minimal
intuitionistic logics.

A lazy way to extend them to classical logics is to add to them Peirce
Law as an extra axiom scheme:
F(A—-B)—A) — A

~> It then allows to prove every classical statement in both logics,
... but it also ruins the normalization procedure!
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Formal proof systems & logics

A few words about Peirce Law ((A— B) — A) — A

Peirce Law may look obscure at first sight. It is actually an adaptation of
the classical reductio ad absurdum ——A — A (i.e. (A— 1) — 1) — A)
to minimal logic where the rule of intuitionistic absurdity does not apply
and where L may just be used as any other propositional symbol:

@ Reductio ad absurdum is first modified into the intuitionistically
equivalent formula ((A — 1) — A) — A.

@ In this way, we now may replace the remaining occurrence of L
by any proposition B without loosing the classical validity! of the
formula: (A— B) — A) — A

Therefore, Peirce Law is just a tricky generalization of the reductio ad
absurdum principle expressible in the poorer language of minimal logic.

T Without the first modification, we would get the formula (A — B) — 1) — A
which is not classically valid because we must view L as any propositional symbol
whereas ((A — B) — C) — A is not a tautology.

Thierry Joly Extracting programs from classical proofs



Formal proof systems & logics Hilbert style systems
A\-calculus Sequent calculus LK
ability Natural deduction ND
Iculus Intuitionistic logic
2 X 3 logics

Exercise 1: Extending minimal intuitionistic logic to
minimal classical logic

Another way to extend minimal intuitionistic logic to minimal classical logic is to adapt
the excluded middle principle (instead of reductio ad absurdum yielding Peirce Law).
First give the excluded middle principle the following form: (C — A) — (-C — A) — A
(“if we proved A from the assumption C and then from the assumption —C, then we
really proved A from no assumption at all”), then replace the unique occurrence of L
by any proposition B:

(C—=A)—=(C—-B)—A)—A (mEM)

The goal of this exercise is to show that this axiom scheme yields the same as Peirce Law.

1. Write down all the rules of ND for minimal intuitionistic logic.
Call mND this proof system.

2. Give a formal proof of Peirce Law in mND+(mEM), i.e. mND with
the additional axiom scheme: + (C — A) — ((C — B) — A) — A.

3. Give a formal proof in mND of the formula:
((A=B)—=A) —-A) —>(C—A)—-((C—B)— A — A

4. Show that every formula of minimal logic is provable in mMND-+(mEM)

iff it is provable in mND-(Peirce Law).



A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

o A I+ A w
r,re A
r, A+ B , r- A-B T['F A
—_— 7 —€
re A—B rLrre B
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

A CA MW
X e A
r, A+ B ) r- A—B ['F A
—_— 7 —€
re A=B rr e B
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

A A _re A
X e A
r, AFt:B ) r- A—B ['F A
—_———————— r—i ; —e
re A=B rr e B
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

A CA MW
X '~ A
r, AFt:B ) r- A—B ['F A
—_— s 7 —€
TFAxt:A>B rr e B
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A-calculus From ND to A-calculus
ilus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

r- A

X . —_— W
AEx:A '~ A

r,b A%+t:B . rct:A—B Mru:A

—_— s 7 —€

N-XAxt:A—B r,re B
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

A x: A MW
X - A
r,b A%+t:B . rct:A—B Mru:A
—_— s 7 —€
r-Xxt:A—B r,r'e(tw):B
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

A A Fr=t: A
X LMt A
r, A%+t:B . rct:A—B Mru:A
—_— s 7 —€
r-Xxt:A—B r,r'e(tw):B
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

A A Fr=t: A
X LMt A
r, A%+t:B . rct:A—B Mru:A
—_— s 7 —€
r-Xxt:A—B r,r'e(tw):B

The term t is called A-term extracted from the proof.
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

A A Fr=t: A
X LMt A
r, A%+t:B . rct:A—B Mru:A
—_— s 7 —€
r-Xxt:A—B r,r'e(tw):B

The term t is called A-term extracted from the proof.

Let us note the l.Lh.s. T = AP, ..., A% of the sequents in the same way:
M=xy:A1,..., %y Aps.
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

Ak A Fr=t: A
x: X rr-t:A
MNx:AkFt:B . r-t:A—B Mru:A
—_— s 7 —€
r-Xxt:A—B r,r'e(tw):B

The term t is called A-term extracted from the proof.

Let us note the l.Lh.s. T = AP, ..., A% of the sequents in the same way:
M=xy:A1,..., %y Aps.
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A-calculus From ND to A-calculus

A stenography of the proofs

Proof in minimal ND of conclusion T A ~~ Tk t: A, where t encodes
the complete structure of the proof (order of the inferences rules, places
of the abstracted assumptions), but not its formulas.

Ak A Fr=t: A
x: X rr-t:A
MNx:AkFt:B . r-t:A—B Mru:A
—_— s 7 —€
r-Xxt:A—B r,r'e(tw):B

The term t is called A-term extracted from the proof.
Let us note the l.Lh.s. T = AP, ..., A% of the sequents in the same way:
N=x1:A1,...,x,: A, T isthen called context of the A-term t.
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A-calculus From ND to A-calculus

The effect of normalisation on the \-terms

n

. . . Z|-|/
Ix:AFB n FX-AI-FIBW M A
Recall that FEA—=B T'FA — —= -~ 7=- -~
rr'eB ’
n n

If say Fx:Ake:B and [+ u:A, let t[x:i—u] denote the A-term of the r.h.s.:

n n
Mx:AFt:BARY I+ u:A

I Ftx:=u:B
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A-calculus From ND to A-calculus

The effect of normalisation on the \-terms

:|—|/ .
. n
: LAY : def ’
x4 ':F/X*,_A;[;,:u]riAt LA = A hence x[x:=u] = u
:n/ I—I

n :
TrFt:C XY I u:A E reecC H . L g
L te—dic = RPRc if x:A¢T, hence t{x:=u] =t if x¢t

and otherwise:

o n -
Mx:Az:CkHt:D n’ def Mx:Az:CHt:DXJT' - u:A hence
of 2 hf - N T
rz:C,I"F tlx:=u]:D (/\Zt)[XZ:U]

TxiAE Az CoD AT EuwA —
rr'EAzt)x:=u:C—D I FXz(tlx:=u]):C—D :Az(t[x;: u])

M M o ' T -
MEtCoD REt:C N0 TEeCoDAYMEwA LR CNY T FwA
Mox:AEtt :CRIT Fu:A — Ti~{x:AL T’ F t[x:=u]:C—D DN{x:AL T+ t'[x:=u]: C

B 7|'TFTF7(1.Tt/)7[x:7:;] c I tx=u] t'[x:=u]: C

hence (tt')[x:=u] = t[x:=u] t'[x:=u]
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A-calculus From ND to A-calculus

The effect of normalisation on the \-terms

Summing up:
o x[x:=ul=u
o tlx:=u]l=t, ifx¢t
o (Azt)[x:=u] = Az (t[x:=u])
o (tt')[x:=u] = t[x:=u] t'[x:=u]
~ t[x:=u] is just the A-term t after replacing x by u!
o . n n
Lx:Abt:B n FxAEBAY M- uA

TEMEASB  MEwA — =20 = =2
I, - (xt)u:B LI Ftix=u:B

~» The normalization corresponds to a sequence of rewritings of the form:
(M t)u —g t[x:=u]

which are called (-reductions.
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A-calculus From ND to A-calculus

Summing up

A-terms:
t = x (variable) | Ax t (abstraction) | tt (application)
Precedence: application > A\

Reduction rule:
(Ax t)u —p t[x:=u]

By this single line, we actually mean that t; —g t» whenever t; is
obtained by replacing a subterm of t; of the form (Ax t)u (corresponding
to a subproof ending with a cut) by t[x:=u].

—»5 = reflexive & transitive closure of — .
=3 £ equivalence relation generated by —»3.
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Formal proof systems & ||
From ND to A-calculus
A-calculus
Combinatory logic

Exercise 2

Write down the A-term extracted from the proof in minimal ND of
(A=B)—=A) = A) = (C—-A) = (C—B)—A) —A

obtained at question 3 of Exercise 1 and normalize it (in case it is not
already a normal A-term).
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A-calculus

The untyped A-calculus on its own

A-calculus (Church, 1932) was already living its own life before ND was
invented by Gentzen in 1934!

A-calculus was first conceived as a formal system about functions.

@ not functions in the so called Dedekind style ( = defined by an
arbitrary set theoretical graph): extensional point of view

@ but functions as something that can be computed accordingly to
some algorithm: intensional point of view.
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A-calculus

The untyped A-calculus as a naive function theory
(v. naive set theory)

Just as in set theory every object is a set (of sets!), every A-term denotes
some function ... to be applied to other functions!
Examples:

o 1Y Ax x, a universal identity function: |F =g F for all F.

e B = \fAg)x f(gx), a universal composition function:

BF G =5 FoG = M\ F(Gx)
o i = MAx f(f(...(fx))) ( = MAx f"x for short), iterating n times:
———

n

nF =g Fo---oF.

n
7 is the natural incarnation of the numeral n within A-calculus and is
called a Church numeral.
Every recursive function f : N* — N can be represented by a A-term F:
for all ni,...,nk, we have Fay... 0 =g f(n1,...,nk) (iff f(ng,..., nk)
is defined, of course).
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A-calculus

Some extensionality in untyped A-calculus

The following infinitary inference rule (expressing some purely syntactical

extensionality):
) Yu tu=tu = t=1t

is actually equivalent to the axiom scheme:
Axtx =t where x ¢ t.
This leads to the following definitions.

Reduction rule:
AX X =y t only if x ¢ t.
(By the latter, we mean as for —g that t; —y, to whenever t, is obtained
by replacing a subterm of t; of the form Ax tx by t.)
def

—pn = —g U —=y.

—» 5, < reflexive & transitive closure of —p,.

