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Graph Love

We, logic-minded people, love graphs:

– graphs are a very nice and neat data model, useful both in
theory and practice

Machine-Learning people also love graphs in recent years:

– they understood that usual NNs are not good enough for
(abundant) problems where objects are naturally
graph-structured

– and invented Graph Neural Networks (GNNs) [SGT+08]
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Graphs are Everywhere

Now days, graph learning with GNNs is one of hot topics in
machine-learning community:

– hundreds of papers every year

– applied to many problems (where it should and should not)
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Goals of This Lecture

To understand what are GNNs

– it is actually a rich family of formalisms, not a single thing
– new GNN architectures pop up every week

To understand what GNNs have in common with classic CS
formalisms (isomorphism tests, bisimulations, logics)

– Surprisingly, a lot, even beyond just a basic idea that they both do
something with graphs

– This is currently quite an active research area, with several deep and
interesting papers appearing every year

– Unfortunately, the area is quite a big hype: many more not-so-good
papers also appear, and it may be difficult to find the gems

To see how this can help us learn useful things about GNNs

– what they can and cannot do (for various notions of expressibility)
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My Assumptions about You

I assume that you know First Order Logic and basics of ML&NNs

Knowledge of Modal/Description Logics and (U)CQs is also
desirable, but I will introduce them in terms of FO

Knowledge of GNNs is also welcome, but if you know too much,
my lecture may be boring for you
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The Plan

1. Graphs and Graph Learning

Wednesday

2. Distinguishing Power of GNNs
(vs. WL-test)

∼Wednesday

3. (Uniform) Expressive Power
(vs. bisimulation and logic)

∼Thursday

4. Non-uniform Expressive and Approximation Power,
other considerations

∼Friday

+ tutorials on Thursday and Friday
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1. Preliminaries:
Graphs and Graph Learning



Graphs

Definition

A graph G = (V ,E , λ) with dimension d ∈ N has

– a set V of nodes

– a set E of undirected edges—that is, unordered pairs of
(distinct) elements in V

– a node labelling λ : V → Rd

Observations:

– undirected
– edges are not labelled (and of one type)
– simple (no self-loops, repeated edges, etc)

This is for simplicity (and customary in ML):
nearly all of the results we discuss generalise to other graphs 6



Graph Learning: Graph Embeddings

Graph learning is about learning (partially) unknown graph
embeddings:

– Let G be the class of all graphs (of some given dimension d)
– Let Y be an output space
– A graph embedding is a function of the form

ξ : G → Y

Example: Prediction of chemical/medical property of molecules

ξ : → {YES ,NO}

Note: embedding are invariant under permutations of the nodes and edges—
that is, under representation of the graphs (or isomorphisms)
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Graph Learning: Node Embeddings

Also, graph learning is about learning partially unknown node
embeddings:

– Let G be the class of all graphs (of some given dimension d)
– Let GV be the class of all pairs (G , v), where

G = (V ,E , λ) ∈ G and v ∈ V

– Let Y be an output space
– A node embedding is a function of the form

ξ : GV → Y

Example: prediction of the relevance of a paper in citation network

– Given one (or several) networks,
predict a number in [0, 1] for every paper

We mostly concentrate on node embeddings in this lecture,
but results usually transfer to graph level
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Recall: Usual Deep Neural Networks (NNs)
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– NN N with weight wn′→n for each two connected neurons
– Compute left to right λ(n) := f (

∑
wn′→n × λ(n′))

– Goal: Find the weights that ’solve’ your problem
(classification, regression, etc.)

- minimise Dist(N (x), g(x)), where g is what you want to learn
- use backpropagation algorithms
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Can We Use Them for Graph Learning?

– Problem 1: for fully connected NNs, when a layer has many
neurons, there are a lot of weights

- Example: input is a 250 × 250 grid graph, and we want to
build a fully connected NN with 500 neurons per layer

- Between the first two layers we have
250 × 250 × 500 = 31, 250, 000 weights

– Problem 2: The size of the input for each NN is fixed, but
- Graph learning does not assume any restriction on the size of

the input graph: a model trained on small graphs should be
applicable to graphs of arbitrary big size

- We can, of course, impose a hard bound on the size of the
graphs, but....
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Solution for Grids: Convolutional Neural Networks

. . . . . .

input vector
(an image)

Idea: CNNs use the structure of the data (here, the grid)

– fewer weights to learn (e.g, only 9 for the first layer)
– other advantage: recognise patterns that are local
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Generalisation to All Graphs: Graph Neural Networks (GNNs)

. . . . . .

input vector
(a molecule)

output:
is it poisonous?

