
The Computational Complexity of
finding Game-Theoretic Solutions

Rahul Savani

University of Liverpool
and

The Alan Turing Institute

Outline

Major results we will cover:

• PURE-NASH for congestion games is PLS-complete (2004)

• MIXED-NASH for bimatrix games is PPAD-complete (2006)

• CLS = PPAD ∩ PLS
(2D-KKT is (PLS ∩ PPAD)-complete) (2021)

• MIXED-NASH for congestion games is CLS-complete (2021)

There are many important problems in CLS that are unlikely to be complete
for it because they always have a unique solution

We finish by introducing UEOPL, a class within CLS that only contains
problems that admit unique solutions...

Outline

Major results we will cover:

• PURE-NASH for congestion games is PLS-complete (2004)

• MIXED-NASH for bimatrix games is PPAD-complete (2006)

• CLS = PPAD ∩ PLS
(2D-KKT is (PLS ∩ PPAD)-complete) (2021)

• MIXED-NASH for congestion games is CLS-complete (2021)

There are many important problems in CLS that are unlikely to be complete
for it because they always have a unique solution

We finish by introducing UEOPL, a class within CLS that only contains
problems that admit unique solutions...

For PPAD, PLS, CLS, and UEOPL, we will discuss:

• Inspiration and motivation for the classes,
e.g. via algorithmic approaches or properties of solutions

• Technical definitions of the classes

• Examples of complete problems for these classes

• High-level ideas of (the extremely technical) reductions

• Open problems

1 Total Function problems in NP (TFNP)
Totality and verifiability
Syntactic subclasses of TFNP

2 Polynomial Parity Argument, Directed Version (PPAD)
Bimatrix games, the Lemke-Howson algorithm, membership in PPAD
Sketch of PPAD-hardness
Nash to Brouwer

3 Polynomial Local Search (PLS)
Congestion games, potential functions, membership in PLS
PLS-hardness for congestion games

4 Continuous Local Search (CLS)
Gradient Descent
CLS = PPAD ∩ PLS
Candidates for CLS-hardness
Finding a mixed equilibrium of a congestion game is CLS-complete

5 Unique End of Potential Line (UEOPL)
Definition, example problems in UEOPL, and related open problems

Total Function problems in NP (TFNP)

Complexity classes between P and NP

P

NP

CLS
CLSCLS
CLS

PPADPLS

TFNP

There are many problems that lie between P and NP
• Factoring, graph isomorphism, computing Nash equilibria, local

max cut, simple-stochastic games, ...

Complexity classes between P and NP

P

NP

CLS
CLSCLS
CLS

PPADPLS

TFNP

FNP is the class of function problems in NP
• Given polynomial time computable relation R and value x
• Find y such that (x , y) ∈ R

Complexity classes between P and NP

P

NP

CLS
CLSCLS
CLS

PPADPLS

TFNP

TFNP is the subclass of problems that always have solutions
• Contains factoring, Nash equilibria, local max cut,

simple-stochastic games, ...

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

• NASH:
Find a mixed Nash equilibrium of a game

• PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game

• FACTORING:
Find a prime factor of a number ≥ 2

• BROUWER:
Find a fixed point of a continuous function f : [0, 1]3 7→ [0, 1]3

• KKT (Karush-Kuhn-Tucker):
Find a KKT point of a C1 function f : [0, 1]3 7→ [0, 1]

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard? Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard?

Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard? Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard? Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

Syntactic subclasses of TFNP

To classify the complexity of problems within TFNP

syntactic subclasses have been defined based on the
(combinatorial) proof principles of totality:

• PPP: totality based on pigeonhole principle

• PLS: totality based on potential function (DAGs have sinks)

• PPAD: totality based on (reversible) line-following argument

TFNP Landscape

TFNP

PPP

PPA

PLSPPAD

P

Pigeonhole Principle

Directed Graph Argument
NASH
BROUWER

Local Search Argument
PURE-CONGESTION
LOCAL-MAX-CUT

Parity Argument
Borsuk-Ulam

FACTORING

Complexity classes between P and NP

P

NP

CLS
CLSCLS
CLS

PPADPLS

TFNP

PPAD and PLS are two subclasses of TFNP

Complexity classes between P and NP

P

NP

CLS
CLSCLS
CLS

PPADPLS

TFNP

Are there interesting problems in PPAD and PLS?

Complexity classes between P and NP

P

NP

CLS

CLS

CLS
CLS

PPADPLS

TFNP

CLS (Continuous Local Search) was defined
to capture these problems (Daskalakis and Papadimitriou, 2011)

Complexity classes between P and NP

P

NP

UEOPL

CLS
CLS

CLS

CLS

PPADPLS

TFNP

UEOPL – Unique End of Potential Line

UEOPL ⊆ CLS defined to capture problems with unique solutions (2020)

Complexity classes between P and NP

P

NP

UEOPL

CLS

CLSCLS

CLS

PPADPLS

TFNP

Later CLS was surprisingly shown to equal PPAD ∩ PLS (2021)

Complexity classes: PPAD, PLS, CLS, UEOPL

NP

TFNP

PPAD PLS

CLS = EOPL
= PPAD ∩ PLS

UEOPL

P

Complexity classes: PPAD, PLS, CLS, UEOPL

• PPAD: Nash equilibrium of a strategic-form game; Brouwer fixed
points; market equilibrium...

• PLS: Pure Nash equilibrium of a congestion game; Local Max
Cut (and other “local” versions of NP-hard problems)...

• CLS: Continuous Local optima (found e.g. by Gradient Descent);
mixed Nash equilibrium of a congestion game

• UEOPL: Parity Games; Simple Stochastic Games; P-matrix
LCP; fixed points of contraction maps...

TFNP subclasses

Why believe that PPAD , P, PLS , P, etc. ?

• many seemingly hard problems lie in PPAD, PLS, . . .