=gy “ equivalence relation generated by —»g,,.
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A-calculus From ND to

About properties of untyped A-calculus

CR Property If t —» 4, t1 and t — 3, t> then there is t’ such that
tr =) £ and t =) ¢

. But we have no SN Property for the untyped A-calculus:

(Axxx)(Ax xx) =g (Axxx)(Ax xx) —g ...

This term endlessly rewriting into itself is the A-equivalent of Russell’s
paradox (about the set of the x's such that x ¢ x: does it belong to
itself?).
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A-calculus From ND to A-calculus
A-calculus
Combinatol

Back to logic: Typing derivation systems (minimal logic)

Typing rules:
Alx: A _rec
XA rr'+c
Nx:AFt: B i rt:A—=B IMFu:A
— —e
r-Axt:A—B rr'etu:B

SN Property If It : A can be derived from the above typing rules
then every reduction sequence t — g, t1 —gy, to —gy ... is finite.

Subject reduction Property If '+ t: A is derivable from the above
typing rules and t —»g, t' then I' -t : A'is also derivable.
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A-calculus

Back to logic: Typing derivation systems (2" order logic)

Typing rules: fc
x:AFx: A rrrc
Mx:Abt:B - Trt:A=B ThutA |
TFixt:A—B rr'+tu:B
rEt: A vit FEt:VxA
TEe:vxA V' MEt:Afu/x]
reeA MEciVXA
THt:VXA TFt: A[F/XR]

T only if x (resp. X) ¢ T

SN Property If It : A can be derived from the above typing rules
then every reduction sequence t — g, t1 —gy, to —gy ... is finite.

Subject reduction Property If '+ t: A is derivable from the above
typing rules and t —5 t' then [t : A is also derivable.
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A-calculus From ND to A-calculus
A-calculus
Combinatory logic

... \-calculus had itself an elder brother!

In the early 20's, Shonfinkel had already conceived Combinatory Logic
(CL for short), a calculus close to A-calculus where two constants K, S
play the role of the abstractor A.

Syntax of CL:
t=x| K|S |t

Reduction rules:
Ktu — t
Stuv — tv(uv)

As usual, t; — t, means that t, is obtained by replacing a subterm of t;

of the form of the L.h.s. of a rule by its r.h.s. and —» is the reflexive &
transitive closure of —.

An applicative combination of say uy,...,u, isatermt = uy ‘ ‘ up ‘ tt

Combinatorial completeness For every applicative combination t of
X1,...,Xn, there is a closed term C of CL (i.e. an applicative combination
of K, S) such that:

Cxy...xy — t
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A-calculus From ND to A-calculus
A-calculus
Combinatory logic

Correspondence: CL < A-calculus

The constants K, S with their reduction rules Kxy — x, Sxyz — xz(yz)
are naturally played by the A-terms:

K £ Ax)\y x S = AxAydz xz(yz)
If t — v in CL, then t[K:=K,5:=S] —3 u[K:=K,5:=S8] in A-calculus.

There is a converse translation —— of A-calculus into CL inductively
given by:
o {x} =x
o {tu} = {t}{u}
o {\xt} = Xx{t}
where for any term t of CL, X'x t is defined by an inner induction as:
o Xxx = SKK
o Xxt=Kt if x¢t
@ Xxtu= S(Nxt)(Nxu)

Proposition For every A-term t: {t}[K:=K,5:=S] —3 t.



Formal proc tems & logics
A-calculus From ND to A-calculus
bility A-calculus
Combinatory logic

Exercise 3

Prove the Proposition of the previous slide.
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A-calculus From ND to A-calculus
A-calculus
Combinatory logic

Curry-Howard correspondence

Since A-calculus was invented before ND, it had to be noticed that the
former could have been extracted from the latter as we did here.

Historically, this was remarked in the 50's by H. Curry who was studying
CL, which actually is the computional counterpart of a Hilbert style
system for intuitionistic minimal logic.

Computational systems Formal proof systems
CL Hilbert style system
application Modus Ponens inference rule
constants K, S axioms A—B—A, (A—>B—C)—(A—B)—A—C
term SKK of CL proof of A— A from the just above axioms
closed A-terms K, S proofs of the same axioms in ND
A-abstraction —-introduction rule of ND
A-calculus ND
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Formal proof system:
From ND to A-calculus
A-calculus
Classical A-calculus Combinatory logic

Exercise 4

Justify the 7 line table of the previous slide. The explanations can be
totally inexistent for lines 2, 6 and 7 of the table (which have already
been treated here) but should be accurate about the other lines.

In particular:

e A typing derivation system for CL (and minimal logic) should be
described to justify line 1 (about CL & Hilbert style) and used to
justify line 4 (about the term SKK).

e Line 5 should be justified by typing the closed A-terms K, S with
their corresponding formulas as types in the minimal logic typing
derivation system.
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Realizability Rlato

The platonician world

U = "mathematical universe” which may contain anything:
integers, rational numbers, ordinals, trees (~ lists, matrices ...) ...
We may only access to U through 1% order syntax:

@ constants & function symbols to denote its elements,
@ equations between individual terms to give the intended meaning of
these symbols.
In general these function symbols denote partial functions
~» some individual terms are meaningless.

Very simple example:

@ 1% order symbols: 0, s (successor), p (predecessor), +, —, . and L.
@ equations:
x+0=x x—0=x
psx =x | x+sy =s(x+y) x —sy =p(x—y) x.0=0 0! = s0
spx =x | (x+y)+z=x+(y+2z) |(x+y)—z=x+(y—2z) | x.sy = x.y + x | x! = x.(px)!
X+y=y+x x—x=0

The meaningful terms denote the elements of Z.
E.g. the term (p0)! is meaningless.
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Realizability

The platonician world: Formally

L: set of function symbols (of fixed arities > 0).
&: set of equations built from £ and variables.
~» C: set of the closed terms built from L.
~» ~: equivalence relation on C generated by:
@ t ~ u whenever t = u is an equation of £ in which every variable
has been replaced by a closed term of C.

@ ty~uy, ... th~uy, = f(t1,...,t0) ~ f(u,...,u,) for every
function symbol f € L of arity n.
~U=C) .

As usual, we represent the elements of U by anyone of their terms.
U is obviously interesting only if it does not collapse into a single class.

The same very simple example, formally:

o L={0,s,p,+,—, ., !}

@ &: the same set of equation as previously given.
~~ U is an abelian group containing Z with two additional complex
operations ., !. Multiplication is well defined on Z, but does not even
make U a ring because 0.(pp0)! # 0 in U.
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Realizability

The platonician world considered in the rest of this lecture

L contains at least the function symbols of the previous very simple
example and a function symbol for every (possibly partial) recursive
function (on the positive integers).

& contains at least the equations of the previous very simple example and
equations defining every recursive function (in a sensible way, i.e. such

that we do not get sX0 ~ s"0 for some k # n).

Every element s"0 of U will simply be denoted by n.
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Realizability

Realizability semantics

Notations:
A = set of the A-terms, P3(A) = set of the parts of A closed under =g.

Forall K,L€ Ps(N), K—=LE{tcN; Yue K tucl}ecPsN).

Every 2" order formula is going to be interpreted by an element of P3(A).
For convenience in the definition of this interpretation, for every map

P € P3(A)*" (n > 0) we add to the language a predicate symbol of

arity n that we denote the same.

Every closed 2" order formula A built from these predicate symbols
and the individual terms in C then is interpreted by a set |A| € P3(A)
as follows:

o |P(d)| = P(&) for every P € Ps(A)"
° |[A— B[ =|Al—|B|

o [VxAl = Nyeu IAlu/X]]

o VX" Al = Npepyaper JAIX = P|
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Realizability

Data correctness

Recall that N(u) = VX (Vz(X(z) — X(sz)) — X(0) — X(u)).

Correctness of numerical data |If for any t € A and u € C:
t € [N(u)|, then there is n € N such that u=nin U and t =g, 7

Proof Let P € P3(A)¥ be defined by: r € P(n) & r =5 f"x and
P(w) = & for every w € U ~ N.
Forall w e U: ¥r € |P(w)| fr € |P(sw)| ~> f € |P(w) — P(sw)|
~> f e |Vz(P(z) — P(sz))|.
By assumption: t € |Vz(P(z) — P(sz)) — (P(0) — P(u))|
~~ tf € |[P(0) — P(u)|. Moreover x € |P(0)],
~ tfx € |P(u)].
~~> By definition of P, there is n such that u=nin U and tfx =5 f"x
Myt =y M tf =, MAxthx =g MfAx f"x =1.
O
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Realizability

Substitutions

Let us call (2" order formula) closure an application - mapping

@ every individual variable x to some closed individual term X € C
e every predicate variable X of arity say n to some X € Ps3(A) ur
For every 2" order formula A, A then denotes the closed formula
obtained by substituting x for every free individual variable x of A
and X for every free predicate variable X.

Substitution lemma For any closure -, all P € P;(A)¥” defined by
P(d) = |F[i/X]| where F is any 2" order formula, then

|A[F/X>?]| = |A[X::P]]

Proof By a straightforward induction on the 2" order formula A. [
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Platonician world

Realizability A world at work

The engine

Typing rules:
r-t: A

x:AEx: A ' Ee:A
Nx:AFt: B i r-t:A—=B IMFu:A e
- xt:A-B ' rrrw:B

rEt:A " r-t:VxA Ve
TFe:vxA " M=t Alu/x]

r-t: A " r-t:vxXA Ve
TFe.vXA 7 TFt: AF/XZ]

T only if x (resp. X) ¢ I

Adequacy lemma For any closure - and all t € |G

,...,t,,e\f,,\:

x1:Cye oy xn: G A = txii=t, . X0 =t,,] € ’Z‘
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Formal proof systems &
A~ e

Real Platonician world

A world at work

Exercise 5

Prove the adequacy lemma of the previous slide by assuming
the substitution lemma of the last but one slide.
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Realizability

Program correctness

Adequacy lemma (weak form) For every closed formula A:
Ft:A = telA

Correctness of numerical data (recall) If forany t € A and u € C:

t € [N(u)|, then there is k € N such that u =k in U and t =g, k

Correctness of the programs int — int

If t:Vx(N(x) — N(f(x))) then for all n € N: t7h =g, f(n).
Proof For all ne€ N, F7: N(n). Moreover -t : N(n) — N(f(n)),
hence  t7a: N(f(n)) ~~ by the adequacy lemma: t7 € |[N(f(n))|
~~ by the correctness of data, there is k € N such that f(n) = k in U
and t7 =g, k. 0

Thierry Joly Extracting programs from classical proofs



Realizability

Executing the programs

Undeterministic execution of the programs
If Ft:Vx(N(x)— N(f(x))) then for all n € N:

@ Program halting. Every rewrite sequence tNn —g, U1 —gy Uz — gy
ultimately stops at a A-term that can no more be rewritten, i.e. a
(Bn-normal A-term r.