Idea: use the structure of the data

– GNNs generalise this idea to allow any graph as input
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Node-Level AC-GNNs: Framework Formalisation

Definition ([BKM+20, GSR+17])
An aggregate-combine (node-level) GNN (AC-GNN) with L layers,
input dimension d , (hidden) dimensions d0 = d , d1, . . . , dL, and
output space Y is two families of functions and another function:

– aggregation AGG(ℓ) : NRdℓ−1 → Rdℓ−1 , for ℓ = 1, . . . , L

– combination COMB(ℓ) : R2dℓ−1 → Rdℓ , for ℓ = 1, . . . , L

– output OUT : RdL → Y

Note: in case of Y = RdL for dL = 1 (e.g., regression)
we can take OUT as identity and not mention it

13



AC-GNN Application

1. Input: a graph G = (V ,E , λ) of dimension d

(undirected, simple, node-labelled)

2. Run of a GNN with L layers on G :
- initialise x (0)

v := λ(v) for every v ∈ V

- iteratively compute x (ℓ)
v ∈ Rdℓ for each v and ℓ as follows,

where NG (v) is the set of neighbours of v in G :

x (ℓ)
v := COMB(ℓ)(x (ℓ−1)

v ,AGG(ℓ)({{x (ℓ−1)
u | u ∈ NG (v)}}))

3. Output: OUT(x (L)
v ) for each v ∈ V

Thus, AC-GNNs realise node embeddings

14
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Graph-Level AC-GNNs

The same, except that OUT aggregates final labels from all nodes:

Definition
An graph-level AC-GNN . . . is two families of functions and one
single function

– aggregation AGG(ℓ) . . . , combination COMB(ℓ) . . .

– output READOUT : NRdL → Y

Application: again the same, except

1–2. . . .
3. Output: READOUT({{x (L)

v | v ∈ V }})

Thus, graph-level AC-GNNs realise graph embeddings

We concentrate on node-level GNNs,
but nearly all results transfer to the graph level
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Where is Something Neural? Max-Sum GNNs

In real GNNs, functions AGG(ℓ) and/or COMB(ℓ) depend on
matrices and/or vectors of (usually trainable) parameters and
include non-linearity

Example: Basic Sum-Plus GNN with sigmoid

x (ℓ)
v := Sigmoid

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(Σu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
where

– A(ℓ) and C (ℓ) are matrices of appropriate dimensions
– b(ℓ) is a vector of appropriate size
– Sigmoid is sigmoid function (applied element-wise to vectors)

It is an AC-GNN: AGG(ℓ) is the sum and COMB(ℓ) is the rest

Abuse of terminology: it is actually a family of AC-GNNs, or GNN architecture
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More GNN Architectures

In

x (ℓ)
v := Sigmoid

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(Σu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
we can have

– average, max, etc. instead of sum

– vector concatenation ||, etc. instead of +

– ReLU, etc. instead of sigmoid: ReLU(x) =

0, if x < 0,

x , otherwise

(a version of) Graph Convolutional Networks (GCNs) [SKB+18]:

x (ℓ)
v := ReLU

(
A(ℓ)(avgu∈NG (v)∪{v}x

(ℓ−1)
u )

)
GraphSAGE [HYL17]:

x (ℓ)
v := A(ℓ)(x (ℓ−1)

v || (maxu∈NG (v) ReLU(C (ℓ)x (ℓ−1)
u )))

(many-many more . . . )
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Matrix Form

Such GNNs are often written in matrix form.
For example:

x (ℓ)
v := Sigmoid

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(Σu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
is the same as

X(ℓ) := σ
(
A(ℓ)X(ℓ−1) + C (ℓ)GX(ℓ−1) + b(ℓ)

)
for G the adjacency matrix of G

18



Beyond Aggregate-Combine GNNs

Now, there are many advanced GNN architectures that do not fall
into the AC-GNN framework

Many of them appeared as attempts to address the limitations of
AC-GNNs discovered in the work I will present today

Example 1: node embedding ‘node is reachable from a node with
label 1’ is not expressible by any AC-GNN

because each AC-GNN has a fixed number of layers

– Recurrent GNNs [PTCK24] can, in principle, learn reachability

19



Beyond Aggregate-Combine GNNs

Now, there are many advanced GNN architectures that do not fall
into the AC-GNN framework

Many of them appeared as attempts to address the limitations of
AC-GNNs discovered in the work I will present today

Example 2: node embedding ‘there is a red node somewhere in the
graph that is neither me nor my neighbour’ is not expressible by
any AC-GNN, and recursion does not help

because AC-GNNs (even with recursion) cannot look into other
connected components

– GNNs with global readout [BKM+20] can, in principle, check
global information (we will have a look)
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Beyond Aggregate-Combine GNNs

Now, there are many advanced GNN architectures that do not fall
into the AC-GNN framework

Many of them appeared as attempts to address the limitations of
AC-GNNs discovered in the work I will present today

Example 3: graph embedding ‘graph has a cycle of length 5’ is also
not expressible by any (graph-level) AC-GNN

– 5-WL GNNs [MRF+19] can, in principle, check for a 5-cycle

We will nearly ultimately concentrate on AC-GNNs, and
discuss more powerful architectures briefly at the end

19



Expressivity Notions for GNNs

So, we intuitively see that different GNN architectures can do some
things and cannot do other. What does it mean, formally?

We next consider several related notions for GNNs,
all sometimes called expressive power:

– distinguishing power
– (uniform) expressive power
– non-uniform expressive power
– (non-uniform) approximation power
– (+ learnability)

Answers to these questions may reveal:

– what graph information is used by embedding methods
– which embeddings could—in principle—be learned
– whether more powerful embedding methods may be needed for the

application at hand

20
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Before We Proceed

‘Weaker expressivity’ does not mean ‘worse’:

it is just more a-priori knowledge!