• oracle separations (in particular PPAD , PLS)

• hard under cryptographic assumptions

References

On Total Functions, Existence Theorems and Computational Complexity by
Megiddo and Papadimitriou
Theor. Comput. Sci. (1991) TFNP definition and basic results

On the Complexity of the Parity Argument and Other Inefficient Proofs of
Existence by Papadimitriou
J. Comput. Syst. Sci. (1994) PPAD, PPA, PPP, memberships and relationships

Propositional proofs and reductions between NP search problems by Buss
and Johnson
Ann. Pure Appl. Log. (2012) Oracle separations

On the Cryptographic Hardness of Finding a Nash Equilibrium by Bitansky,
Paneth, Rosen
FOCS (2015) Example of cryptographic hardness (for PPAD)

Polynomial Parity Argument, Directed
Version (PPAD)

Nash equilibria of bimatrix games

@
@
I

II

T

M

B

l r

3 3

1 0

2 5

0 2

0 6

4 3

Nash equilibria of bimatrix games

@
@
I

II

T

M

B

l r

3 3

1 0

2 5

0 2

0 6

4 3

Nash equilibrium =

pair of strategies x, y with

x best response to y and
y best response to x

Mixed equilibria

@
@
I

II

T

M

B

l r

3 3

1 0

2 5

0 2

0 6

4 3

Ay =




3 3
2 5
0 6


(1/3 2/3

)T
=




3
4
4




xTB =




0
1/3
2/3




T


1 0
0 2
4 3


 =

(
8/3 8/3

)

only only pure best responses can have
probability > 0

Best response polyhedron H2 for player 2

= A
©1
©2
©3

y4 y5

0
2
3

6
5
3

H2 = { (y4, y5, u) |
©1 : 3y4 + 3y5≤ u
©2 : 2y4 + 5y5≤ u
©3 : 6y5≤ u

y4 + y5 = 1

y4 ≥ 0
y5 ≥ 0

©4 :
©5 : }

3

y

0 1

u

H

40

2

3

5

6

1

54

2

2

Best response polytope Q for player 2

= A
Q = { y | Ay≤1, y≥0 }©1

©2
©3

y4 y5

0
2
3

6
5
3

Q = { (y4, y5) |
©1 : 3y4 + 3y5≤ 1
©2 : 2y4 + 5y5≤ 1
©3 : 6y5≤ 1

©4 : y4 ≥ 0
©5 : y5 ≥ 0 }

y4

5y

4 1

2
3

5

Projective transformation

H2,Q same face incidences

r

s

­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

-

6

0 y j y j

0

1

u

¡
¡

¡
¡

¡

-

6

µ

©©©©©©©©©©©©©©©©©©©©©©©©

#
#

#
##

#
#

#
#

#
#

#
#

#
#

#
#

##

­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

­
­

£
£
£
£

£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£
£

H2

y40

1

u

y5

©4

©3

©2
©1

©5

¡
¡

XXX
...............

...............
...

r
r r r

B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A

@
@

@
@

Q

s

s

s

s

@
@

@
@

@
@

@
@

@
@

@
@

r

r

r

Best response polytope Q for player 2

= A
Q = { y | Ay≤1, y≥0 }©1

©2
©3

y4 y5

0
2
3

6
5
3

Q = { (y4, y5) |
©1 : 3y4 + 3y5≤ 1
©2 : 2y4 + 5y5≤ 1
©3 : 6y5≤ 1

©4 : y4 ≥ 0
©5 : y5 ≥ 0 }

y4

5y

4 1

2
3

5

B < 1P = { x | x > 0, x }

x3

x1

x2

x3

x1

x2

4

1

52

3

1 0
2

4 3
0

≤1≤1

= B

Best response polytope P for player 1

4

5

Equilibrium = completely labeled pair

pure equilibrium

2

3

5

4

4 1

2
31

5

Equilibrium = completely labeled pair

2

mixed equilibrium

3

5

4

4 1

2
31

5

The Lemke−Howson algorithm

2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 2

3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33 from 3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33 from 3

5

4

4 1

2

1

5

3

The Lemke−Howson algorithm

2

Drop label 33 from 3

5

4

4 1

2

1

5

3

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

• finitely many "vertices"

for nondegenerate (generic) games:

• unique starting edge given missing label

• unique continuation

precludes "coming back" like here:

Lemke-Howson (LH) summary

• LH implies non-degenerate bimatrix game has odd number of
equilibria, in particular at least one

• Extendable to full existence proof via degeneracy resolution

• From artificial equilibrium, LH can find upto n +m equilibria of an
n ×m game; by chaining LH paths it might be able to find more

• The shortest path can be exponentially long
[S and von Stengel (2004)]

• LH was the main motivation for the complexity class PPAD

• Next: alternative existence proof via fixed points

Existence of Nash equilibria

@
@@
I

II

Top

Bottom

left right

1 2

2 0

2 0

4 6

“Incentive direction” of the players

Player I

Player II

Bottom

Top

left right

Nash equilibrium

We are reducing the search for NE to search for a
Brouwer fixpoint...

Brouwer’s fixpoint theorem

continuous functions from a compact domain to
itself, have fixpoints.

proof. construct approximate fixpoints (in a
computationally inefficient manner) ...in a way
that reduces computation of approx fixpoints to
search on large graphs...

L.E.J. Brouwer
(1881-1966)

“Incentive direction”, colour-coded

Player I

Player II

Bottom

Top

left right

Now, pretend this triangle is high-dimension domain

Search for “trichromatic triangles”

...converges to Brouwer fixpoint

The corresponding graph

Motivation for PPAD

Both Lemke-Howson paths and the “Sperner paths” we just saw (as
part of the proof of Brouwers fixed point theorem) motivate the
definition of PPAD via the problem End-of-Line

PPAD and End-of-Line (Papadimitriou 1991)

start

end

End-of-Line:

Given graph G of in/out degree at
most 1 and a source start vertex
find another vertex of degree 1

PPAD and End-of-Line (Papadimitriou 1991)

start
0000

0101

end

Catch:
The graph is exponentially large

It is defined by
• Boolean successor circuit S
• Boolean predecessor circuit P

S(0000) = 0101

P(0101) = 0000

PPAD and End-of-Line (Papadimitriou 1991)

start

end

Problem A is
• in PPAD if A reduces to EOL
• PPAD-complete if EOL also

reduces to it

PPAD and End-of-Line (Papadimitriou 1991)

start

end

Not to be confused with

OTHER END OF THIS LINE
output unique sink found by
“following the line” from the start
– this is PSPACE-hard

A view from the past

Christos Papadimitrou [STOC 2001]:
Together with factoring, the complexity of find-
ing a Nash equilibrium is in my opinion the
most important concrete open question on the
boundary of P today.

Resolved in 2006, NASH is PPAD-hard and thus unlikely to be in P:
The Complexity of Computing a Nash Equilibrium
Daskalakis, Goldberg, Papadimitriou

Settling the Complexity of Computing 2-player Nash Equilibria
Chen, Deng, Teng

MIXED-NASH of bimatrix games is PPAD-hard

Christos Papadimitrou [STOC 2001]:
Together with factoring, the complexity of find-
ing a Nash equilibrium is in my opinion the
most important concrete open question on the
boundary of P today.