@ Result correctness. This A-term r is the result of execution: r = f(n)
(except in case f(n) = 1 where we then have r =1).

Proof The halting property is just SN property applied to + t7 : N(f(n)).
By the correctness of the program: f(n) =g, t 7 =g, r. Therefore by CR

property r is the Bn-normal form of f(n), i.e. the A-term f(n) itself
(except for f(n) = 1 which has the Sn-normal form I).

O
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Realizability

But how to prove Vx (N(x) — N(f(x)))?

Let us call instance of an equation u; = up € £ an equation iy = i
where {i; denotes the term obtained from u; by replacing its variables x
with fixed (possibly open) terms % € C.

For every instance ii; = iip of some u; = up € € and every closure o we
have {1 = @i in U, hence |A[dy/x]| = |A[d2/x]|. It follows that we may
add to the typing system (and we do!) the derivation rules:

I t:Aldy/x] Ik t:Aldz/x]

for any instance ii; = il of some uy=u, € £.
TFtAlGa/x] T F t:A[di/x] y 1= 1=

Equality can also be used within the formulas. Indeed, its usual axioms:
reflexivity, symetry, transitivity and t = u — A[t/x] — A[u/x] are obtained
at once in the system from the definition (t = u) = VX (X(t) — X(uv)).

In the same way, the induction principle comes at once from the
definition N(u) = VX (Vz(X(z) — X(sz)) — X(0) — X(uv)).
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Platonician world
A world at work

Exercise 6

1. Derive the typings:
F Succ : Vx (N(x) — N(sx))
FAdd : VxVy (N(x) — N(y) — N(x+y))

where Succ = AxAfAz xf(fz) and Add = AxAyAfAz xf(yfz)
with the help of the two derivation rules of the previous slide
and the set £ of equations of the “very simple example”.

2. Check without the help of realizability semantics that for all
neN,peN:
Succn —g n+1

Add7ip —»5 nFp
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus

Before defining a A-calculus out of ND (as we did previously),
adding to ND a minimal stuff from LK to get classical logic
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Before defining a A-calculus out of ND (as we did previously),
adding to ND a minimal stuff from LK to get classical logic,
i.e. to get a proof of Peirce Law.

AFA
—_— W
AFB, A
- r—
In LK: FA—B, A AFA
(A—=B)—AF A
F(A—-B)—A)—A

—
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sical A-calculus

Classical A-calculus

3 Big Problems

(D A fundamental one: How to carry computations? i.e. how to
normalize?

@ A technical one: How to know the active formula of a sequent,
i.e. the formula used in the next rule? E.g. if t expresses a proof of
At B, C, the assumption A being represented by the variable x,
does Ax t represent a proof of H A— B, C or a proof of - B,A— C?

@ A semantical one: If the A-terms no longer express a proof of a
well-defined active formula, what do they mean?
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In search of a classical A-calculus
C lity

. mbinatory logic
Classical A-calculus =

(D) How to normalize this?

AFA
—
AF B, A
—_——— '—
FA=B, A AF A
(A-B)-AFA - n
r—
F((A—=B)—A)—A r-(A—B)—A
_
T-A €
AEA
— " rw
AFB, A
- r—
FA—B, A AFA
A |— .
(A—=B)—AFA N
r—
= ((A—>B)—>A)—>A AT = (A—>B)—)A
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In search of a classical A-calculus
C al r bility

Classical A-calculus | dial
diz

(D) Normalizing with explicit cut rules (~~ small steps)

AFA

AF B, A
FA—-B, A AFA

(A—>B)— AL A n
F(A—-B)—A)—A TF(A-B)—A

r-A
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In search of a classical A-calculus
C al r bility

Al A
AL B, A _AFA
FA—-B, A AFA AFB A
— . -
. . A n FA—B, A AL A
(A—=B)—AFA -n )
. F)—(A—>B)—>A (A—)B)—>A)—A
F((A—-B)—A)—A T+ (A—-B)—A T s-cut

r-A
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In search of a classical A-calculus
C al r bility

Classical A-calculus

(D) Normalizing with explicit cut rules (~~ small steps)

Al A
AL B, A _AFA
FA—-B, A AFA AFB A
— . -
. . A n FA—B, A AL A
(A—=B)—AFA -n )
. F)—(A—>B)—>A ) (A—)B)—>A)—A
F((A—-B)—A)—A T+ (A—-B)—A A s-cut

r-A
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In search of a classical A-calculus
C al r bility

Classical A-calculus

(D) Normalizing with explicit cut rules (~~ small steps)

Al A
AL B, A _AFA
FA—-B, A AFA AFB A
— . -
. . A n FA—B, A AL A
(A—=B)—AFA -n )
. F)—(A—>B)—>A ) (A—)B)—>A)—A
F((A—-B)—A)—A T+ (A—-B)—A A s-cut
r-A
) A A
-n’ A B, A
" A—=BFA FA—-B, A AFA
F’)—(AHB)HA (A—=B)—AFA
" I-cut
reA
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In search of a classical A-calculus
C al r bility

Classical A-calculus

(D) Normalizing with explicit cut rules (~~ small steps)

Ak A
AL B, A _AFA
FA-B, A AFA AFB A
— B, . S —
. A n FA=B, A AFA
(A=B)—AF A n :
. r)—(A—>B)—>A’\_j (A—)B)—>A)—A
F((A—-B)—A)—A T+ (A—-B)—A A s-cut
A
_ AFA
n AFB, A _ArA _, o
MLAZBEA  FAZBA APA A9 % M A-BFA
M F(A=B)—A (ASB)—AF A —-=7 77 s-cut
I-cut re=A
rFA
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(D) Normalizing with explicit cut rules (~~ small steps)

Ak A
o AV B A _AbA -
M. A—BH-A FASB A AFA Ay _ACB A , -
M F(A—B)—A (A-B)—AlF A FA=B A LAZBRA o
I-cut A

reA
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(D) Normalizing with explicit cut rules (~~ small steps)

AF A
" A B A _Ara .
M. A—BH-A FASB A AFA Ay _ACBA , -
M F(A—B)—A (A-B)—AlF A FA-BANS TLAZBEA

y I-cut reA
MNeA
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(D) Normalizing with explicit cut rules (~~ small steps)

. _AFA
- Arb A B A o
M, A-BF A FASBA ARA o~y D f o
FA—B, A
M F(A—B)—A (A-B)—AlF A —BANS T, A s-cut
I-cut reA
M FA
A A ny ny
—_— W
AF B, A M FA . BrA
FASB, A " A=BF A
77 I-cut
A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(D) Normalizing with explicit cut rules (~~ small steps)

. _AFA
- Arb A B A o
M, A-BF A FASBA ARA o~y D f o
FA—B, A
M F(A—B)—A (A-B)—AlF A —BANS T, A s-cut
I-cut A
M FA
AFA ny ny )
AF B, A - A " BrA ~~> Y
FASB, A " A=BF A M A
77 I-cut
A
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In search of a classical A-calculus
C al r bility

Classical A-calculus

(2) How to manage active formulas?

The active formula in a premiss of a logical rule is the formula used to

build the new formula in the conclusion. Classical A-terms will have to

keep track of them in order to make the difference between e.g.
FA—B, A AFA FASB, A  AFA

/ n
(A=B)—aAra ' @ d ASAFA =

In ND, this new formula is at the same time the active formula relatively
to the next rule, because it is always the (unique) right hand side formula:

TFA-B  T'FA AFB

—e

rreB TFA-B

—i

In LK, the active formula may change from a rule to the next one:

re——— e d
FA—-B, A Ak A

—

(A—=B)—AFA
F(A—-B)—A)—A
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sical A-calculus

Classical A-calculus

(2) Changing the active formula

Warning From now on, the difference between active formulas A and
normal ones A becomes a formal feature of the syntax of the sequents:
A AL, ..., A, (other notations: TH A Ay, ..., Ay, THEA AL ..., An)

It is natural to consider that the cut formula of a cut rule is the active
formula of both premisses and that the conclusion has no active formula:
reAA T AEA
rreaA
Together with axiom rules having their active formula on the right hand
side: A+ A or on the left hand side: A+ A («— used in Peirce Law proof),
this yields a way to unselect the active formula:

cut

AFA  TAFA FTEAA  AFA
— rAra ~ rraa ™

Peirce Law proof requires the selection of new active formulas on the

right hand side only: FEAA

FAaa |
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(2) Classical ND with explicit active formulas
(summing up)

AEA _rea
rreaa
A B, A rEA—B,A IreAA
—_————— r—i —e
rFA—B,A rr'eBA A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(2) Classical ND with explicit active formulas
(summing up)

Ak A AFA —rra
LA A
rEAA  [,BFA rAFBA TEFA-B,A T'FA A
_LAarga . e
L A-BFAA 0 TrA-B A T T FB,A, A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(2) Classical ND with explicit active formulas
(summing up)

Ak A AFA —rra
LA A
rEAA  [,BFA rAFBA TEFA-B,A T'FA A
_LAarga . e
L A-BFAA 0 TrA-B A T T FB,A, A