21



2. Distinguishing Power of GNNs



Distinguishing Power

Definition
A class C2 of node embeddings has as strong distinguishing (or
separating) power as a class C1 if, for every G , v , G ′, v ′,

ξ1(G , v) ̸= ξ1(G
′, v ′) for some ξ1 ∈ C1 implies

ξ2(G , v) ̸= ξ2(G
′, v ′) for some ξ2 ∈ C2.

Classes C1 and C2 have the same distinguishing power if both
directions hold.

Note: One of C1, C2 may be singleton

The notion transfers to formalisms realising embeddings, such as AC-GNNs.

Our first (and famous) result:

Theorem ([MRF+19, XHLJ19])
AC-GNNs have the same distinguishing power as the stable
colouring of the Weisfeiler-Leman (WL) test.

Also, we will have a more tricky result: GINs are also such

22
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Weisfeiler-Leman Graph Isomorphism Test: Properties

Theorem ([MRF+19, XHLJ19])
AC-GNNs have the same distinguishing power as the stable
colouring of the Weisfeiler-Leman (WL) test.

– WL test is a classic formalism, so it is a good reference point for
distinguishability

– For example, it has the same distinguishing power as Graded Modal Logic
(node level, we will come back to it) and sentences FOC2 (graph level)

It is a complete, but not sound test for isomorphism of two graphs:

– if it says NO, then the graphs are not isomorphic
– if it says YES, then it may be isomorphic or not

(but the latter is only in special cases rare in practice)

Useful, because complexity of checking isomorphism of two graphs
is probably hard (a big open problem in CS):

– no polynomial algorithm is known, but no one can prove NP-hardness
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Weisfeiler-Leman Graph Isomorphism Test: Algorithm

Weisfeiler-Leman (WL) graph isomorphism test [WL68]
(also called colour refinement)

1. Input: two graphs with coloured nodes
(or, in our case nodes with embeddings)

2. Iterate the following until the colouring is stable
(i.e., the partition of the nodes into colours does not change):

- two nodes v , v ′ are assigned the same colour iff they have
same colour and same multisets of colours of neighbours

3. Accept if the two graphs have the same multiset of colours,
Reject otherwise
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Weisfeiler-Leman: Example 1

→

→ → →

→

→ → →

{{•, •, •, •, •, •}} ≠ {{•, •, •, •, •, •}}

→ reject (and this is correct)
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Weisfeiler-Leman: Example 2

→

→

{{•, •, •, •, •, •, •, •, }} = {{•, •, •, •, •, •, •, •, }}
→ accept (but this is incorrect!)
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AC-GNNs and Weisfeiler-Leman

Weisfeiler-Leman for each node v works as

– WL(0)
v := λ(v)

– WL(ℓ)
v := INJ(ℓ)(WL(ℓ−1)

v , {{WL(ℓ−1)
u | u ∈ NG (v)}})

AC-GNNs for each node v work as

– x (0)
v := λ(v)

– x (ℓ)
v := COMB(ℓ)(x (ℓ−1)

v ,AGG(ℓ)({{x (ℓ−1)
u | u ∈ NG (v)}}))

We observe:

– WL works exactly as an AC-GNN with
injective aggregation and combination functions

– If WL assigns the same value to two nodes at round ℓ,
then every AC-GNN also assigns the same value to these two
nodes at layer ℓ
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AC-GNNs and Weisfeiler-Leman

We observe:

– WL works exactly as an AC-GNN with
injective aggregation and combination functions

– If WL assigns the same value to two nodes at round ℓ,
then every AC-GNN also assigns the same value to these two
nodes at layer ℓ

We can say that WL algorithm realises a node embedding
(or a class of, but all with the same distinguishing power)

Theorem ([MRF+19, XHLJ19])
AC-GNNs and the stable colouring of the WL algorithm have the
same distinguishing power.

For the ‘GNN simulates WL’ direction, we just need to choose the number of
layers big enough so that WL stabilises on the two given graphs
(recall that it is ok to have a separate GNN for each two of graph-node pairs). 28



One Question Left

Recall that we rely on the fact:
WL works as an AC-GNN with injective AGG(ℓ) and COMB(ℓ)

Such functions obviously exist, but can they be really ‘neural’,
something like in our Sum-Plus GNNs?

We can try x (ℓ)
v := Sigmoid

(
A(ℓ)x (ℓ−1)

v || C (ℓ)(Σu∈NG (v) f (x
(ℓ−1)
u ))

)
for some smart f so that Σx∈X f (x) is always injective

– Unfortunately, such an f working for arbitrarily big X does not exist
– Luckily, we can use the same trick:

we do not need arbitrarily big X , only up to the number of nodes in the
input graphs, which ensures that AGG(ℓ) is injective for these graphs
(and not all graphs)

– such f exists (constructed using a straightforward generalisation of
so-called deep sets)

– this is a variation of so-called GINs [XHLJ19] (Graph Isomorphism
Networks, misleading name)
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Is Distinguishable Power Enough?

1. WL realises a node embedding

2. Each AC-GNN realises a node embedding

3. AC-GNNs have the same distinguishing power as WL

Question: Can we say that there is an AC-GNN that gives the same
answer for every node in every graph as WL?

Actually, no.