Resolved in 2006, NASH is PPAD-hard and thus unlikely to be in P:
The Complexity of Computing a Nash Equilibrium
Daskalakis, Goldberg, Papadimitriou

Settling the Complexity of Computing 2-player Nash Equilibria
Chen, Deng, Teng

From graph search to Nash equilibrium computation

Daskalakis, Goldberg and Papadimitriou ’06, Chen, Deng and Teng ’06

Intermediate step:

search for a panchromatic point of a
discrete Brouwer function — in 2D,

f : N× N −→ {red, green, blue}

where

the bottom is all red

the LHS is all green

the top and RHS is blue

internal cells colored by poly-size
boolean circuit

From graph search to finding Nash equilibria

The reduction from END OF LINE in more detail

crossover gadget

Crossover gadget

From discrete to continuous Brouwer functions

Gates for continuous Brouwer functions

Linear-FIXP (= PPAD) [Etessami Yannakakis 2006]

INPUT: algebraic circuit (straight-line program) over basis
{+, max, ×c, introduce c}
OUTPUT: (approximate) fixed point of the circuit

For games, we work with a small variant of the problem:

INPUT: our basis {bounded +, bounded × c, introduce c}
where: bounded(x) = max(min(1, x), 0) “clips” output to [0, 1]

Gates for continuous Brouwer functions

Linear-FIXP (= PPAD) [Etessami Yannakakis 2006]

INPUT: algebraic circuit (straight-line program) over basis
{+, max, ×c, introduce c}
OUTPUT: (approximate) fixed point of the circuit

For games, we work with a small variant of the problem:

INPUT: our basis {bounded +, bounded × c, introduce c}
where: bounded(x) = max(min(1, x), 0) “clips” output to [0, 1]

Polymatrix Games

• So far we have only looked at two-player bimatrix games

• PPAD-hardness of finding a Nash equilibrium first went via
many-player games

• However, a general many-player strategic-form game has
exponential size (in the number of players)

• Instead we use a special type of many-player game called a
polymatrix game

Polymatrix games

I many-player graphical game

I interaction graph with
nodes = players
edges = bimatrix games

I single strategy for all player’s
bimatrix games

I player gets sum of payoffs
from bimatrix games

Introduced by Janovskaya (1968)

III

I II

IV

` r

T
0

0

1

0

B
0

0

0

0

III
I

a b

T
0

0

1

0

B
0

0

0

0

III
II

x y

T
0

0

0

1

B
0

1

1

0

III
IV

Succinct representation

players # actions
per player

payoff entries

strategic-form
n k

exponential: n ·k n

polymatrix quadratic: 2k 2 ·(n
2)

DGP gadgets
Gadgets from Daskalakis Goldberg Papadimitriou [2006]:

+

w

In1 In2

Out

×c

w

In

Out

introduce c

w

Out

• All these gadgets use 2 actions/player
• They all implement the bounded versions of these gates

EXERCISE: Addition gadget example

ℓ = min(p + q, 1)

(1 − p) p

0

0

1

0

0

0

0

0

w
In 1

(1 − q) q

0

0

1

0

0

0

0

0

w
In 2

(1 − ℓ) ℓ

0

0

0

1

0

1

1

0

w
Out

ANSWER: Addition gadget example

ℓ = min(p + q, 1)

1−ℓ ℓ

p+q

0

p+q

1

0

1

1

0

w
Out

ANSWER: Addition gadget example

Case 1/4: p + q > 1, ℓ = min(p + q, 1) = 1

1−ℓ ℓ

p+q

0

p+q

1

0

1

1

0

w
Out

ANSWER: Addition gadget example

Case 2/4: p + q = 1, ℓ = min(p + q, 1) = 1

1−ℓ ℓ

p+q

0

p+q

1

0

1

1

0

w
Out

ANSWER: Addition gadget example

Case 3/4: p + q ∈ (0, 1), ℓ = p + q

1−ℓ ℓ

p+q

0

p+q

1

0

1

1

0

w
Out

ANSWER: Addition gadget example

Case 4/4: p + q = 0, ℓ = p + q = 0

1−ℓ ℓ

p+q

0

p+q

1

0

1

1

0

w
Out

Final step: polymatrix to bimatrix games

• The polymatrix game interaction graph can be made bipartite

• Two players in bimatrix game = two parts of interaction graph

• Additional lawyer game ensures that all gates matter

Recent advances: Pure Circuit

• Nice new PPAD-complete problem that reduces to games very
natural with tight hardness of approximation

Pure-Circuit: Strong Inapproximability for PPAD
Deligkas, Fearnley, Hollender, Melissourgos

References
Exponentially Many Steps for Finding a Nash Equilibrium in a Bimatrix Game
by Savani and von Stengel FOCS (2004) Long shortest LH paths

On the Complexity of the Parity Argument and Other Inefficient Proofs of
Existence by Papadimitriou
J. Comput. Syst. Sci. (1994) PPAD, PPA, PPP, memberships and relationships

Pure-Circuit: Strong Inapproximability for PPAD by Deligkas, Fearnley,
Hollender, Melissourgos
FOCS (2022) Tight inapproximability results for bimatrix/polymatrix/graphical

The Complexity of Computing a Nash Equilibrium by Daskalakis, Goldberg,
Papadimitriou
STOC (2006) PPAD-hardness for 3-NASH and then 2-NASH (bimatrix games)

Settling the Complexity of Computing 2-player Nash Equilibria by Chen, Deng,
Teng (2006) PPAD-hardness for 2-NASH

Polynomial Local Search (PLS)

A congestion network

o d

c(x) = 2

c(x) = x

2 users who want to travel from origin o to destination d .

Possible routes:
both users on top edge,
1 user on top edge and 1 user on bottom edge,
both users on bottom edge

A congestion network

o d

c(x) = 2

c(x) = x

2 users who want to travel from origin o to destination d .

Possible routes:
both users on top edge,
1 user on top edge and 1 user on bottom edge,
both users on bottom edge

A similar “Pigou” congestion network

o d

c(x) = 100

c(x) = x

100 users who want to travel from origin o to destination d .

Assume y users on bottom edge, 100 − y on top edge.

Equilibrium? y = 99 or y = 100

Optimum? y = 50

A similar “Pigou” congestion network

o d

c(x) = 100

c(x) = x

100 users who want to travel from origin o to destination d .

Assume y users on bottom edge, 100 − y on top edge.