TEAA T AFA
rr A A

cut
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(2) Classical ND with explicit active formulas
(summing up)

A A AFA —rea
rr'eA A
r-AA T/ ,BrA rA FBA r-A—B,A T +AA
7 7 —i ———— r—i " 7 —e
rr'A-BFAA r-A—B,A rr'eBAA
TEAA T ARA
rr'eA A cut
r-A,A
—_
r-A,A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

(2) Classical ND with explicit active formulas
(summing up)

AFA

r-AA T ,BFA
I, A—BFA, A

To be exact:

A e A _rea
rreaa
A B, A r'-A—B,A IreAA
—i —_————— r—i —e
r’-A—B,A rr'eBA A
r=AA I AFA
cut

rreAa A

r'-A,A

—_— K

r=A,A

Every non active |.h.s. formula is labelled by a small latin letter as previously.
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In search of a classical A-calculus
C al r bility

Classical A-calculus

(2) Classical ND with explicit active formulas
(summing up)

Ab A A e A _r=a
rreaa
r=AA r BrA A B, A r'-A—B,A IreAA
7 7 —i —Y (5 r—i " 7 —e
Nr' A—-B+FAA r’-A—B,A rr'eB,AA
r-AA I AFA
rreAa A cut
M= A% A
—_— N
rEA, A

To be exact:

Every non active |.h.s. formula is labelled by a small latin letter as previously.
Every non active r.h.s. formula is labelled by a small greek letter.
d

[T, A, A" = sets of labelled formulas. T, = TUT", A4AZ {A“}UA...
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Classical A-calculus

(3) Logical intrepretation of the sequents
with explicit active formulas

o A /A = Proof of A:
“If I then A unless one of A holds”

o [LAF A = Refutation of A:
“If T then A does not hold unless one of A does”

o A = Contradiction:

“T" is contradictory unless one of A holds”
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In search of a classical A-calculus

al r bility

n : oy
rarea e Ay e
TFA-B, A reAA —s SETEL 2 S 252 where
I FB,A A ; B
I|-|/ .
. ,I—Il
AFAARY T FA N def :
ARA DAL AWN
I'FA A
n | ;
ot B n’ -
TAFA Y reaa & 2w if agn
rr'eAa A - ’
o n, . My o M, n
LR S VY . dof MEFANRYTFAN  LEARIT AN
fea  ANIUEAA = DA} EALA o T A A
T~{A}, T FA, A T{A} T FA A

otherwise (n =1,2)
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In search of a classical A-calculus
C lity

. mbinatory logic
Classical A-calculus =

C

Back to @ Elimination of the explicit cuts: same way

on : -
M- A%A o S o o N ,
r-A, A rAFA —s TEASARY T AFAT where
T A A AW
- iy
ARAARY) T/ AR A def :
,,,,;\,'{777777 r/,A)—A/
I AFA
n .
Mo - A o :
P A A + def __Tol Ao T
TEA%NA ARY T AEA Trraa " A
rrean v '
M My . i - n, o
ERaE R A e MPANYIARA LEAARYT AR A
rea YT AFA — 1,17 F A~ {A%, A Ly [ F A~ {A%}, A
LU R A{AY, A

NI F A{AY, A R
otherwise (n = 1,2)
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Back to (). Elimination of the explicit cuts (continued)

In case the |.h.s. premiss of the cut rule is not the conclusion of a p-rule,
we look at the r.h.s. premiss: it can only be the conclusion of a w-rule, of
a |—i-rule or an axiom.

If it is the conclusion of a w-rule:

o o .
m I AEF A r-A, A ' Ak A
THA A I, ArA A" —> rr'eA A
rr,r +=AaA, A" r,r,r"+=Aaa" A"

The cut moves up.
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Back to (). Elimination of the explicit cuts (continued)

If the r.h.s. premiss is the conclusion of a /—i-rule:

:I-I/ :l—I// :n :l—I/
n r=AAN T7,BFA r-A—B,A T'FAN n
r-A—-B,A T[',I"A-BFA A —> rr'r-BA A ", Bra”
rrr = a,0, A rrr a0, A

The cut formula get smaller.

Remark. If r+A—B, A is the conclusion of a p-rule, we may do the
inverse rewriting in order to get rid of the explicit cut rule as previously.
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Back to (). Elimination of the explicit cuts (continued)

If the r.h.s. premiss is the conclusion of a /—i-rule:

:I-I/ :l—I// :n :l—I/
n r=AAN T7,BFA r-A—B,A T'FAN n
r-A—B,A [, I"A-BFA A = r,r'r-BA A ", Bra”
rrr = a,0, A rrr = a,0, A

The cut formula get smaller.

Remark. If r+A—B, A is the conclusion of a p-rule, we may do the
inverse rewriting in order to get rid of the explicit cut rule as previously.

~» We do not want to choose the direction of this rewriting.
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sical A-calculus
t

Classical A-calculus i
diz

Back to (). Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):
o
THFAA AFA
TFAY A

This is just the way of desactivating A (before activating a new formula
with a p-rule).
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sical A-calculus
t

Classical A-calculus i
diz

Back to (). Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):
o
THFAA AFA
TFAY A

This is just the way of desactivating A (before activating a new formula
with a p-rule).

~~ Unlike in LK, an ax-cut cannot be removed in our calculus ...
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sical A-calculus
t

Classical A-calculus

Back to (). Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):
2l ,
r-AA AFA n
r- A% A — THAA
A A
This is just the way of desactivating A (before activating a new formula
with a p-rule).
~» Unlike in LK, an ax-cut cannot be removed in our calculus ...
... unless the same formula is activated immediatly afterwards
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sical A-calculus
t

Classical A-calculus

Back to (). Elimination of the explicit cuts (continued)

At last, if the cut is a right ax-cut (i.e. if its r.h.s. premiss is an axiom):

n
T-FAA AFA n only if A~ ¢ A
r- A% A —> TFAA
A A
This is just the way of desactivating A (before activating a new formula

with a p-rule).

~» Unlike in LK, an ax-cut cannot be removed in our calculus ...

... unless the same formula is activated immediatly afterwards

...and A~ ¢ al (otherwise the p-rule makes an explicit contraction of the
active formula with one of a).
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Back to (). Elimination of the explicit cuts (continued)

Here again, the inverse rewriting is useful to get rid of the cut rule:

n
n rFA—B%A n’
rN-A—B%A ;I'I' m“r'%AA'
TFAsBA "raa —t r,r'+B,AA BrB
r,reB,A A r,r'eB° A A
r,r'+B,A A
o . .
FrFA—B®A r'-AA" BFB ‘n r+-AA BFB
_m“ r"A—BF B,A rFA—=B*AAXY T, A—BF B,A
= o Eas — nreEtas
) LA, L ) LA,
r,r'+B,A A rr'+=B,A A

~> We do not want to choose the direction of this rewriting either.
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In search of a classical A-calculus
C lity

mbinatory logic
C

Cut elimination rules (summing up)

n : .
MAEB, A n :n a
= . X x ’ ’
A A rean —y DASBANI DEAN
rrFBA A ' S
11 n :|_| fl’l’
RS 5 MEA%AAY AR A/
TFA A N e
NN nrkaa
:n/ :I-I// :I_I :I-I/
n reAA T, BFA’ r-A—B,A T'FAA n”
r-A-B,A [T A-BFA A" = r,r'FBAA ", Bra”
[N VNV [N NN
n
rEAA AFA N onlyif aA*¢a
- A% A — TFAA
TFAA
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Cut elimination rules (summing up)

These four rewrite rules and the commutation rule between w and cut:

n’ n n’

n Ak A r-A A I AL A
FEA A Trara.a’ ¥ N cut
! 1! ! 1" CUt ! 1! !’ 1"
ANV T FA A, A

are enough to remove all the implicit cuts and all the explicit cut rules
except the rules ax-cut.

Moreover:

SN Property For every rewrite sequence Iy
there is nsuch that N, =N, ;1 =My =---

My = N3 = My

Jalll
Jell
Jell

“or,
-

|
N—r

CR Property If [T — Iy and M —» My (—> = refl. trans. closure of >
then there is " such that My — M’ and My, — I,

~» Every 1 has a normal form up to =.

Conclusion: Our hybrid of ND and LK is a well born natural deduction.
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In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus . =

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the

A-calculus.
re-A
A A AE A —_—w
NN
r- AA [, BFA i r, A% B,A ) r- A—BA ' AN
—e
L, A—Braa 0 TF A—B,A T LrE  BAAN
re AA T, AFA
r,r'eA A cut
r- A%A
“w

rr A,A
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In search of a classical A-calculus
C lity

. mbinatory logic
Classical A-calculus =

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the

A-calculus.
re-A
AFa:A x:AF A —_—w
NN
r- AA T/, BrA s Mx:AkF BA ) r- A—B,A ' AN
—e
L, A—Braa 0 TF A—B,A T LrE  BAAN
re AA T, AFA
r,r'eA A cut
rNa:AA

rr a.a
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:
@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

r-A
AFa: A x:AkFx:A NN
re AN T, BF A’ I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—e
rr, A-Braa ' Traxt:A-BaA TrFtu:B,A A
- AA T, AFA
rrraa "
rN-a:AA
et R
re AN
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:
@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

r-A
a:AFa: A x:AkFx:A NN
re AN T, BF A’ I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—e
rr, A-Braa ' Traxt:A-BaA TrFtu:B,A A
- AA T, AFA
rrraa "
rN-a:AA
"
re AN
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:
@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

r-A
a:AFa: A x:AkFx:A NN
r-t:AA I o:BFA I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—e
L, A—BraaA ' Traxt:A-BA T Ftu:B, A, A
THt:AA [ o:AFA
rrraa "
rN-a:AA
"
re AN
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

@ Every new inference rule correspond to a new specific constructor or
binder of the A-calculus.

r-A
a:AFa: A x:AkFx:A NN
r-t:AA I o:BFA I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—e
L, A—BraaA ' Traxt:A-BA T Ftu:B, A, A
THt:AA [ o:AFA
rrraa "
rN-a:AA
"
re AN
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

@ Every new inference rule correspond to a new specific constructor or
binder of the A-calculus.

r-A
a:AFa: A x:AkFx:A NN
r-t:AA I o:BFA I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—1 —e
. to:A—BFA A TFaxt:A—B,a | T Ftu:B, A, A
THt:AA [ o:AFA
rrraa "
rN-a:AA
"
re AN
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

@ Every new inference rule correspond to a new specific constructor or
binder of the A-calculus.