A simple argument is that each AC-GNN has a fixed number of
layers, but the number of iterations of WL may be arbitrarily large,
depending on the graph.
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A Glimpse Beyond AC-GNNs: ACR-GNNs

Definition ([BKM+20])
An aggregate-combine-readout (node-level) GNN (ACR-GNN)
with L layers, input dimension d , (hidden) dimensions
d0 = d , d1, . . . , dL, and output space Y is three families of
functions and another function:

– aggregation AGG(ℓ) : NRdℓ−1 → Rdℓ−1 , for ℓ = 1, . . . , L

– readout READOUT(ℓ) : NRdℓ−1 → Rdℓ−1 , for ℓ = 1, . . . , L

– combination COMB(ℓ) : R3dℓ−1 → Rdℓ , for ℓ = 1, . . . , L

– output OUT : RdL → Y

Node update:

x (ℓ)
v := COMB(ℓ)(x (ℓ−1)

v ,AGG(ℓ)({{x (ℓ−1)
u | u ∈ NG (v)}},

READOUT(ℓ)({{x (ℓ−1)
u | u ∈ V }})) 31



AC-GNN Application

‘Folklore’ Weisfeiler-Leman graph isomorphism test

1. Input: two graphs with coloured nodes

2. Iterate the following until the colouring is stable:
- two nodes v , v ′ are assigned the same colour iff they have

same colour, same multisets of colours of neighbours, and
same multisets of colours of non-neighbours

3. Accept if and only if the graphs have the same multiset of colours

Theorem ([MRF+19, XHLJ19])
ACR-GNNs and the stable colouring of the ‘folklore’ WL
algorithm have the same distinguishing power.
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3. Expressive Power of GNNs



Expressive Power

Definition
A class C2 of node embeddings has as strong (uniform) expressive
power as a class C1 if C1 ⊆ C2.

Classes C1 and C2 have the same expressive power if both
directions hold.

This notion again transfers directly to formalisms realising
embeddings, when it becomes more interesting

– We start with expressivity of AC-GNNs in terms of a special
kind of bisimulation
(which is a modification of the distinguishability result)

– Then, finally, we look at connections to logic

33



3.1 Expressivity via Bisimulation



Bisimulation

Definition

Let G1 = (V1,E1, λ1) and G2 = (V2,E2, λ2) be graphs. Relation
ρ ⊆ V1 × V2 is a bisimulation if for all (v1, v2) ∈ ϱ

– λ1(v1) = λ2(v2)

– for every v ′1 ∈ NG (v1) there is v ′2 ∈ NG (v2) with (v ′1, v
′
2) ∈ ϱ

– for every v ′2 ∈ NG (v2) there is v ′1 ∈ NG (v1) with (v ′1, v
′
2) ∈ ϱ

Observations:

– G1 and G2 may be the same
– a union of two bisimulations is also a bisimulation, so we can

talk about the maximal bisimulation

This is a classic notion that appears in many areas of CS:
verification, databases, modal logics, etc. 34



Counting Bisimulation

Definition

Let G1 = (V1,E1, λ1) and G2 = (V2,E2, λ2) be graphs. Relation
ρ ⊆ V1 × V2 is a counting bisimulation if for all (v1, v2) ∈ ϱ

– λ1(v1) = λ2(v2),

– for every v ′1 ∈ NG (v1) there is a distinct v ′2 ∈ NG (v2) with
(v ′1, v

′
2) ∈ ϱ

– for every v ′2 ∈ NG (v2) there is a distinct v ′1 ∈ NG (v1) with
(v ′1, v

′
2) ∈ ϱ

In other words, the number of neighbours in each counting
bisimulation class should now be the same

Example: the same-colouring relation of the result of WL is the
maximal counting bisimulation
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Partial Counting Bisimulation

Definition

Let G1 = (V1,E1, λ1) and G2 = (V2,E2, λ2) be graphs. Relation
ρℓ ⊆ V1 × V2 is a ℓ-partial counting bisimulation, for ℓ ≥ 0, if for
all (v1, v2) ∈ ϱℓ

– λ1(v1) = λ2(v2),

– if ℓ > 0, then for every v ′1 ∈ NG (v1) there is a distinct
v ′2 ∈ NG (v2) with (v ′1, v

′
2) ∈ ϱℓ−1

– if ℓ > 0, then for every v ′2 ∈ NG (v2) there is a distinct
v ′1 ∈ NG (v1) with (v ′1, v

′
2) ∈ ϱℓ−1

In other words, we now care ‘how far we look’

Example: the same-colouring relation of the intermediate result of
WL after ℓ rounds is the maximal ℓ-partial counting bisimulation
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Bisimulation-Invariant Node Embedings and AC-GNNs

Definition
A node embedding ξ is (ℓ-partial, counting) bisimulation invariant
if ξ(G , v) = ξ(G ′, v ′) for every pair (v , v ′) in the maximal
(ℓ-partial, counting) bisimulation

In other words, it cannot separate bisimilar nodes

We have:

– Every AC-GNN with L layers realises an L-partial counting bisimulation
invariant embedding: both care about tree-unravellings only

– Every L-partial counting bisimulation invariant embedding is realised by
an AC-GNN with L layers: take injective aggregate and combine, make
the final output function do all the job

Theorem ([PTCK24])
AC-GNNs is equivalent in expressive power to the class of all
partial counting bisimulation-invariant embeddings
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Bisimulation-Invariant Node Embedings and AC-GNNs

Theorem ([PTCK24])
AC-GNNs is equivalent in expressive power to the class of the
ℓ-partial counting bisimulation-invariant embeddings for all ℓ.