Equilibrium?

y = 99 or y = 100

Optimum? y = 50

A similar “Pigou” congestion network

o d

c(x) = 100

c(x) = x

100 users who want to travel from origin o to destination d .

Assume y users on bottom edge, 100 − y on top edge.

Equilibrium? y = 99 or y = 100

Optimum?

y = 50

A similar “Pigou” congestion network

o d

c(x) = 100

c(x) = x

100 users who want to travel from origin o to destination d .

Assume y users on bottom edge, 100 − y on top edge.

Equilibrium? y = 99 or y = 100

Optimum? y = 50

Congestion network – components
• finite set of nodes

• finite collection E of edges e = uv vu ,

parallel edges vu allowed.

• For each e ∈ E a cost function ce(x) for flow (usage) x .

• n users i = 1, 2, . . . , n with origin oi and destination di

• strategy of user i = route (path) Pi from oi to di .

• Given strategies P1, . . . ,Pn, flow on e is fe = |{i | e ∈ Pi }| and resulting
cost ce(fe) for every user of e.

• Cost to user i for strategy Pi is ∑
e∈Pi

ce(fe)

Best responses and equilibrium

Given P1, . . . ,Pn with resulting flow f , strategy Pi of user i is a

best response ⇔ for any other deviating strategy Qi∑
e∈Pi

ce(fe) ≤
∑

e∈Qi∩Pi

ce(fe) +
∑

e∈Qi\Pi

ce(fe + 1)

Definition

strategy profile P1, . . . ,Pn is an equilibrium

⇔ every strategy Pi is a best response to the others.

Best responses and equilibrium

Given P1, . . . ,Pn with resulting flow f , strategy Pi of user i is a

best response ⇔ for any other deviating strategy Qi∑
e∈Pi

ce(fe) ≤
∑

e∈Qi∩Pi

ce(fe) +
∑

e∈Qi\Pi

ce(fe + 1)

Definition

strategy profile P1, . . . ,Pn is an equilibrium

⇔ every strategy Pi is a best response to the others.

Every congestion game has an equilibrium

Proof

Given P1, . . . ,Pn and flow f , define the potential function

Φ(f) =
∑
e∈E

(
ce(1) + ce(2) + · · ·+ ce(fe)

)
.

Let Qi be any other strategy of user i with flow f Qi . Will show:

Φ(f Qi) − Φ(f) =
∑
e∈Qi

ce(f
Qi
e) −

∑
e∈Pi

ce(fe) . (2.4)

⇒ changes in Φ reflect changes in cost for (any) user i

⇒ minimum of Φ defines an equilibrium. □

Every congestion game has an equilibrium

Proof

Given P1, . . . ,Pn and flow f , define the potential function

Φ(f) =
∑
e∈E

(
ce(1) + ce(2) + · · ·+ ce(fe)

)
.

Let Qi be any other strategy of user i with flow f Qi . Will show:

Φ(f Qi) − Φ(f) =
∑
e∈Qi

ce(f
Qi
e) −

∑
e∈Pi

ce(fe) . (2.4)

⇒ changes in Φ reflect changes in cost for (any) user i

⇒ minimum of Φ defines an equilibrium. □

Every congestion game has an equilibrium

Proof

Given P1, . . . ,Pn and flow f , define the potential function

Φ(f) =
∑
e∈E

(
ce(1) + ce(2) + · · ·+ ce(fe)

)
.

Let Qi be any other strategy of user i with flow f Qi . Will show:

Φ(f Qi) − Φ(f) =
∑
e∈Qi

ce(f
Qi
e) −

∑
e∈Pi

ce(fe) . (2.4)

⇒ changes in Φ reflect changes in cost for (any) user i

⇒ minimum of Φ defines an equilibrium. □

Proof of potential function property (2.4)

∑
e∈Qi

ce(f
Qi
e) =

∑
e∈Qi∩Pi

ce(fe) +
∑

e∈Qi\Pi

ce(fe + 1)

∑
e∈Pi

ce(fe) =
∑

e∈Pi∩Qi

ce(fe) +
∑

e∈Pi\Qi

ce(fe)

so ∑
e∈Qi

ce(f
Qi
e) −

∑
e∈Pi

ce(fe) =
∑

e∈Qi\Pi

ce(fe + 1) −
∑

e∈Pi\Qi

ce(fe)

= Φ(f Qi) − Φ(f) because

Φ(f) =
∑
e∈E

(
ce(1) + ce(2) + · · ·+ ce(fe)

)
.

Proof of potential function property (2.4)

∑
e∈Qi

ce(f
Qi
e) =

∑
e∈Qi∩Pi

ce(fe) +
∑

e∈Qi\Pi

ce(fe + 1)

∑
e∈Pi

ce(fe) =
∑

e∈Pi∩Qi

ce(fe) +
∑

e∈Pi\Qi

ce(fe)

so ∑
e∈Qi

ce(f
Qi
e) −

∑
e∈Pi

ce(fe) =
∑

e∈Qi\Pi

ce(fe + 1) −
∑

e∈Pi\Qi

ce(fe)

= Φ(f Qi) − Φ(f) because

Φ(f) =
∑
e∈E

(
ce(1) + ce(2) + · · ·+ ce(fe)

)
.

Proof of potential function property (2.4)

∑
e∈Qi

ce(f
Qi
e) =

∑
e∈Qi∩Pi

ce(fe) +
∑

e∈Qi\Pi

ce(fe + 1)

∑
e∈Pi

ce(fe) =
∑

e∈Pi∩Qi

ce(fe) +
∑

e∈Pi\Qi

ce(fe)

so ∑
e∈Qi

ce(f
Qi
e) −

∑
e∈Pi

ce(fe) =
∑

e∈Qi\Pi

ce(fe + 1) −
∑

e∈Pi\Qi

ce(fe)

= Φ(f Qi) − Φ(f) because

Φ(f) =
∑
e∈E

(
ce(1) + ce(2) + · · ·+ ce(fe)

)
.

Proof of potential function property (2.4)

∑
e∈Qi

ce(f
Qi
e) =

∑
e∈Qi∩Pi

ce(fe) +
∑

e∈Qi\Pi

ce(fe + 1)

∑
e∈Pi

ce(fe) =
∑

e∈Pi∩Qi

ce(fe) +
∑

e∈Pi\Qi

ce(fe)

so ∑
e∈Qi

ce(f
Qi
e) −

∑
e∈Pi

ce(fe) =
∑

e∈Qi\Pi

ce(fe + 1) −
∑

e∈Pi\Qi

ce(fe)

= Φ(f Qi) − Φ(f) because

Φ(f) =
∑
e∈E

(
ce(1) + ce(2) + · · ·+ ce(fe)

)
.