Ak a:A AFx:A _rea
a: o X X : NN
r-t:AA I o:BFA I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—e
i to: AsBFAA 0 Traxt:A-BA T Ftu:B, A, A

TFt:AA [ o AR A
txo: [[,T FAA]

cut

rN-a:AA

rr a.a
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

@ Every new inference rule correspond to a new specific constructor or
binder of the A-calculus.

r-A
a:AFa: A x:AkFx:A NN
r-t:AA I o:BFA I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA

—1 —e
. to:A—BFA A TFaxt:A—B,a | T Ftu:B, A, A
THt:AA [ o:AFA c:[FFA]
cut _—w
too: [[,T A, AN ] c: [T FA,A]
rN-a:AA
"
re AN
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

@ Every new inference rule correspond to a new specific constructor or
binder of the A-calculus.

r-A
a:AFa: A x:AkFx:A NN
r-t:AA I o:BFA I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—1 —e
. to:A—BFA A TFaxt:A—B,a | T Ftu:B, A, A
THt:AA [ o:AFA c:[FFA]
cut _—w
too: [[,T A, AN ] c: [T FA,A]

c:[TFa:A,A]
rr- AN
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Syntax

The A-calculus corresponding to our classical natural deduction is
straightforwardly defined if we keep in mind the following principles:

@ The labels of the non active formulas are the variables of the
A-calculus.
@ At any step, the active formula is the type of the A-term built so far.

@ Every new inference rule correspond to a new specific constructor or
binder of the A-calculus.

r-A
a:AFa: A x:AkFx:A NN
r-t:AA I o:BFA I MNx:AFt:BA i Fr-t:A—=B,A T"Fu:AA
—1 —e
. to:A—BFA A TFaxt:A—B,a | T Ftu:B, A, A
THt:AA [ o:AFA c:[FFA]
cut _—w
too: [[,T A, AN ] c: [T FA,A]

c:[TFa:A,A]
M- pac: A A
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In search of a classical A-calculus

Classical A-calculus

Apo-calculus: Substitutions

n .
PR FA B AAY [ FAA
As for intuitionistic ND, the proof T A5 A/ I'EA A
AN
n -

: - e Tx:AFt:BAAY T u: AN
is naturally lifted to a derivation -2t P2 S{ A

n En/
. . (3 [e% /.A ’
and similarly the proof rea LAf/fu r = ral
L EAA
n o

is lifted to a derivation [T esAAINY Mo AFAT
cla=0]: [, "+ AA"]
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Reduction rules

The commutation cut-rule/w-rule has no effect on the A-terms:

n N S
n Mo:AkF A FrEt:AA oAb
w cu
THt:AA o Ara,a” - — txo: [T FAA]
cu
txo: [T, T A0, A" tho [[,T, T FA,A,A"]
Other rewritings:
E|_| . n n
Mx:Akt:B, A n’ ' , ’ ,
Mx:AFt:BLAARY IMFu:AA

M= Xxt:A—=B, A Mreu: AN —)77777 ,,,,,,,, - -
- Oxt)u: B, A, A M Etx:=u:B,AA

When removing the logical part: (Ax t)u —g t[x:=u]

:n ‘n n
c:[TFa:A A - : ’
HH r AL A c:[TFa:AA]RY T o: AR A’

poc: A, Lo —s o DL D T
(pac)*o: [T, FAA] cla=ol:[LIFA AT

When removing the logical part: (pac) o —, cla:=0]
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Apo-calculus: Reduction rules

:I—ll :I—ll/ :|_| :I-I/
n MFu:AA T 7. BFA" FTFt:A-B,A T Fu:AA -n”
rt:A—B,A ', " ur:A-BFA A" — rr'+tu:B A A r,m: Bk A"
txum: [[T, T A A A tuxm: [[,F, T A A A

When removing the logical part: t x u.m =, tu*m

N
FTFt:AA a:AFA ‘n
txa:[[FAA] = rrt:AA onlyif a:ag A

Nl-patxa:AJA
When removing the logical part: pat*a =gt only if a ¢ ¢

In summary:
A t)u —g tlx:=u tx U =45 tuxT
( B
QC)x0o —~ C|X:=0 atxoa=pt onIyif a &t
v y 7]
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In search of a classical A-calculus
C lity

. mbinatory logic
Classical A-calculus =

Apo-calculus (summing up)

The original intuitionistic calculus:

Aterms: t = x tt | Axt (proofs)

(assumption)  (Modus — (abstraction
Ponens)  of a hyp.)

Notations A-variables: x,y,z...  A-terms: t,u,v...

Precedences application > A\

Reduction rules

(M t)u —p tx:=u]
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In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus . =

Apo-calculus (summing up)

A-terms: t = X tt | Axt (proofs)
(assumption) (Modus  (abstraction
Ponens)  of a hyp.)
o-terms: 0 = « (refutations)
(assumption

to the cont.)
Notations A-variables: x,y,z...
o-variables: a, 3,7...

Precedences application > A\

A-terms: t,u,v...

Reduction rules

(M t)u —p tx:=u]
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In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus . =

Apo-calculus (summing up)

A-terms: t = X tt | Axt (proofs)
(assumption) (Modus  (abstraction
Ponens)  of a hyp.)
o-terms: 0 = a | to (refutations)
(assumption ~ (refutation

to the cont.) of an impl.)
Notations A-variables: x,y,z...  A-terms: t,u,v...
o-variables: a,3,v... o-terms: w, p,0...
Precedences application > \ >

Reduction rules

(M t)u —p tx:=u]
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Classical A-calculus

Apo-calculus (summing up)

A-terms: t = X tt
(assumption)  (Modus
Ponens)
c-terms: ¢ = txo
o-terms: o = « t.o
(assumption ~ (refutation
to the cont.) of an impl.)
Notations

A-variables: x,y,z...
o-variables: a, 3,7...

Precedences application > \ >

Reduction rules

(M t)u —p tx:=u]
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In search of a classical A-calculus
C lity
mbinatory logic

Ax t (proofs)
(abstraction
of a hyp.) L
(contradictions)
(refutations)

A-terms: t,u,v...
o-terms: w,p,0...

> %



In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus . =

Apo-calculus (summing up)

A-terms: t = X tt | Axt (proofs)
(assumption) (Modus  (abstraction
Ponens)  of a hyp.) L
c-terms: ¢ = t*xo (contradictions)
o-terms: 0 = a | to (refutations)
(assumption ~ (refutation

to the cont.) of an impl.)
Notations A-variables: x,y,z...  A-terms: t,u,v...
o-variables: o, 3,v... o-terms: 7w, p,0...
Precedences application > A > . > %

Reduction rules

(M t)u —p tx:=u] txu.o =4 tuxo
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Classical A-calculus

Apo-calculus (summing up)

A-terms: t = X tt
(assumption)  (Modus
Ponens)
c-terms: ¢ = txo
o-terms: o = « t.o
(assumption ~ (refutation
to the cont.) of an impl.)
Notations

A-variables: x,y,z...
o-variables: a, 3,7. ..

Precedences application > \ >

Reduction rules

(M t)u —p tx:=u]
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In search of a classical A-calculus
C lity
mbinatory logic

At | pac (proofs)
(abstraction (Reductio ad
of a hyp.)  Absurdum) L
(contradictions)
(refutations)

A-terms: t,u,v...
o-terms: w,p,0...

> % > p

txUu.oc =45 tuxo



In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus . =

Apo-calculus (summing up)

A-terms: t = x | tt | Axt | pac (proofs)
(assumption) (Modus — (abstraction (Reductio ad
Ponens)  of a hyp.)  Absurdum) Lo
c-terms: ¢ = t*xo (contradictions)
o-terms: 0 = a | to (refutations)
(assumption ~ (refutation
to the cont.) of an impl.)
Notations A-variables: x,y,z...  A-terms: t,u,v...
o-variables: a,3,v... o-terms: w, p,0...
Precedences application > A > . > % >
Reduction rules
(M t)u —p tx:=u] txu.o =4 tuxo

(o ) x o — c[x:=0]
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In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus . =

Apo-calculus (summing up)

A-terms: t = x | tt | Axt | pac (proofs)
(assumption)  (Modus  (abstraction (Reductio ad
Ponens)  of a hyp.)  Absurdum) L
c-terms: ¢ = t*xo (contradictions)
o-terms: 0 = a | to (refutations)
(assumption ~ (refutation
to the cont.) of an impl.)
Notations A-variables: x,y,z...  A-terms: t,u,v...
o-variables: a,3,v... o-terms: w, p,0...
Precedences application > A > . > % >
Reduction rules
(M t)u —p tx:=u] txu.o =4 tuxo
(o ) x o — c[x:=0] puatxa=¢t onlyif ad¢t
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sical A-calculus

Classical A-calculus

Apo-calculus (summing up)

A-terms: t = X | tt | Axt ’ poc
c-terms: ¢ = txo 3 sorted calculus
o-terms: o = e} ‘ t.o
Notations A-variables: x,y,z...  A-terms: t,u,v...
o-variables: a,3,v... o-terms: 7w, p,0...

Precedences application > A > . > % >

Reduction rules

(M t)u —p tx:=u] txu.o =4 tuxo
(o c)x o — c[x:=0] patxa =gt onlyif a¢t
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sical A-calculus

Classical A-calculus

Exercise: from Peirce Law to its A\uo-term

Write down the simplest Auo-term of a proof of Peirce Law.
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sical A-calculus

Classical A-calculus

Exercise: from Peirce Law to its A\uo-term

Write down the simplest Auo-term of a proof of Peirce Law.