Observations:

– Even if partial is unbounded here, it is essential: there are
counting bisimulation invariant embeddings not realised by any
AC-GNN

– Problem (or not): not constructive, there may not be ‘real’
GNN that does this

– But it is a good upper bound for all AC-GNNs
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3.2 Expressivity via Logic:
Graded Modal Logic Case



Comparison to Logic

Logic and GNNs have a lot in common,
both realise functions on graphs:

– Node-level GNNs realise node embedings—that is, functions
from graph-node pairs to embeddings

– Unary logic (e.g., FOL) formulas realise functions from
structure-element pairs to yes/no

Same correspondence for graph-level GNNs and logical sentences

We have a very fine-grained landscape of logics in terms of
expressive power, and it could be beneficial to leverage this
knowledge for GNNs
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Common Grounds: Inputs and Outputs of Logic and GNNs

We first need to unify the input and output spaces

Input:

– Every logical structure over the signature with one symmetric binary
relation and a number of unary relations can be seen as a graph in the
GNN sense: we just need to assign a dedicated position in the embedding
vector to each unary predicate and do 1-0 encoding

Example: atoms A(a),C (a) for the signature with unary predicates
A,B,C can be seen as label (1, 0, 1) of node a.

Output:

– We can restrict to AC-GNNs with output space Y = {0, 1}—that is, to
hard binary node classification

Note: Real-life instances of AC-GNNs (GraphSAGE, GCN, etc.)
can be converted to such by a 1-0 classification threshold function
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Logical and GNN-Based Classifiers

Observations:
– The family of node classifiers realised by reasonable GNN architectures

(all AC-GNNs, GCN, GraphSAGE) can express something way beyond any
usual logic due to sophisticated aggregation over neighbours, and,
especially, non-linearity (sigmoid, ReLU, etc.)

– There are results that find (very expressive) logics capturing, in terms of
expressive powers, some of such architectures; we will come back to them

– But our first goal is to restrict ourselves to AC-GNN-based classifiers that
are also in FOL

Our next theorem:
Theorem ([BKM+20])
A node classifier is realisable by both an AC-GNN and FOL
formula if and only if it is realisable by a Graded Modal Logic
formula.

We will prove this for a neural subclass of AC-GNNs
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Graded Modal Logic

GML has its own syntax and terminology:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | ⋄nϕ

DL people may know it as ALCQ with one role name E ,
with its own syntax and terminology:

C ::= A | C ⊓ C | ¬C | ∃nE .C

However, we can see it as a fragment of unary FOL:

φ(x) ::= A(x) | φ(x) ∧ φ(x) | ¬φ(x) | ∃≥ny . (E (x , y) ∧ φ(y))

Notes:

– counting quantifiers ∃≥n are a sugar in FOL: expressible via inequalities
– but with a cost of extra variables, and so FO2 is different from FOC2

– so, GML is inside FOC2 but not in FO2
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Backward Direction of the Theorem: Building GNNs

Lemma
For every GML formula there is a binary AC-GNN node classifier
realising the same embedding.

– Simple GNN classifier:

x (ℓ)
v := trReLU

(
Ax (ℓ−1)

v + C
(∑

u∈NG (v)
x (ℓ−1)
u

)
+ b

)
,

where trReLU is the truncated ReLU:
trReLU(x) = {0 if x < 0; x if 0 < x < 1; 1 otherwise}

– Idea: the feature vectors x (ℓ)
v of each node have one

component x (ℓ)
v [φ′] ∈ {0, 1} for each subformula φ′ of φ

- x (ℓ)
v [φ1 ∧ φ2] = trReLU(x (ℓ−1)

v [φ1] + x (ℓ−1)
v [φ2]− 1)

- x (ℓ)
v [¬φ′] = trReLU(−x (ℓ−1)

v [φ′] + 1)
- x (ℓ)

v [∃≥ny E (x , y)∧ φ′] = trReLU(
∑

u∈NG (v)
x (ℓ−1)
u [φ′]− (n− 1))

– For L structure depth of φ, we have x (L)
v [φ] = 1 iff v |= φ(x)
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where trReLU is the truncated ReLU:
trReLU(x) = {0 if x < 0; x if 0 < x < 1; 1 otherwise}

– Idea: the feature vectors x (ℓ)
v of each node have one

component x (ℓ)
v [φ′] ∈ {0, 1} for each subformula φ′ of φ

- x (ℓ)
v [φ1 ∧ φ2] = trReLU(x (ℓ−1)

v [φ1] + x (ℓ−1)
v [φ2]− 1)

- x (ℓ)
v [¬φ′] = trReLU(−x (ℓ−1)

v [φ′] + 1)
- x (ℓ)

v [∃≥ny E (x , y)∧ φ′] = trReLU(
∑

u∈NG (v)
x (ℓ−1)
u [φ′]− (n− 1))

– For L structure depth of φ, we have x (L)
v [φ] = 1 iff v |= φ(x)
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Forward Direction: GML for FO-expressible AC-GNNs

Lemma
For every AC-GNN node classifier that is also in FO, there is a
GML formula realising the same embedding.

