Sub-linear time algebraic algorithms

Madhu Sudan Scribe: Agnieszka Kozubek

October 6, 2007

1 Linearity testing

Let \mathcal{F}_{hom} be the space of all homomorphisms $\mathbb{F}_2^n \to \mathbb{F}_2$.

Theorem 1. Let us assume that $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is such that

$$\Pr_{x,y}[f(x) + f(y) = f(x+y)] = \delta_0.$$

Then $\delta(f, \mathcal{F}_{hom}) \leq \delta_0$.

Proof. We may identify \mathbb{F}_2 with $\{-1, +1\}$. From now on we will think of f as $f: \mathbb{F}_2^n \to \{-1, +1\}$. Then

$$\begin{aligned} \Pr_{x,y}[f(x) \cdot f(y) &= f(x+y)] = \\ &= \Pr_{x,y}[f(x) \cdot f(y) \cdot f(x+y) = 1] = \\ &= \frac{1 + E_{x,y}[f(x) \cdot f(y) \cdot f(x+y)]}{2}. \end{aligned}$$

Let $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{F}_2^n$ and let $L_\alpha : \mathbb{F}_2^n \to \{-1, 1\}$ be defined as

$$L_{\alpha}(x_1,\ldots,x_n) = (-1)^{\langle \alpha,x\rangle},$$

where $\langle \alpha, x \rangle = \sum_{i=1}^{n} \alpha_i x_i$ (in \mathbb{F}_2).

The functions L_{α} are all possible homomorphisms. Moreover, they form an

orthonormal basis of functions from $\mathbb{F}_2^n \to \mathbb{R}$. Hence $\delta(f, \mathcal{F}_{hom}) = \min_{\alpha} \{\delta(f, L_{\alpha})\}$. Let $\langle f, g \rangle \triangleq \underset{x \in \mathbb{F}_2^n}{E} [f(x)g(x)]$, where $f, g : \mathbb{F}_2^n \to \mathbb{R}$. It is easy to note the

following:

- If $f, g: \mathbb{F}_2^n \to \{-1, 1\}$, then $\langle f, g \rangle = 1 2\delta(f, g)$.
- $\langle L_{\alpha}, L_{\alpha} \rangle = 1$
- $\langle L_{\alpha}, L_{\beta} \rangle = 0$, if $\alpha \neq \beta$

- If $\alpha = 0$, then $L_{\alpha}(x) = 1$ for all x. If $\alpha \neq 0$, then $\Pr_{x}[L_{\alpha}(x) = 1] = \frac{1}{2}$.
- $L_{\alpha}(x+y) = L_{\alpha}(x)L_{\alpha}(y)$
- $L_{\alpha+\beta}(x) = L_{\alpha}(x)L_{\alpha}(y)$

Let us define $\hat{f}_{\alpha} \triangleq \langle f, L_{\alpha} \rangle$.

Proposition 1. Let $f : \mathbb{F}_2^n \to \mathbb{R}$. $f(x) = \Sigma \hat{f}_{\alpha} \cdot L_{\alpha}(x)$

We will now consider the expression:

$$\mathop{E}_{x,y}[f(x) \cdot f(y) \cdot f(x+y)] = ?$$

Two things to consider:

- 1. How does this look like for the basis functions?
- 2. Extend to all functions using Fourier coefficients.

First note that

- $\mathop{E}_{x,y}[L_{\alpha}(x)L_{\alpha}(y)L_{\alpha}(x+y)] = 1$
- $$\begin{split} & E\left[L_{\alpha}(x)L_{\alpha}(y)L_{\beta}(x+y)\right] = E\left[L_{\alpha}(x)L_{\beta}(x)L_{\alpha}(y)L_{\beta}(y)\right] = \\ & E\left[L_{\alpha}(x)L_{\beta}(x)\right]E\left[L_{\alpha}(y)L_{\beta}(y)\right] = 0, \text{ where } \alpha \neq \beta. \end{split}$$
- Similarly we may show that if $\alpha \neq \beta \neq \gamma \neq \alpha$ then $\underset{x,y}{E}[L_{\alpha}(x)L_{\beta}(y)L_{\gamma}(x+y)] = 0$

Hence

$$\begin{split} E_{x,y}[f(x)f(y)f(x+y)] &= \\ &= E_{x,y}[\Sigma_{\alpha}\hat{f}_{\alpha}L_{\alpha}(x)\Sigma_{\beta}\hat{f}_{\beta}L_{\beta}(y)\Sigma_{\gamma}\hat{f}_{\gamma}L_{\gamma}(x+y)] \\ &= \Sigma_{\alpha,\beta,\gamma}\hat{f}_{\alpha}\hat{f}_{\beta}\hat{f}_{\gamma}E_{x,y}[L_{\alpha}(x)L_{\beta}(y)L_{\gamma}(x+y)] \\ &= \Sigma_{\alpha}\hat{f}_{\alpha}^{3} \end{split}$$

Proposition 2. Let $f : \mathbb{F}_2^n \to \mathbb{R}$. Then $\Sigma_{\alpha} \hat{f}_{\alpha}^2 = \langle f, f \rangle$.

Proof. Verify using the definitions.

$$\begin{split} \langle f, f \rangle &= \langle \Sigma_{\alpha} \hat{f}_{\alpha} L_{\alpha}(x), \Sigma_{\beta} \hat{f}_{\beta} L_{\beta}(x) \rangle \\ &= \Sigma_{\alpha,\beta} \hat{f}_{\alpha} \hat{f}_{\beta} \langle L_{\alpha}(x), L_{\beta}(x) \rangle \\ &= \Sigma_{\alpha} \hat{f}_{\alpha}^2 \end{split}$$

Therefore, if $f : \mathbb{F}_2^n \to \{-1, +1\}$ then $\langle f, f \rangle = 1$. **Proposition 3.** $\Sigma \hat{f}_{\alpha}^3 \leq \max_{\alpha} \{\hat{f}_{\alpha}\}$

Proof.

$$\begin{split} \Sigma_{\alpha} \hat{f}_{\alpha}^{3} &\leq \Sigma_{\alpha}(\max_{\beta}\{\hat{f}_{\beta}\}) \cdot \hat{f}_{\alpha}^{2} \\ &\leq \max_{\beta}\{\hat{f}_{\beta}\} \cdot \Sigma_{\alpha} \hat{f}_{\alpha}^{2} \\ &= \max_{\beta}\{\hat{f}_{\beta}\} \end{split}$$

We have proved that

if $Pr[\text{test rejects}] = \delta_0$ then $E[f(x)f(y)f(x+y)] = 1 - 2\delta_0$.

We also proved that

$$E[f(x)f(y)f(x+y)] \le \max_{\beta} \{\hat{f}_{\beta}\}.$$

But $\max_{\beta}{\{\hat{f}_{\beta}\}} = 1 - 2\delta(f, \mathcal{F}_{hom})$ and hence $\delta(f, \mathcal{F}_{hom}) \leq \delta_0$.

2 Dictator testing

Definition 1. Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$. The function f is a Dictatorship if there exists i such that $f(x_1, \ldots, x_n) = x_i$.

We are interested in testing this property.

Definition 2. The function f is k-Non-Dictatorship if f depends on more than k variables.

Dictator Testing:

- 1. If f is a Dictatorship then accept with probability $\rightarrow 1$
- 2. If f is far from every function that depends on less than k variables then accept with probability $\rightarrow \frac{1}{2}$.