AF A
—_—w
AF B, A
We start from its simplest proof in LK: FA—B, A A A
(A—-B)—AFA
F((A—B)—A) — A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus i
diz

Exercise: from Peirce Law to its A\uo-term

AF A
_AFA
AF B, A
7'“‘
AL B, A

FA—B, A AFA
(A—-B)—AFA
F((A—B)—A) — A
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Exercise: from Peirce Law to its A\uo-term

AEA
AEB, A
AFB, A
FA—B, A AEA
(A—=B)—AF(A—B) — A (A—=B)—-AFA

cut
(A—=B)—AFA

F((A—B)— A — A
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Exercise: from Peirce Law to its A\uo-term

AFA

ArB A "

ArB A

FAB, A AFA
(A= B)— AF (A — B) — A (A—B) - AFA

cut
(A—B)—= AL A

(A—=B)—AFA
F{(A—B)— A — A
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In search of a classical A-calculus
C al r bility

Classical A-calculus

Exercise: from Peirce Law to its A\uo-term

AFA AFA
AFA

ArB, A

AFB, A a

FA—B, A AFA

(A—=B)—AF(A—B)— A (A—-B)—=AFA

(A—=B)—AFA

(A= B)— AFA a
F((A-B) -A) - A

cut

cut
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

(A-B)—AF (A—B)—A (A-B)—AF A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

(A—=B)—A F (A—=B)—A (A-=B)—A F A
(A—=B)—A F A
f:(A-B)—A F A
= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

f:(A-B)—AF (A—-B)—A (A-=B)—A F A
f.(A-B)—AF A
f(AsB)—A F A
= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

= A—B, A A F A
f:(A-B)—AF (A—-B)—A (A-=B)—A F A
f:(A-B)—A Fa:A
F(A-B) A F A
= (A—=B)—A)—A

cut
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

A+ A AFa:A
Ao A cut

A F B, a:A
A F B, a:A
- A—B, a: A AFa:A

f:(A-B)—AF (A—-B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f(AsB)—A F A

= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

A+ A AFa:A
Ao A cut

A F B, a:A

x:A F B, a:A
- A—B, a: A AFa:A

f:(A-B)—AF (A—-B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f(AsB)—A F A

= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XA F A AFa:A
x:AkFa:A cut

x:AF B, a:A

x:A F B, a:A
- A—B, a: A AFa:A

f:(A-B)—AF (A—-B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f:(A-B)—A F A

= (A—=B)—A)—A

Thierry Joly Extracting programs from classical proofs



In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XA F A AFa:A
x:AkFa:A cut

x:AFd:B,a:A

x:A F B, a:A
- A—B, a: A AFa:A

f:(A-B)—AF (A—-B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f:(A-B)—A F A

= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

X:AFx:A a:AkFa:A
x:AkFa:A cut

x:AFd:B,a:A

x:A F B, a:A
- A—B, a: A a:AFa:A

f:(A-B)—A Ff:(A—>B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f:(A-B)—A F A

= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
x*a:[x:AFa:A] cut
x:AFd:B,a:A
x:A F B, a:A
- A—B, a: A a:AFa:A
f:(A-B)—A Ff:(A—>B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f (A=B)—A I A

= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
x*a:[x:AFa:A] cut
x*xoa:[x:AFG6:B, a:A]
x:A F B, a:A
- A—B, a: A a:AFa:A
f:(A-B)—A Ff:(A—>B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f(AsB)—A F A

= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
x*a:[x:AFa:A] cut
x*xoa:[x:AFG6:B, a:A]
x:AbFpd xxa:B, a:A
- A—B, a: A a:AFa:A
f:(A-B)—A Ff:(A—>B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f(AsB)—A F A

= (A—=B)—A)—A
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
x*a:[x:AFa:A] cut
x*xoa:[x:AFG6:B, a:A]
x:AbFpd xxa:B, a:A
Fko:A—=B, a: A a:AFa:A
f:(A-B)—A Ff:(A—>B)—A (A-B)—A Fa:A
F(ASB)—A Fa:A cut
f(AsB)—A F A

= (A—=B)—A)—A

where k. 4 \x nod x*o
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
cut
x*a:[x:AFa:A]
x*xoa:[x:AFG6:B, a:A]
x:AbFpd xxa:B, a:A
a:AFa:A

Fko:A—B, a: A

ko.a: (A—=B)—A Fa:A

f:(A-B)—A Ff:(A—>B)—A
t
F(ASB)—A Fa:A <
A

f:(A-B)—A F
= (A—=B)—A)—A

where k. 4 \x nod x*o
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In search of a classical A-calculus
C lity
mbinatory logic

Classical A-calculus c

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
cut
x*a:[x:AFa:A]
x*xoa:[x:AFG6:B, a:A]
x:AbFpd xxa:B, a:A
a:AFa:A

Fko:A—B, a: A

ko.a: (A—=B)—A Fa:A

f:(A-B)—A Ff:(A—>B)—A
t
Frkno [f (AsB)—=AF a:Al <
A

f:(A-B)—A F
= (A—=B)—A)—A

where k. 4 \x nod x*o
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In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus C . =

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
cut
x*a:[x:AFa:A]
x*xoa:[x:AFG6:B, a:A]
x:AbFpd xxa:B, a:A
a:AFa:A

Fko:A—B, a: A

ko.a: (A—=B)—A Fa:A

f:(A-B)—A Ff:(A—>B)—A

t
Frkno [f (AsB)—=AF a:Al <
A

f:(A->B)—A Fpua fxkq.a
[ (A—=B)—A)—A

where k. 4 \x nod x*o
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In search of a classical A-calculus
C lity
. mbinatory logic
Classical A-calculus C . =

Exercise: from Peirce Law to its A\uo-term

XxX:AFEx:A a:AFa:A
cut
x*a:[x:AFa:A]
x*xoa:[x:AFG6:B, a:A]
x:AbFpd xxa:B, a:A
a:AFa:A

Fko:A—B, a: A

ko.a: (A—=B)—A Fa:A

f:(A-B)—A Ff:(A—>B)—A

t
Frkno [f (AsB)—=AF a:Al <
A

f:(A->B)—A Fpua fxkq.a
Fcc: (A—B)—A)—A

where ko d:ef)\xp,é x*o and cc & A po fx k.o
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Classical A-calculus

Classical realizability: Orthogonality

Let 1L be any set of c-terms closed under =g-.

Notations:
A: set of the A\-terms >: set of the o-terms tlo&txoel
Forall LC A SCX:

o LLS & VtelVoeS tlo

o L= {sex;Vtel tlo}, SE={tcA;VoecS tlo}

o LSE{to;tcSandocS}

L is said classical if(f) L4 = L, equivalently: L € P(X)L (i.e. L of
the form S1), because S+44 = SL for all S.
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Classical A-calculus

Classical realizability: Sorted formulas

2" order formulas defined as previously, but now using two sorts of
predicate variables:

e intuitionistic ones as before, that we now denote X, Y, iZ . ..
@ classical ones, that we denote X, Y, Z...

Intuitionistic predicate variables are meant for any P € P3(A)4" as before
whereas classical predicate variables are meant for P € (P(X)1)“" only.

In particular, from now on 2" order formula closures - are assumed to
map the classical predicate variables to functions ranging over P(X)~ only.

A 2" order formula is said classical if its rightmost predicate variable
occurrence is classical and intuitionistic otherwise.
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Classical A-calculus

Classical realizability: Semantics & Typing rules

o |P(d)| = P(d)

o ||P(a)l| = P(d)*

o |A— B|=|Al — |B| o [A— B| =I|AL|B]
o [Vx Al =,y |Alu/X]| o [[VxAll = Uyey IAlu/A]|
o [VX"Al = Npep, e [AIX:=Pl| | o VX" All = Upep, e IAIX :=P]||
o [VX"A| = ﬂPe(P(Z)i)U" AX:=P][ e [[VX"A|l = UPe(P(z)JL)u"HA[X::P]H
rea
a:AFa: A x:AFx: A m
FFt:AA Mo:BFA | Fx:AFt:B,A FHFt:A=B,A [ Fu:A A
! ’ i . r—1 ! ! —e
MM to:A-BFAA THAxt:A—B,A M- tu:B,A,A
Mt:Alu/x]+ A . r=t:AA + F-t:VxA A
TtvxAra 1V TEe.vxAA 7 Tt Alu,A ¢
Mt:AF/XZ]F A N r-t:AA it M-t:VXAA ’
Mt VXAFA ' ree:vxan FreAF/XR A C
re:AF/X3Ea FTFt:AA o revxXAA
Tt VXAFA Vi FEe vxAA "7 FFt:AF/XZ,A "¢
Fr-t:AA M o:AFA c:[FFa:F A] T only if x (resp. X, X) ¢ I', A
o o] M TFpac Fa M * only if F is classical
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Classical A-calculus

Classical realizability: Adequacy lemma

Remark ‘F‘ is classical for every classical formula F and every closure -
because of the relations: L — S* = (L.S)*, Mg, S = (U;ie) S)E

Orthogonality lemma For every closed formula A: |A| 1L || Al
Substitution lemma If P € P3(A)“" is defined by: P(ii) = |F[i/x]| then
‘A[F/X)?” = |A[X::P]| and HA[F/X)_(']H = ||A[X::P]H.