We know:

– AC-GNN node classifiers are all partial counting
bisimulation-invariant (i.e., binary embeddings)

– every partial counting bisimulation-invariant embedding is
counting bisimulation-invariant

– Van Benthem-style (rather deep) theorem for GML: counting
bisimulation-invariant fragment of FO is precisely GML [Ott19]
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3.3 Expressivity via Logic: UCQs



Restricted AC-GNNs Equi-Expressible with Some Logic

Can we find a (preferably nice-looking) sub-class of AC-GNN
classifiers that is equivalent in expressive power to a known logic?

– For GML (and plain Modal Logic) it may be a bit hard, even
probably impossible for a reasonable notion of ‘nice-looking’ . . .

– Something simpler?

Tree-shaped UCQs!

Our next result:

Theorem ([TCCGMK23])
Monotonic Max GNNs have the same expressive power as unary
tree-shaped UCQs.
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Unary Tree-Shaped UCQs

Unary Tree-Shaped Conjunctive Query (tree-CQ):

– an existentially quantified conjunction of unary and binary
atoms with 1 free variable and the shape of the tree with the
variable as the root

– alternatively, a restriction of our FO fragment for GML:

GML : ϕ(x) ::= A(x) | ϕ(x) ∧ ϕ(x) | ¬ϕ(x) | ∃≥ℓy . (E(x , y) ∧ ϕ(y))

tree-CQs : ϕ(x) ::= A(x) | ϕ(x) ∧ ϕ(x) | ∃y . (E(x , y) ∧ ϕ(y))

A (unary) tree-shaped Union of CQs (tree-UCQ) is a disjunction (or
union) of unary tree-CQs
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Restricting GNNs

Each tree-UCQ Q is monotonic under homomorphisms:

– for every two graphs G1 = (V1,E1, λ1) and G2 = (V2,E2, λ2)
with a function h : V1 → V2 such that

- h(E1) ⊆ h(E2) (edges)
- λ1(v) ≤ λ2(h(v)) for every v ∈ V1 (element-wise, nodes)

we have that if Q(v) is true then Q(h(v)) is also true for
every v ∈ V1.

How can we restrict AC-GNN classifiers so their embeddings are
also monotonic under homomorphisms?
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AC-GNNs are Not Monotonic Under Homomorphisms

Example: Consider a GNN with dimension 3 and 1 layer

x (1)
v := ReLU

(
Ax (0)

v + C (Σu∈NG (v)x
(0)
u ) + b

)
where

– A =

(
0 0 0
0 0 0
1 −2 0

)
– C and b consist only of zeroes
– the output classification function is threshold-1 of the 3rd

element

For G with single node v with λ(v) = (1 0 0), the result for v is 1

For G ′ with single node v with λ(v) = (1 1 0), the result for v is 0

Negative matrices’ weights is not the only problem:
sum can ‘count’, but UCQs cannot
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Monotonic Max GNNs

A monotonic max GNN is

x (ℓ)
v := σ

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(maxu∈NG (v) x
(ℓ−1)
u ) + b(ℓ)

)
such that

– all elements of matrices A(ℓ) and C (ℓ) are non-negative
– the activation function σ is monotonically increasing,

unbounded, and has non-negative range
– the output classification function OUT is a threshold function

for some element
Lemma
The embedding of a monotonic max GNN is monotonic under
homomorphisms.

So, we have a hope.
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Backward Direction of the Theorem: Building GNNs

Lemma
For every unary tree-UCQ there is a monotonic max GNN node
classifier realising the same embedding.

Can be proven with minor modifications of the analogous lemma
for GML above:

– we have to use max instead of sum

– we cannot use trReLU, since it is bounded, so we have to use
usual ReLU

– but we do not need to simulate negation and counting
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Forward Direction: tree-UCQs for Monotonic Max GNNs

Lemma
For every Monotonic Max GNN node classifier there is a
tree-UCQ realising the same embedding.

Main ideas:

1. We can check whether a tree-CQ is sound for a monotonic max GNN—
that is, whether positive answer of the tree-CQ implies positive answer of
the GNN for all graphs and nodes

2. We can restrict ourselves to tree-CQs of the depth at most the number of
layers of the GNN, and there is only finite number of non-equivalent
number of such tree-CQs

3. For every graph G and node v for which the GNN outputs 1 for (G , v),
there is a sound tree-CQ that also outputs 1 for (G , v)

So, the union of all (non-equivalent) tree-CQs that are sound for
the GNN will do the job
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Forward Direction: Step 1

Lemma
For every Monotonic Max GNN node classifier there is a
tree-UCQ realising the same embedding.

Main ideas:

1. we can check if a tree-CQ is sound for a monotonic max GNN—
that is, whether positive answer of the tree-CQ implies positive
answer of the GNN for all graphs and nodes

– run the GNN on the body of the tree-CQ (as the graph) and
see the result for the free variable:
monotonicity under homomorphisms ensures the result
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Forward Direction: Step 2

Lemma
For every Monotonic Max GNN node classifier there is a
tree-UCQ realising the same embedding.

