Lecture 2, part 3/3

Madhu Sudan scribe: Anna Niewiarowska

6.10.2007

We will consider functions $f: \mathbb{F}_2^n \to \{0,1\}$. To simplify notation let us denote $G = \mathbb{F}_2^n$ and $\phi = (1, 1, \dots, 1) \in G$.

Definition 1 We say that a function $f: G \to \{0, 1\}$ has a triangle if $\exists_{x,y\in G} f(x) = f(y) = f(x+y) = 1.$

Let us denote $\mathcal{F} = \{f : G \to \{0, 1\} \mid f \text{ is triangle-free}\}.$

We want to design a probabilistic test that checks if a given function f is triangle-free. The test is as follows: We pick $x, y \in G$ at random and accept if at least one of the values f(x), f(y), f(x+y) is 0.

If f is triangle-free then the test accepts with probability 1. We will show that if f is ϵ -far from being triangle-free then the test rejects with probability at least δ (where δ is some positive function of ϵ).

To prove the above statement we will use Green's regularity lemma.

Definition 2 We say that a function $f : G \to \{0,1\} \subset \mathbb{R}$ is ϵ -regular if $\forall_{\alpha \in G \setminus \{\phi\}} \ |f_{\alpha}| < \epsilon.$

Definition 3 Let $f : G \to \{0,1\} \subset \mathbb{R}$. For a fixed element $x \in G$ and a subgroup H of G we define a function f_H^{+x} : $H \rightarrow \{0,1\}$ as follows: $\forall_{y \in H} f_H^{+x}(y) = f(x+y).$

We say that f is (H, x, ϵ) -regular if the function f_H^{+x} is ϵ -regular.

Lemma 1 (Green's regularity lemma) For every $\epsilon > 0$ there exists a constant $c = c(\epsilon)$ such that the following holds:

For every function $f: G \to \{0,1\}$ there exists a subgroup H of G that satisfies:

1) $\frac{|G|}{|H|} \leq c$ 2) $Pr_x[f \text{ is not } (H, x, \epsilon)\text{-regular}] \leq \epsilon$

Suppose we want to test whether a given function $f : G \to \{0, 1\}$ is triangle-free. Let us fix some constant $\epsilon > 0$ and let H be a subgroup as in the lemma.

Group G splits into cosets with respect to H: elements $x, y \in G$ are in the same coset iff $y - x \in H$. If f is (H, x, ϵ) -regular, then it is also (H, x', ϵ) -regular for all elements x' from the same coset as x. From Green's regularity lemma we get that f can be (H, x, ϵ) -not-regular only for elements in ϵ fraction of cosets.

We will create a function $f: G \to \{0, 1\}$ which will be close to f and which will have some nice properties. In all the cosets where f is not (H, x, ϵ) regular the value of \tilde{f} will be 0. In the cosets where 1-s have very small density (in this case $\leq 2\epsilon^{1/3}$) \tilde{f} has also values 0 for all elements. In all the other cosets \tilde{f} has the same value as f.

The function \tilde{f} is not very far from $f: \delta(\tilde{f}, f) \leq \epsilon + 2\epsilon^{1/3}$.

Let us think what would happen if we run triangle-free test on \tilde{f} instead of f. If $\tilde{f}(x) = 1$ for some $x \in G$ then also f(x) = 1. Therefore the rejection probability for f is at least as big as the rejection probability for \tilde{f} .

Suppose that f has a triangle (if $dist(f, \mathcal{F})$ is big enough then f must have a triangle). We will show that the test rejects f with some positive probability (which depends on the fixed ϵ). The test rejects if f(x)f(y)f(x+y) = 1.

$$Pr[\text{test rejects for } f] = E_{x,y \in G}[f(x)f(y)f(x+y)] = \sum_{\alpha \in G} \hat{f}_{\alpha}^{3}$$

If f is ϵ -regular then $Pr[\text{test rejects for } f] \ge \hat{f}_{\phi}^{3} - \epsilon$.

Let us denote by x_0, y_0 the elements for which the triple $(x_0, y_0, x_0 + y_0)$ is a triangle for \tilde{f} . We know that in the cosets where x_0, y_0 and $x_0 + y_0$ belong the density of 1-s is not very small (at least $2\epsilon^{1/3}$ fraction of values is 1). We also know that functions $f_H^{+x_0}, f_H^{+y_0}$ and $f_H^{+(x_0+y_0)}$ are ϵ -regular. Therefore we get:

$$E_{x,y\in H}[f_{H}^{+x_{0}}(x)f_{H}^{+y_{0}}(y)f_{H}^{+(x_{0}+y_{0})}(x+y)] = \sum_{\alpha\in G}\hat{f}_{\alpha}^{+x_{0}}\hat{f}_{\alpha}^{+y_{0}}\hat{f}_{\alpha}^{+(x_{0}+y_{0})} \ge \hat{f}_{\phi}^{+x_{0}}\hat{f}_{\phi}^{+y_{0}}\hat{f}_{\phi}^{+(x_{0}+y_{0})} - \max_{\alpha\neq\phi}\{|\hat{f}_{\alpha}^{+x_{0}}|\} \ge 8\epsilon - \epsilon = 7\epsilon$$

There are at most c H-cosets (where $c = c(\epsilon)$ is taken from Green's regularity lemma). For random $x, y \in G$ element x is in the same coset as x_0 and y is in the same coset as y_0 with probability at least $\frac{1}{c^2}$. Therefore we get:

$$Pr[\text{test rejects for } f] = E_{x,y \in G}[f(x)f(y)f(x+y)] \ge \frac{1}{c^2} E_{x,y \in H}[f_H^{+x_0}(x)f_H^{+y_0}(y)f_H^{+(x_0+y_0)}(x+y)] \ge \frac{1}{c^2} \cdot 7\epsilon$$

We have proved that for any $\epsilon > 0$ if $dist(f, \mathcal{F}) > \epsilon + 2\epsilon^{1/3}$ then the test rejects f with probability at least $\frac{1}{c^2} \cdot 7\epsilon$ for some $c = c(\epsilon)$.

At the end we state another regularity lemma:

Lemma 2 (Szemeredi regularity lemma) For every $\epsilon > 0$ there exists some constant c such that the following holds for every graph G:

There is a partition V_1, \ldots, V_c of the vertices of G such that all but ϵ -fraction of pairs (V_i, V_j) satisfy the following condition: for all $A \subseteq V_i$ and $B \subseteq V_j$

$$p_{ij}|A||B| - \epsilon|V_i||V_j| \le E(A \leftrightarrow B) \le p_{ij}|A||B| + \epsilon|V_i||V_j|$$

where $p_{ij} = \frac{E(V_i \leftrightarrow V_j)}{|V_i||V_j|}$.