Adequacy lemma For any closure - and all t € [Gyl,...,t, € |Gy,

. 0p oll, TIX1:=t1, ..., Xp:=tn, @1:=01,...,0p:=0)]

belongs to:
‘Z| if x0:C,...,x0:CoET:A a1:D1,...,,: Dy
o I if T:[x1:C,...,x:Colbar:Dy,... a,:Dy
° ||Z|| if x¢:C,...,x,:Co, T:Abq1:Ds,...,0,:D,
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Formal proof systems & .
P In search of a classical A-calculus

i Classical realizability
X Classical combinatory logic

Classical 0 -
Classical dialects

Exercise 7

1. Prove the orthogonality lemma of the previous slide.

2. Assume the substitution lemma and prove the adequacy lemma
of the previous slide.
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Classical A-calculus

Classical realizability: Data correctness problem

. We now have two sorts of numeral types:
N(u) = vX (V2(X(2) — K(s2)) — X(0) — X(u))
N(u) £ VX (V2 (X(2) — X(sz)) = X(0) — X(u))
Fact: |'N(u)| C |[N(u)| and N(u) contains a lot of A-terms not reducible

to Church numerals, e.g. M Axpa f(uf f(f(ud fx x 3)) x a) x o € [N(2)].
F1:x (IN(x) — N(x)) but = ? :¥x(N(x) — N(x)) impossible.

Problem 1: How are we going to recycle all our intuitionistic programming
(i.e. A-terms of types Vx ("N(x) — ‘N(f(x)))) in this classical system?

Solution: + T : VX(¥x (‘N(x) — X(x)) — Vx (N(x) — X(x))) where

T = MAxx(AgAy g(Succy))f 0, Succ being any A-term such that

I Succ : Vx ('N(x) — 'N(sx))

~ F VX (IN(x) — N(f(x))) = FTt:V¥x(N(x) — N(f(x)))
. but the result is still in the undecipherable set |N(f(n))|.
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In search of a classical A-calculus
Classical realizability

Classical combinatory logic
Classical dialects

bility
Classical A-calculus
!

Exercise 8

Derive the typing stated in the previous slide, i.e.
ET: VX(VX (N(x) — X(x)) — Vx (N(x) — X(x))),

where

T = Mxx(\g)y g(Succ y))f 0,

with the help of the set £ of equations of the “very simple example”
and the two additional equational derivation rules (see Section 3 about
intuitionistic realizability).

No need to detail again the subterm Succ found in Exercise 6.

[Hint: First derive

F AgAy g(Succy) : Vz(('N(x—z) — X(x)) — (N(x—sz) — X(x))) ]
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Classical A-calculus

Classical realizability: Data correctness (a last trick)

Problem 2: How are we going to read the result in |[N(f(n))|?
Recall that in the purely intuitionistic system, it was possible because

reN(F(m)| = r=g, f(n).

Solution: We let 1L = {c ; Jte|N(f(n))] Fo€L c =gy, k*t.o}.
In other words, we let I guess the solution |'N(f(n))|! It is possible
because |'N(f(n))| does not depend on the choice of IL and because
although we pretended to have fixed 1, we never said how.

In that way, we get k € |'N(f(n)) — L| where | = ¥ Since L is
classical, we obtain Tk € |[N(f(n)) — _L|. Hence for all r € |N(f(n))
Tkre|Ll] = YL It then follows for all T € X: Tkrm e L, i.e. for

some 0 € X: Tkr x T =gy o k % f(n).0. To sum up:

re|N(f(n))|, TeX = Fo€X Tkr*m =gy o k * f(n).o.
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I A-calculus

Classical A-calculus

CL formulation of Auo-calculus

Translation Auo X%, CL not quite possible by using only A-terms.

Possible by using A-terms and o-terms.
def

cc ENFpa Frko.oo ke EAXUS X %0

Proposition Every \-term of the Auo-calculus is Syo-equal to an
applicative combination of K, S, cc and k,, for every o-variable a.
Translation:

o {x} =x

o {tu} ={t}{u}

o {Axt} = XNx{t} where X is defined as for intuitionistic A-calculus

o {pac} = cc(Xa{c}) where X" is the same no matter term sorts

o {txur.tp...upa} = a({tH{uH{uw} ... {un})
Then for every A-term t with free classical variables aq, ..., a,:

{t}Ho1:=kay, ., ani=ka,] =0 t

Corollary Every closed \-term of the Auo-calculus is Bvyo-equal to an
applicative combination of K, S, cc.
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Formal proof systems &
A-calcu

Realizability

Classical A-calculus

1

In search of a classical A-calculus
Classical realizability

Classical combinatory logic
Classical dialects

Exercise 9

Prove what is stated in the previous slide, i.e. that for every A-term t of
Apo-calculus with free classical variables ag, . . ., a,:

{t}Hoa1:=kay,...,n:=Ka,] =gyo t
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I A-calculus
Clas 2 y
Classical combinatory logic

Classical A-calculus o "

Classical combinatory logic CLo

... but CL normalization of these terms requires terms of the form k..
This naturally comes from the structure of the A-term cc:

cc défAfua fxky.c kgd:e{)\x,ué X*x 0T
Syntax of CLo:

A-terms: t:x|K | 5|cc|tt|k,,

o-terms: o = « ‘ t.o

Reduction rules:
cctxo — tkokxo

ket*xm — txo
txu.oc=tuxo

... together with the intuitionistic rules:
Ktu — t

Stuv — tv(uv)
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\-calculus

Classical A-calculus

What is Auo-calculus?

No occurrence of Auo in the literature. o is for several S.

i Small fragment of Herbelin's Auji-calculus
Ao ? Slack version of Parigot's Au-calculus
Al Acc Study-oriented calculus

Apo-calculus is indeed the lub of two representative classical dialects:
Ap-calculus and Krivine's Acc-calculus.
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C
Classical A-calculus = T -
Classical dialects

A classical A-cube

. stack constructor:
@ Removing

application:
NO:

@ Classical features in CL /\,{;50
YES:

YES NO
@ Specializing reduction to left reduction
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C

C
Classical A-calculus = T -
Classical dialects

Next: two opposite corners of our classical A-cube

. { stack constructor:
@ Removing o
application:

Ap
NO:
@ Classical features in CL
YES: | Acc

YES NO
@ Specializing reduction to left reduction
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C
Classical A-calculus = T -
Classical dialects

Ap-calculus: a purebred classical A-calculus

By choosing the negative settings:

@ removal of the stack constructor (corresponding to /—i-rule) which
is a redundancy of the application (corresponding to r—e-rule),

@ no CL-like constants for the classical features of the calculus,

() no specialization of the normalization to any reduction strategy,
Ap-calculus sticks to traditional A-calculus style:

@ just a new pair abstractor/application (1, *) in addition to the
intuitionistic one (A, application) to treat the classical features.

@ Mpu-calculus remains an undeterministic rewrite system enjoying
CR property.
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C

C
Classical A-calculus = T -
Classical dialects

Ap-calculus: disappearance of the stack constructor

In order to remove the stack constructor from Auo-calculus, we only have
to orient the o-rule as follows: tx u.c —, tuxo.
@ o-reduction —», has the SN property.
@ The A-terms and c-terms in o-normal form are exactly the ones with
no occurrence of the stack constructor.
~> In Ap-calculus, only A-terms and c-terms in g-normal form are written.

Problem: ~-reductions usually stuck by o-normalization, e.g.

cla=u.p] v+ (pac) % u.f —o ((pac) % u.f)”" = (pac™ uxp —7?
This can only be overcome by allowing an exceptional o-conversion in the
“wrong” way: (pac)u=¢ pf (pac)ux 8 —s-1 pf (nac)*u.p

—. pfcla=u.B] =, pB(cla:=u.p8])7"*

In Ap-calculus, the last reduction sequence is viewed as a single reduction
step called u-reduction:

(nex ©)u =0 a8 (clev:=u.B])™"
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C

C
Classical A-calculus = T -
Classical dialects

Ap-calculus: o-terms as Streams

In Ap-calculus, every o-term is just a variable playing the role of a stream
of A-terms fed by the p abstractor that binds it:

(pac)urun...upx B —, (pa(cla=u1.a]) ™ us ... u, % 3
= (po(cla=u.u.0])7 " Yus .. up 3

%,,, (po(cla=uy ... up.a]) ) % 3

In order to finish the work done by a ~-reduction of Auo-calculus,

i.e. up to o-conversions: (pac)uy. ..Uy * 0 — (cla=ur.uz. .. uy.0])
we have to add to the calculus the particular case of y-reduction where
the substituted o-term is a variable:

(pac)* =, cla:=0]
which is a stream redirecting.

o-nf

At last, B-rule is oriented in Au-calculus as follows:
patxa —gt onlyifadt
and becomes a stream closure.
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C
Classical A-calculus = T -
Classical dialects

Ap-calculus: complete picture

Syntax:
A-terms:  t

x|tt|)\xt|uac

txo

c-terms:
o-terms: o = «
Reduction rules:
(M t)u —p5 tx:=u]
(pac)u —, uB(cla=u.pB])7 "

(pac)x B —, cla:=p]
patka —g t onlyifadt

=

> D

Actual notations & wording about Ap-calculus in the literature:
@ The only o-terms existing in Au-calculus, i.e. o-variables, are called
p-variables or classical variables and are never considered as terms
on their own.
@ The c-terms are called named terms and written [t instead of t x a.
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C

C
Classical A-calculus = T -
Classical dialects

Acc-calculus: an imperative calculus

By choosing the opposite settings:
(D) removal of the application (corresponding to r—e-rule)
instead of the stack constructor (corresponding to /—i-rule),
() classical features in CL,
(3 normalization only performed by left reduction on c-terms
(i-e. by rewriting at every step the leftmost rewritable subterm),

Acc-calculus is quite different from Ap-calculus.

Because of this choice of the left reduction, Acc-calculus is a deterministic
rewrite system (in which CR property is therefore meaningless) and looks
rather like an imperative programming language than a A-calculus.
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Classical A-calculus 2 -
Classical dialects

Acc-calculus: an imperative calculus

By choosing the opposite settings:
(D) removal of the application (corresponding to r—e-rule)
instead of the stack constructor (corresponding to /—i-rule),
() classical features in CL,
(3 normalization only performed by left reduction on c-terms
(i-e. by rewriting at every step the leftmost rewritable subterm),

Acc-calculus is quite different from Ap-calculus.

Because of this choice of the left reduction, Acc-calculus is a deterministic
rewrite system (in which CR property is therefore meaningless) and looks
rather like an imperative programming language than a A-calculus.