Remark

• Pure equilibrium may fail to exist with weighted users (e.g. 1 for
passenger car, 2 for lorry)

Exercise

• Consider the following two-player routing game. Both players
want to go from s to t . They have weights w1, w2 respectively.

s

v

w

t
47x

3x2 x2 + 44

x + 33

6x2

13x

• Consider two cases:
(i) w1 = 1,w2 = 2 (weighted); (ii) w1 = w2 = 1 (unweighted)

• For each case, convert the game to a bimatrix game and
compute all equilibria (pure and mixed). Show your working.
Hint: For case (i), you can dramatically simplify the game with
iterated elimination of strictly dominated strategies.

Polynomial Local Search (PLS)

9
8

8
7

6

6

5

6

5

4

2
1

1

3

1

9start

2

0
0

Given
• a DAG
• a starting vertex

Find
• a sink vertex

Polynomial Local Search (PLS)

9
8

8
7

6

6

5

6

5

4

2
1

1

3

1

9start

2

0
0

Catch:
The graph is exponentially large

Defined by
• A circuit S giving the

successor vertices
• A circuit p giving a potential

Every edge decreases the
potential

p(S(v)) < p(v)

Complexity results for congestion games

Finding a pure Nash equilibrium in a congestion game is

• Polynomial-time solvable for symmetric network games
• PLS-complete for asymmetric network games
• PLS-complete for symmetric general games
• PLS-complete for asymmetric general games

Local Max Cut
• Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can
change sides)

• Schäffer and Yannakakis [SICOMP, 1991] showed that Local
Max Cut is PLS-complete (via an extremely involved reduction)

• Local Max Cut is to PLS what 3-SAT is to NP

1 2

3 4

1

1

−4

3
1

−2

Local Max Cut
• Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can
change sides)

• Schäffer and Yannakakis [SICOMP, 1991] showed that Local
Max Cut is PLS-complete (via an extremely involved reduction)

• Local Max Cut is to PLS what 3-SAT is to NP

1 2

3 4

1

1

−4

3
1

−2

Local Max Cut
• Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can
change sides)

• Schäffer and Yannakakis [SICOMP, 1991] showed that Local
Max Cut is PLS-complete (via an extremely involved reduction)

• Local Max Cut is to PLS what 3-SAT is to NP

1 2

3 4

1

1

−4

3
1

−2

Solutions:

{{1, 3, 4}, {2}} (actual Max Cut)

Local Max Cut
• Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can
change sides)

• Schäffer and Yannakakis [SICOMP, 1991] showed that Local
Max Cut is PLS-complete (via an extremely involved reduction)

• Local Max Cut is to PLS what 3-SAT is to NP

1 2

3 4

1

1

−4

3
1

−2

Solutions:

{{1, 3, 4}, {2}} (actual Max Cut)
{{3}, {1, 2, 4}}

Local-Max-Cut as the Party Affiliation Game

Players correspond to nodes in weighted graph G = (V ,E):

• Every player has 2 strategies: left or right.

• Strategy profile yields a cut, i.e., partition of V into left/right nodes

• Edge weights represent antisympathy

• Players maximize sum of weights of incident cut edges

• Nash equilibria in 1-1 correspondence with local max cuts

Minimization Variant of Party Affiliation Game

• For the congestion game we want costs:

sum of incident edges on the same side of the cut

• This is equivalent because, for each node and strategy profile:

Total weight of all incident edges =
incident cut edges + incident edges on same side

where the left-hand-side is a constant

General congestion game for
Minimization Party Affiliation Game

• Represent each edge e by two resources:
eleft , eright with delay functions d(1) = 0 and d(2) = we

• For each player:
• strategy Sleft contains resource eleft for all incident edges;
• strategy Sright contains resources eright for all incident edges

• Players in the congestion game have exactly the same cost as
players in the minimization variant of the party affiliation game

• Hence, the Nash equilibria of this congestion game coincide with
local max cuts, QED

PLS-hardness for congestion games

Results from Fabrikant, Papadimitriou, Talwar [2004]

network games general games

symmetric In P-time PLS-complete

asymmetric PLS-complete PLS-complete

We presented simplest case of asymmetric congestion games

PLS-hardness for congestion games

Results from Fabrikant, Papadimitriou, Talwar [2004]

network games general games

symmetric In P-time PLS-complete

asymmetric PLS-complete PLS-complete

We presented simplest case of asymmetric congestion games

Why is the resulting game
• asymmetric and
• not a network congestion game?

References

A class of games possessing pure-strategy Nash equilibria by Rosenthal
Int. J. of Game Theory (1973) Congestion games have pure equilibria

Potential Games by Monderer and Shapley
Games & Economic Behavior (1996) Congestion ≡ potential games

How Easy is Local Search? by Johnson, Papadimitriou, Yannakakis
J. Comput. Syst. Sci (1998) Introduced PLS

The complexity of pure Nash equilibria by Fabrikant, Papadimitriou, Talwar
STOC 2004 PLS-completeness in congestion games

On the impact of combinatorial structure on congestion games by Ackermann,
Röglin, Vöcking Journal of the ACM (2008) Further PLS-hardness

Continuous Local Search (CLS)

Gradient descent

minimise f (x) s.t. x ∈ [0, 1]n

assume f continuously differentiable, but not necessarily convex

Gradient descent

minimise f (x) s.t. x ∈ [0, 1]n

NP-hard even for a quadratic polynomial given explicitly

Gradient descent

minimise f (x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f (xk)) (η : step size)

Intuition: “move in the direction of steepest descent”

Gradient descent

(1) : minimise f (x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f (xk)) (η : step size)

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
y

f(x,y)

Gradient descent being applied to a function f : [0, 1]2 7→ [0, 1]

Gradient descent

(1) : minimise f (x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f (xk)) (η : step size)

Doesn’t actually solve (1); can get stuck in any stationary point

Gradient descent

minimise f (x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f (xk)) (η : step size)

Doesn’t actually solve (1); can get stuck in any stationary point

actually a Karush-Kuhn-Tucker point (due to boundaries)

Gradient descent

minimise f (x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f (xk)) (η : step size)

What is the complexity of finding a solution where gradient
descent terminates?

Gradient descent

minimise f (x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f (xk)) (η : step size)

What is the complexity of finding a solution where gradient
descent terminates?
Let’s explore how to formalise this...