Main ideas:

2. we can restrict ourselves to tree-CQs of the depth at most the
number of layers of the GNN, and there is only finite number
of non-equivalent number of such tree-CQs

– bounded depth and tree shapes ensure this
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Forward Direction: Step 3

Lemma
For every Monotonic Max GNN node classifier there is a
tree-UCQ realising the same embedding.

Main ideas:

3. for every graph G and node v for which the GNN outputs 1 for
(G , v), there is a sound tree-CQ that also outputs 1 for (G , v)

– run the GNN on G and convert the ‘trace’ to a tree-CQ
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3.4 Expressivity via Logic:
What Else?



Pushing the Result

Monotonic Max GNNs

– are nice: they are a trainable neural architecture with
reasonable performance in practice

– but they are also a bit weak: tree-UCQs expressivity is not
much really

Can we get such results for something more expressive?

It is also interesting enough if we can guarantee only one direction:
a logic that is more expressive than a class of GNNs

– translation of GNNs to logic is useful,
it can be seen as explanation, used to reason together with
other logical knowledge, etc.

We will cover 3 such results, but without (more complicated) proofs
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Something More 1: Monotonic Sum GNNs

A Monotonic Sum GNN is the same as monotonic max, except the
aggregation:

x (ℓ)
v := σ

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(Σu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
such that

– all elements of matrices A(ℓ) and C (ℓ) are non-negative
– the activation function σ is monotonically increasing,

unbounded, and has non-negative range
– the output classification function OUT is a threshold function

for some element

We can guarantee:

Theorem ([TCCGMK23])
Monotonic Sum GNNs have less expressive power than unary
tree-shaped UCQs with sibling inequalities. 56



Something More 1: Tree-UCQs with Sibling Inequalities

Tree-CQ with Sibling Inequalities:

– tree-CQ, but with possible inequalities between the tree
siblings

– no nice grammar any more, it is not even in GML (sibling
inequalities give us more than just counting)

A (unary) tree-shaped Union of CQs (tree-UCQ) with sibling
inequalities is a disjunction (or union) of such tree-CQs.

We only need one lemma

Lemma
For every Monotonic Sum GNN node classifier there is a
tree-UCQ with sibling inequalities realising the same embedding.
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Something More 1: Key Lemma

Lemma
For every Monotonic Sum GNN node classifier there is a
tree-UCQ with sibling inequalities realising the same embedding.

This is a much more complicated result than for max
It is also much less intuitive:

– the result of sum aggregation may be bigger and bigger when
we aggregate with more and more neighbours

– a fixed number of inequalities has to take care of all this
arbitrary large numbers

– the key observation here is that the GNN is monotonic, and so
if we passed a threshold for a positive answer, then we cannot
pass it back by adding more neighbours
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Something More 2: Eventually Constant Activation

Sum-plus GNN with eventually constant activation is

x (ℓ)
v := σ

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(Σu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
where σ having

– tleft such that σ(x) = σ(tleft) for each x < tleft and
– tright such that σ(x) = σ(tright) for each x > tright

Note: trReLU and many more are such, but not Sigmoid or ReLU

We have a logic capturing this:

Theorem ([BLMT24])
Sum-plus GNNs with eventually constant activation have less
expressive power than Local Modal Logic with Presburger
Quantifiers.
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Something More 2:
Local Modal Logic with Presburger Quantifiers

What is this logic (studied before)?

An extension of GML with much more powerful counting

GML:

ϕ(x) ::= A(x) | ϕ(x) ∧ ϕ(x) | ¬ϕ(x) | ∃≥ℓy . (E (x , y) ∧ ϕ(y))

Local Modal Logic with Presburger Quantifiers:

ϕ(x) ::= · · · |
k∑

i=1

ci ·#yE (x , y) ∧ ϕ(y) ≥ d

Lemma
For every Sum-plus GNNs with eventually constant activation
there is a formula in Local Modal Logic with Presburger
Quantifiers realising the same embedding.
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Something More 3: GNNs with Piecewise-Linear Activation

Sum-plus GNN with piecewise-linear activation is

x (ℓ)
v := σ

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(Σu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
where σ being piece-wise linear (ReLU, trReLU, etc.) and
matrix&vector weights are rational

GNN with piecewise-linear activation is a generalisation where we
can also have avg, max, min, etc. instead of sum and
concatenation, etc. instead of + (i.e., nearly everything).

We also have a (rather complex) logic capturing this:

Theorem ([Gro23])
GNNs with piecewise-linear activation have less expressive power
than GFO+C.

I prefer not to go to the details.
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3.5 Beyond Classifiers



Something About Numeric Output Domains

When comparing to logic, we concentrated on outputs Y = {0, 1}.

Can we say something for, for example, Y = R (i.e., regression)?

Of course, we cannot compare to logic any more.

But we can compare different architectures between each other:

Theorem ([RTG23])
GNNs with

x (ℓ)
v := ReLU

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(aggu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
and Y = R (i.e., identity output), for agg one of max , sum, avg
are pairwise incomparable in expressive power.

62



Something About Numeric Output Domains

When comparing to logic, we concentrated on outputs Y = {0, 1}.

Can we say something for, for example, Y = R (i.e., regression)?

Of course, we cannot compare to logic any more.

But we can compare different architectures between each other:

Theorem ([RTG23])
GNNs with

x (ℓ)
v := ReLU

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(aggu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
and Y = R (i.e., identity output), for agg one of max , sum, avg
are pairwise incomparable in expressive power.