Huge contradiction between @ and @: CL requires application!
~~ applications will just be morally removed, not formally because of @
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Classical A-calculus 2 -
Classical dialects

Acc-calculus: trying to combine (1) with (2)

@ We may indeed replace every application by a stack constructor:
tu =¢ po tux o =, pat x u.ce and keep application just as a

meta-notation for short: def
tu = pat* u.o

But we then must reformulate 8-rule without mention of a primitive

application:
AXt* U.0 —pop t[x:=u] %0

similar to Apo-calculus: Axtx u.c =5 (AXt)uxo —g t|x:=u|xo
imil A lculus: A A 3

(2) Now all the s of the resulting calculus without stack constructor
would be hidden in A-terms cc, k, by replacing every A-term t with
{t}Hfar :=Kay, far :=Kay, - - -] (=popy t) where {t} is defined by:

o {x} =x

o {Ixt}=x{t}

o {uac}t=cc(\,{c})

o {txuy.tp...upa}t="f({tHu}{w}.. {u})
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Classical A-calculus 2 -
Classical dialects

Acc-calculus: trying to combine (1) with (2)

@ We may indeed replace every application by a stack constructor:
tu =¢ po tux o =, pat x u.ce and keep application just as a

meta-notation for short: def
tu = pat* u.o

But we then must reformulate 8-rule without mention of a primitive

application:
AXt* U.0 —pop t[x:=u] %0

similar to Apo-calculus: Axtx u.c =5 (AXt)uxo —g t|x:=u|xo
imil A lculus: A A 3

(2) Now all the s of the resulting calculus without stack constructor
would be hidden in A-terms cc, k, by replacing every A-term t with
{t}Hfar :=Kay, far :=Kay, - - -] (=popy t) where {t} is defined by:

o {x} =x

o {Ixt}=x{t}

o {uac}t=cc(\,{c})

o {txuy.tp...upa}t="f({tHu}{w}.. {u})

. The p's not all hidden in A-terms cc, k,, also hidden in the
applicative meta-notation (used in the last two clauses).
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C
Classical A-calculus = T -
Classical dialects

Acc-calculus: o-terms as Stacks

Conclusion: Ok, we really have to reintroduce a primitive application,
but we just let it play the role of our meta-notation, i.e. according to
choice (3) (= left reduction on c-terms only):

tuxo = (pat* u.q) *o —, tx U0

ccx t.o = (A pa fxke.a)*t.o —pop (i t*Ka.0) %0 = tx koo

Ko % .1 = (AX UG X % 0) % t.T —pop (10 t* ) % T — tx T

Now, replace applicative meta-notation back by a primitive application,
cc by a constant cc, k, by k, where k is a new o-term— A-term construct
and view the above reduction sequences as primitive reduction rules.
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C
Classical A-calculus = T -
Classical dialects

Acc-calculus: o-terms as Stacks

Conclusion: Ok, we really have to reintroduce a primitive application,
but we just let it play the role of our meta-notation, i.e. according to
choice (3) (= left reduction on c-terms only):

Push: »
tuxo = (pat* u.q) xo — tx U0

Save current stack:
ccx t.o = (A pa fxke.a)*t.o —pop (i t*Ka.0) %0 = tx ko0
Restore stack:
Ko % .1 = (AX S X % 0) % £.T —pop (10 t* 0) % T — tx T

Now, replace applicative meta-notation back by a primitive application,
cc by a constant cc, k, by k, where k is a new o-term— A-term construct
and view the above reduction sequences as primitive reduction rules.

This is Acc-calculus.
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Classical A-calculus = T -
Classical dialects

Ap-calculus v. Acc-calculus

Au-calculus Acc-calculus
txu.c —, tuxo atonce tuxo —,-1 txu.c
A-terms:  t = x | tt | Axt | pacc A-terms: t = x | cc | tt | Axt | ke
c-terms: ¢ = t*o c-terms: ¢ = txo
o-terms: o = « o-terms: o = « | t.o
Reduction rules: Reduction rules:
(Ax t)u —g t[x:=u] AXE* U.0 —pop t[x:=U] %0
(pac)u —, pB(cla=u.p])"" tU* 0 —push t* U.C
(poc) * 8 —, cla:= ] CCH t.0 —gaye t x Ky.O
puatxa —gt onlyif a ¢t ko * t. T —restore £ % O
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\-calculus

Classical A-calculus

Ap-calculus v. Acc-calculus:
Minimal typing systems complete for minimal classical logic

Ap-calculus Acc-calculus
x:AFx: A x:AFx:A
r-A r=t:C
YN rret:C
rct:A—B,A T"Fu:AA r-t:A—B I"Fu:A
rr'etu: B,AA rr't:B
Nx:AFt:B,A Mx:AFt:B
MNEAxt:A—B,A MNEXxt:A—B
r=t:AA Fcc: ((A—-B)—A)—A

txa:[TFa:AA]

c:[TFa:A A]
M- pac: AJA
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\-calculus

Classical A-calculus

Ap-calculus v. Acc-calculus:
Minimal typing systems complete for minimal classical logic

Ap-calculus Acc-calculus
x:AFx: A x:AFx:A
r-A r=t:C
YN rret:C
rct:A—B,A T"Fu:AA r-t:A—B I"Fu:A
rr'etu: B,AA rr't:B
Nx:AFt:B,A Mx:AFt:B
MNEAxt:A—B,A MNEXxt:A—B
r=t:AA Fcc: ((A—-B)—A)—A

txa:[TFa:AA]

c:[TFa:A A]
M- pac: AJA

...also a maximal typing system:
one derivation rule for every term construct.
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\-calculus

Classical A-calculus

Ap-calculus v. Acc-calculus:
Minimal typing systems complete for minimal classical logic

Ap-calculus Acc-calculus
x:AFx: A x:AFx:A
r-A r=t:C
rrFA A rret:C
rct:A—B,A T"Fu:AA r-t:A—B I"Fu:A
rr'etu: B,AA rr't:B
Nx:AFt:B,A Mx:AFt:B
MNEAxt:A—B,A MNEXxt:A—B
r=t:AA Fcc: ((A—-B)—A)—A
txa:[TFa:AA]
c:[TFa:AA] ... Acc-calculus shows how to execute proofs

B — noc AD written in intuitionistic ND + Peirce Law!

...also a maximal typing system:
one derivation rule for every term construct.
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Formal proof systems

N In search of a classical A-calculus

Classical realizability
Classical combinatory logic
Classical dialects

bility
Classical A-calculus
!

Exercise 10

Answer these questions for each typing system of the previous slide:

1. Prove Peirce Law ((A— B)— A) — A in the simplest way as possible,
i.e. get a typing derivation of F t: ((A— B)— A)— A where the
A-term t of Ap-calculus (resp. of Acc-calculus) is as small as possible.
Compare this A-term t with the A-term cc of Auo-calculus.

2. Prove (C—A)—((C—B)— A)— A in the simplest way as possible,
i.e. get a typing derivation of - u: (C—A)—((C—B)—A)—A
where the A\-term u is as small as possible.

3. Derive the typing F ul: ((A— B)— A)— A where u is the same
A-term as in previous question and | = \x x.

4. Normalize this A\-term u | within Ap-calculus (resp. within Acc-calculus)
and compare its normal form with the A-term t found at question 1.
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,

waiting for your proof of A.
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,

waiting for your proof of A.
ccx tA—B)A o
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,

waiting for your proof of A.
ccx tA—B)A o

cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.

cc tA=B)=A &

cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.

—txkB o
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.
cc x tATB)=A o
cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
A—B
— tx kU N
P (after computing a while): You gave me a proof of A — B that | now must use.

| have brought a proof u of A. | want one of B in return.
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.
cc tA=B)=A &

cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
A—B
— % kU .0
P (after computing a while): You gave me a proof of A — B that | now must use.
| have brought a proof u of A. | want one of B in return.

o KATE AT
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.
ccx tA—B)A o
cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
A—B
—txkl .0
P (after computing a while): You gave me a proof of A — B that | now must use.
| have brought a proof u of A. | want one of B in return.
o KATE AT
cc: But you just needed a proof of A some time ago. Remember, precisely when we

were in the context o.
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.

ccx tA—B)A o

cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
—txkB o

P (after computing a while): You gave me a proof of A — B that | now must use.

| have brought a proof u of A. | want one of B in return.

o KATE AT

cc: But you just needed a proof of A some time ago. Remember, precisely when we
were in the context o. Here it is.

— uA * O

End of the play
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.

ccx tA—B)A o

cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
—txkB o

P (after computing a while): You gave me a proof of A — B that | now must use.

| have brought a proof u of A. | want one of B in return.

o KATE AT

cc: But you just needed a proof of A some time ago. Remember, precisely when we
were in the context o. Here it is.

— uA * O

End of the play?
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.

ccx tA—B)A o

cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
—txkB o

P (after computing a while): You gave me a proof of A — B that | now must use.

| have brought a proof u of A. | want one of B in return.

o KATE AT

cc: But you just needed a proof of A some time ago. Remember, precisely when we
were in the context o. Here it is.

— uA * O

End of the play?

Certainly not as long as there are remaining occurrences of k, in the term.
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A play in Acc-calculus

P: | have to use your proof of ((A — B) — A) — A. | give you one of (A — B) — A,
waiting for your proof of A.

ccx tA—B)A o

cc (lying): My proof of ((A — B) — A) — A is fairly simple. | actually have a proof
ko of A — B, then just apply it your proof of (A — B) — A to get A.
—txkB o

P (after computing a while): You gave me a proof of A — B that | now must use.

| have brought a proof u of A. | want one of B in return.

o KATE AT

cc: But you just needed a proof of A some time ago. Remember, precisely when we
were in the context o. Here it is.

— uA * O

End of the play?

Certainly not as long as there are remaining occurrences of k, in the term.
Everytime one of them comes in head position, followed by an always
newer proof u, of A: k, % u,. 7, the show goes on (— u,xo — ...).
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