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ϵ > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ϵ > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

[x ′ := x − η∇f (x))]

GD-Local-Search: find x s.t. f (x ′) ≥ f (x) − ϵ
limited improvement

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ϵ > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. f (x ′) ≥ f (x) − ϵ
limited improvement

GD-Fixed-Point: find x s.t. ||x ′ − x || ≤ ϵ
x not moved by much

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ϵ > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. f (x ′) ≥ f (x) − ϵ
limited improvement

GD-Fixed-Point: find x s.t. ||x ′ − x || ≤ ϵ
x not moved by much

These two problems are polynomial-time equivalent

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ϵ > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

One way to solve this problem: run Gradient Descent!

Running time: polynomial in 1/ϵ, not in input size

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ϵ > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Can it be solved in time polynomial in log(1/ϵ)?

(f convex: yes, e.g., via the Ellipsoid method)

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT
PURE-CONGESTIONBROUWER

GD-Fixed-Point
GD-Local-Search

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT
PURE-CONGESTIONBROUWER

PPAD ∩ PLS

GRADIENT-DESCENT

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT
PURE-CONGESTION

MIXED-CONGESTION
CONTRACTION

BROUWER

PPAD ∩ PLS

P-LCP

[Daskalakis-Papadimitriou, 2011]

Unlikely containments

Consider a problem A in PPAD ∩ PLS

Since A is in both classes:

• If A is PPAD-hard then PPAD ⊆ PLS

• If A is PLS-hard then PLS ⊆ PPAD

We do not believe that either containments holds, so
we do not believe A is PPAD-hard or PLS-hard

Unlikely containments

Consider a problem A in PPAD ∩ PLS

Since A is in both classes:

• If A is PPAD-hard then PPAD ⊆ PLS

• If A is PLS-hard then PLS ⊆ PPAD

We do not believe that either containments holds, so
we do not believe A is PPAD-hard or PLS-hard

PPAD ∩ PLS seems unnatural...

Suppose problem A is PPAD-complete
Suppose problem B is PLS-complete

The following problem is PPAD ∩ PLS-complete:

EITHER(A,B)

Input: an instance IA of A, an instance IB of B

Output: a solution of IA, or a solution of IB

PPAD ∩ PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function f : [0, 1]3 7→ [0, 1]3, precision ϵ > 0
Output: approximate fixpoint x :

||f (x) − x || ≤ ϵ

LOCAL-OPT (PLS-complete):
Input: continuous function p : [0, 1]3 7→ [0, 1], (non-continuous)
function g : [0, 1]3 7→ [0, 1]3, precision ϵ > 0
Output: local minimum x of p w.r.t. g:

p(g(x)) ≥ p(x) − ϵ

EITHER(BROUWER,LOCAL-OPT) is PPAD ∩ PLS-complete

PPAD ∩ PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function f : [0, 1]3 7→ [0, 1]3, precision ϵ > 0
Output: approximate fixpoint x :

||f (x) − x || ≤ ϵ

LOCAL-OPT (PLS-complete):
Input: continuous function p : [0, 1]3 7→ [0, 1], (non-continuous)
function g : [0, 1]3 7→ [0, 1]3, precision ϵ > 0
Output: local minimum x of p w.r.t. g:

p(g(x)) ≥ p(x) − ϵ

EITHER(BROUWER,LOCAL-OPT) is PPAD ∩ PLS-complete

PPAD ∩ PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function f : [0, 1]3 7→ [0, 1]3, precision ϵ > 0
Output: approximate fixpoint x :

||f (x) − x || ≤ ϵ

LOCAL-OPT (PLS-complete):
Input: continuous function p : [0, 1]3 7→ [0, 1], (non-continuous)
function g : [0, 1]3 7→ [0, 1]3, precision ϵ > 0
Output: local minimum x of p w.r.t. g:

p(g(x)) ≥ p(x) − ϵ

EITHER(BROUWER,LOCAL-OPT) is PPAD ∩ PLS-complete

Continuous Local Search (CLS)
Daskalakis & Papadimitriou [SODA 2011] defined a new class via:

CONTINUOUS-LOCAL-OPT

Input:
continuous p : [0, 1]3 7→ [0, 1] and
continuous f : [0, 1]3 7→ [0, 1]3 , precision ϵ > 0

Output: local minimum x of p w.r.t. f :

p(f (x)) ≥ p(x) − ϵ

CLS is the class of all problems that are polynomial-time re-
ducible to CONTINUOUS-LOCAL-OPT

PPAD ∩ PLS and CLS

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCP

PPAD ∩ PLS and CLS

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCPGRADIENT-DESCENT

Collapse

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCPGRADIENT-DESCENT

Collapse

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCPGRADIENT-DESCENT

Collapse

PPAD ∩ PLS = CLS
EITHER-SOLUTION(𝐴, 𝐵)

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCP

GRADIENT-DESCENT

TARSKI

Main Result

GRADIENT-DESCENT is PPAD ∩ PLS – hard

Main Result

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT
where
A is the PPAD-complete problem End-of-Line
B is the PLS-complete problem ITER

Proof Sketch

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT
where
A is the PPAD-complete problem End-of-Line
B is the PLS-complete problem ITER

Constructing a 2D-GRADIENT-DESCENT instance f

• Domain is the square [0, 1]2

• Overlay grid and assign values for f and ∇f at grid points

• Use bicubic interpolation to produce smooth function

• All stationary points are either End-Of-Line or ITER solutions

Background “landscape”

[0, 1]2

(0, 0)
x

y

Background “landscape”

(0, 0)(0, 0)
x

y

x

y

(0, 0)
x

f(x, y)

PPAD-complete problem: End-Of-Line

source

Given a graph of
indegree/outdegree at most 1

and a source
(indegree 0, outdegree 1)

find another vertex of degree 1

PPAD-complete problem: End-Of-Line

source
0000

0101

Catch:

graph is exponentially large

defined by boolean circuits S, P
that map a vertex {0, 1}n to its
successor and predecessor

S(0000) = 0101

P(0101) = 0000

PPAD-complete problem: End-Of-Line

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Locally-computable green paths: Hubáček and Yogev SODA’17
(used to show conditional hardness of CLS)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

3
PLS labyrinth

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

PLS

PLS

PLS

PLS labyrinths hide stationary points at green/orange meetings

All stationary points are:
solutions of End-of-Line instance; or
solutions of PLS-complete labyrinth

0

1

2

3

4

5

6

7

PLS

PLS

PLS

PLS

PLS

PLS

We have shown: 2D-GRADIENT-DESCENT is PPAD ∩ PLS – hard

Increasing lines: EOPL
• After our result in a further collapse it was proved that:

EOPL = PPAD ∩ PLS

• EOPL is closely related to UEOPL; more later/tomorrow...