62



Something About Numeric Output Domains

When comparing to logic, we concentrated on outputs Y = {0, 1}.

Can we say something for, for example, Y = R (i.e., regression)?

Of course, we cannot compare to logic any more.

But we can compare different architectures between each other:

Theorem ([RTG23])
GNNs with

x (ℓ)
v := ReLU

(
A(ℓ)x (ℓ−1)

v + C (ℓ)(aggu∈NG (v)x
(ℓ−1)
u ) + b(ℓ)

)
and Y = R (i.e., identity output), for agg one of max , sum, avg
are pairwise incomparable in expressive power.

62



4 Non-Uniform Expressive and
Approximation Power



Restricting Graphs

As we see AC-GNNs have two conceptual limitations:

1. they cannot look further than their number of layers

2. they are ‘blind’ for cycles, and only see unravellings

Can we restrict the graphs so that AC-GNNs can express more than
for all graphs?

Maybe, even express everything (i.e., to be universal)?

One trivial example:

Proposition
AC-GNNs are universal over trees of bounded depth.

Something more interesting?
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Non-Uniform Expressive Power

Definition
A class C2 of node embeddings has as strong non-uniform
expressive power as class C1 if for every n ∈ N and every ξ1 ∈ C1

there is ξ2 ∈ C2 such that ξ1 and ξ2 agree on all nodes of all
graphs with at most n nodes

Classes C1 and C2 have the same non-uniform expressive power if
both directions hold

Non-uniform expressive power:

– ‘between’ distinguishability, which allows its own ‘simulator’ ξ2 for every
two outputs of ξ1, and uniform expressibility, which requires one single
‘simulator’ for all the cases

– can be seen as a restriction on graphs that overcomes Limitation 1 from
previous slide

– may make sense from practical point of view: we may be interested in
graphs of bounded size 64



An Easy Result: Graphs with Unique Node IDs

Recall AC-GNNs with

x (ℓ)
v := Sigmoid

(
A(ℓ)x (ℓ−1)

v || C (ℓ)(Σu∈NG (v) f (x
(ℓ−1)
u ))

)
with smart f such that Σx∈X f (x) is injective for bounded X

(i.e., for graphs of bounded size)

Theorem ([Lou20])
Such AC-GNNs with arbitrary output functions are non-uniform
universal (i.e., can express any function) for the class of
connected graphs with unique node labels

Proof ideas:

– injective aggregate and combine allows to unambiguously
reconstruct the whole graph

– then, the output function can do any job we need
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Improved Result: Graphs with Random Node Initialisations

Unique node labels (i.e., IDs) is a strict requirement

So, we can relax this and require uniqueness with high probability

This can be achieved by random node initialisation (RNI) where one
component of the input graph labels is from a random distribution

This model is not covered in our formalisation (random input →
random output), but we can relativise our setting, including
expressive power with ‘high probability’

Theorem ([ACGL21])
AC-GNNs as on the previous slide with RNI are non-uniform
universal for the class of connected graphs

The proof is a relativisation of the previous one
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Advanced Result: Non-Uniform Logic-Like Characterisation

There is a logic-like formalism that non-uniformly capture
nearly all ‘neural’ AC-GNNs [Gro23]

I do not dare to present this result here.
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(Non-Uniform) Approximation Power

Definition
A class C2 of node embeddings has as strong (non-uniform)
approximation power as class C1 if for every n ∈ N, every ϵ and
every ξ1 ∈ C1 there is ξϵ2 ∈ C2 such that embeddings of ξ1 and ξϵ2
ϵ-agree (additively) on all nodes of all graphs with at most n
nodes

Classes C1 and C2 have the same approximation power if both
directions hold

One result in this category:

Theorem ([GR22])
On compact sets of graphs (e.g., where initial labellings are
bounded), sum-plus GNNs can approximate any continuous
counting bisimulation invariant function (i.e., WL-bounded in
terms of distinguishability). 68



5 Wrapping Up



Beyond AC-GNNs

Limitation in expressivity motivates people to invent:

– k-WL GNNs [MRF+19] consider k-tuples of nodes (pair,
triples, etc.) instead of just nodes;
can express the presence of a k-cycle

– Recurrent GNNs [PTCK24] have the same aggregate and
combine functions for all layers, and iterate them for more
than bounded number of times;
can express reachability

– . . .

All these generalisations (as well as some restrictions, e.g., GCNs)
deserve our expressivity studies
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What is next?

Open questions:

– Many questions to complete distinguishing, expressive,
approximation power landscapes

- For example, can we design a truly universal GNN-like
architecture?

– Many logics from today are rather crazy; even if not, the
formulas equivalent to GNNs are huge. What to do with this?

- For example, design an algorithm that gives a reasonably
constrained formula (by size, shape) that is as close as possible
to a given GNN

– The fact that some GNN exists, does not mean at all that it is
possible to train it with any reasonable training procedure.
Can we describe ‘trainable’ GNN subclasses?

- For example, can we guarantee that we can train GNNs
realising embeddings of GML formulas with any reasonable
quality? 70



Conclusion

Fascinating topic. But hard.

PS: feel free to drop me an email (e.g., asking for references)
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