• For now the key point is that the paths are monotone

• Hubacek and Yogev had already shown that EOPL ⊆ CLS

• Thus combining these two results:

CLS = EOPL = PPAD ∩ PLS

• This means that:
for an alternative way to get our CLS-hardness results for
2D-KKT, one can assume monotone paths

• I.e., no need for PLS labyrinths

Take home message: PPAD ∩ PLS

Before:

• PPAD and PLS both successful classes

• PPAD ∩ PLS not believed to have interesting complete problems

• CLS introduced as “natural” (presumed distinct) counterpart

Now:

• PPAD ∩ PLS is a natural class with complete problems
• Captures complexity of problems solved by gradient descent
• PPAD ∩ PLS = CLS
• Many important problems are now candidates for hardness

Motivation behind classes

PPAD: all problems that can be solved by path following
(the Lemke-Howson algorithm for Nash equilibria)

PLS: all problems that can be solved by local search

CLS: all problems that can be solved by continuous local search

GD = CLS: all problems that can be solved by gradient descent

Motivation behind classes

PPAD: all problems that can be solved by path following
(the Lemke-Howson algorithm for Nash equilibria)

PLS: all problems that can be solved by local search

CLS: all problems that can be solved by continuous local search

GD = CLS: all problems that can be solved by gradient descent

Open Problems

The following are candidates for PPAD ∩ PLS-completeness:

• POLYNOMIAL-KKT
• MIXED-CONGESTION
• CONTRACTION
• TARSKI
• COLORFUL-CARATHEODORY

Open Problems

The following are candidates for PPAD ∩ PLS-completeness:

• POLYNOMIAL-KKT
• MIXED-CONGESTION [Babichenko, Rubinstein STOC’21]
• POLYNOMIAL-KKT for degree < 5
• MIXED-NETWORK-CONGESTION
• CONTRACTION
• TARSKI
• COLORFUL-CARATHEODORY

References

The Complexity of Gradient Descent: CLS = PPAD ∩ PLS by Fearnley,
Goldberg, Hollender, Savani STOC 2021

Settling the complexity of Nash equilibrium in congestion games by
Babichenko and Rubinstein STOC 2021

Further Collapses in TFNP by Göös, Hollender, Jain, Maystre, Pires,
Robere, Tao
CCC 2022 EOPL = PPAD ∩ PLS

Hardness of Continuous Local Search by Hubácek and Yogev
SICOMP 2020 EOPL in CLS, query/crypto hardness of (U)EOPL

Unique End of Potential Line (UEOPL)

Outline
• P-matrix Linear Complementarity Problem (P-LCP)

• Complementary cones view

• Unique Sink Orientations (USO) of cubes

• Reduction from P-LCP to USOs as an exercise

• Two-player zero-sum turn-based discounted games

• Optimality equations characterize unique values
• Reduction to P-LCP
• Reduction to USO via strategy improvement algorithms
• Reduction to Contraction via strategy iteration

• Unique End of Potential Line (the problem and the class)

• Piecewise-linear Contraction in UEOPL
• P-LCP in UEOPL
• Open problems

Simple Stochastic Games

Discounted Payoff Games

Mean-payoff Games

Parity Games

Contraction P-LCP

USO

UEOPL

EOML EOPL

CLS
[HY SODA17]

Linear Complementarity Problem (LCP)

Given: q ∈ Rn, M ∈ Rn×n Find: z, w ∈ Rn so that

z ≥ 0 ⊥ w = q + Mz ≥ 0

⊥ means orthogonal:

zT w = 0
⇔ ziwi = 0 all i = 1, . . . , n

If q ≥ 0, the LCP has trivial solution w = q , z = 0.

Linear Complementarity Problem (LCP)

Given: q ∈ Rn, M ∈ Rn×n Find: z, w ∈ Rn so that

z ≥ 0 ⊥ w = q + Mz ≥ 0

⊥ means orthogonal:

zT w = 0
⇔ ziwi = 0 all i = 1, . . . , n

If q ≥ 0, the LCP has trivial solution w = q , z = 0.

LP in inequality form

primal : max cT x
subject to Ax ≤ b

x ≥ 0

dual : min yT b

subject to yT A ≥ cT

y ≥ 0

Weak duality: x , y feasible (fulfilling constraints)

⇒ cT x ≤ yT Ax ≤ yT b

Strong duality: primal and dual feasible

⇒ ∃ feasible x , y : cT x = yT b (x , y optimal)

LP in inequality form

primal : max cT x
subject to Ax ≤ b

x ≥ 0

dual : min yT b

subject to yT A ≥ cT

y ≥ 0

Weak duality: x , y feasible (fulfilling constraints)

⇒ cT x ≤ yT Ax ≤ yT b

Strong duality: primal and dual feasible

⇒ ∃ feasible x , y : cT x = yT b (x , y optimal)

LP in inequality form

primal : max cT x
subject to Ax ≤ b

x ≥ 0

dual : min yT b

subject to yT A ≥ cT

y ≥ 0

Weak duality: x , y feasible (fulfilling constraints)

⇒ cT x ≤ yT Ax ≤ yT b

Strong duality: primal and dual feasible

⇒ ∃ feasible x , y : cT x = yT b (x , y optimal)

LCP generalizes LP
LCP encodes complementary slackness of strong duality:

cT x = yT Ax = yT b

⇔ (yT A − cT)x = 0, yT (b − Ax) = 0.

≥ 0 ≥ 0 ≥ 0 ≥ 0

LP⇔ LCP

(
x
y

)
︸︷︷︸

z

≥ 0 ⊥
(−c

b

)
︸ ︷︷ ︸

q

+

(
0 AT

−A 0

)
︸ ︷︷ ︸

M

(
x
y

)
︸︷︷︸

z

≥ 0

LCP generalizes LP
LCP encodes complementary slackness of strong duality:

cT x = yT Ax = yT b

⇔ (yT A − cT)x = 0, yT (b − Ax) = 0.

≥ 0 ≥ 0 ≥ 0 ≥ 0

LP⇔ LCP

(
x
y

)
︸︷︷︸

z

≥ 0 ⊥
(−c

b

)
︸ ︷︷ ︸

q

+

(
0 AT

−A 0

)
︸ ︷︷ ︸

M

(
x
y

)
︸︷︷︸

z

≥ 0

LCPs and complementary cones
Given: q ∈ Rn, M ∈ Rn×n Find: z ∈ Rn so that

z ≥ 0⊥ w = q + Mz ≥ 0

⇔ z ≥ 0⊥ w ≥ 0 q = Iw − Mz

⇔ q belongs to a complementary cone:

q ∈ C(α) = cone {−Mi , ej | i ∈ α, j < α}

for some α ⊆ {1, . . . , n}, M = [M1M2 · · ·Mn]

α = {i | zi > 0}

LCPs and complementary cones
Given: q ∈ Rn, M ∈ Rn×n Find: z ∈ Rn so that

z ≥ 0⊥ w = q + Mz ≥ 0

⇔ z ≥ 0⊥ w ≥ 0 q = Iw − Mz

⇔ q belongs to a complementary cone:

q ∈ C(α) = cone {−Mi , ej | i ∈ α, j < α}

for some α ⊆ {1, . . . , n}, M = [M1M2 · · ·Mn]

α = {i | zi > 0}

LCPs and complementary cones
Given: q ∈ Rn, M ∈ Rn×n Find: z ∈ Rn so that

z ≥ 0⊥ w = q + Mz ≥ 0

⇔ z ≥ 0⊥ w ≥ 0 q = Iw − Mz

⇔ q belongs to a complementary cone:

q ∈ C(α) = cone {−Mi , ej | i ∈ α, j < α}

for some α ⊆ {1, . . . , n}, M = [M1M2 · · ·Mn]

α = {i | zi > 0}

LCPs and complementary cones

M =

(
2 1
1 3

)

1

1
2

3

1M

2M

1

e2

e

LCPs and complementary cones

M =

(
2 1
1 3

)

1

1
2

3

1M

2M

1

e2

e

LCPs and complementary cones

M =

(
2 1
1 3

)

1

1
2

3

1M

2M

1

e2

e

LCPs and complementary cones

M =

(
2 1
1 3

)

1

1
2

3

1M

2M

1

e2

e

LCPs and complementary cones

M =

(
2 1
1 3

)

1

1
2

3

1M

2M

1

e2

e

LCPs and complementary cones

M =

(
2 1
1 3

)

1
q = 1

1

1
2

3

1M

2M

1

e2

e

P-matrices
Def: M ∈ Rn×n is a P-matrix if all its principal minors are positive.

Thm: M is a P-matrix⇔ LCP (M , q) has unique solution ∀q ∈ Rn.

M =

(
2 1
1 3

)
M′ =

(
1 2
3 1

)
M is a P-matrix, as

det(M11) = 2 > 0
det(M22) = 3 > 0

det(M) = 5 > 0

M′ is not a P-matrix, as det(M′) = −5 < 0

P-matrices
Def: M ∈ Rn×n is a P-matrix if all its principal minors are positive.

Thm: M is a P-matrix⇔ LCP (M , q) has unique solution ∀q ∈ Rn.

M =

(
2 1
1 3

)
M′ =

(
1 2
3 1

)
M is a P-matrix, as

det(M11) = 2 > 0
det(M22) = 3 > 0

det(M) = 5 > 0

M′ is not a P-matrix, as det(M′) = −5 < 0

Complementary cones: P-matrix

M =

(
2 1
1 3

)

1
q = 1

1

1
2

3

1M

2M

1

e2

e

Multiple solutions

1
q = 1

1

1
2

3

1

e2

e

1

2M

M

Binary zero-sum discounted games

• Finite directed graph on states S = {1, . . . , n}
• Partition S = SMax ∪ SMin

• Every state has a left successor λ(s) and right successor ρ(s)

• Every state has a reward - r : S 7→ Z
• Discount factor δ ∈ (0,1) (same for both players)

4

1

3

20 −20

30 −10

2

Binary zero-sum discounted games

• Finite directed graph on states S = {1, . . . , n}
• Partition S = SMax ∪ SMin

• Every state has a left successor λ(s) and right successor ρ(s)

• Every state has a reward - r : S 7→ Z
• Discount factor δ ∈ (0,1) (same for both players)

4

1

3

20 −20

30 −10

2

Binary zero-sum discounted games

• Finite directed graph on states S = {1, . . . , n}
• Partition S = SMax ∪ SMin

• Every state has a left successor λ(s) and right successor ρ(s)

• Every state has a reward - r : S 7→ Z

• Discount factor δ ∈ (0,1) (same for both players)

4

1

3

20 −20

30 −10

2

Binary zero-sum discounted games

• Finite directed graph on states S = {1, . . . , n}
• Partition S = SMax ∪ SMin

• Every state has a left successor λ(s) and right successor ρ(s)

• Every state has a reward - r : S 7→ Z
• Discount factor δ ∈ (0,1) (same for both players)

4

1

3

20 −20

30 −10

2

Binary zero-sum discounted games

• Finite directed graph on states S = {1, . . . , n}
• Partition S = SMax ∪ SMin

• Every state has a left successor λ(s) and right successor ρ(s)

• Every state has a reward - r : S 7→ Z
• Discount factor δ ∈ (0,1) (same for both players)

4

1

3

20 −20

30 −10

2

Player objectives

4

1

3

20 −20

30 −10

2

• A play is an infinite path π = s0, s1, s3, . . .
• initial state s0• owner of si chooses si+1 ∈ { λ(si), ρ(si) }

• Max maximizes and Min minimizes
∞∑

i=0

δir(si)

Player objectives

4

1

3

20 −20

30 −10

2

• A play is an infinite path π = s0, s1, s3, . . .
• initial state s0• owner of si chooses si+1 ∈ { λ(si), ρ(si) }

• Max maximizes and Min minimizes
∞∑

i=0

δir(si)

Optimality equations

• Every state has a value v(s) characterized by:

∀s ∈ SMax : v(s) = max
t∈{λ(s),ρ(s)}

(r(s) + δv(t))

∀s ∈ SMin : v(s) = min
t∈{λ(s),ρ(s)}

(r(s) + δv(t))

• Proofs:
• Banach fixed point theorem for contraction mappings
• Strategy improvement algorithm (constructive)

• Values give pure and positional optimal strategies:
Max (Min) picks succesor with largest (smallest) value.

Optimality equations

• Every state has a value v(s) characterized by:

∀s ∈ SMax : v(s) = max
t∈{λ(s),ρ(s)}

(r(s) + δv(t))

∀s ∈ SMin : v(s) = min
t∈{λ(s),ρ(s)}

(r(s) + δv(t))

• Proofs:
• Banach fixed point theorem for contraction mappings
• Strategy improvement algorithm (constructive)

• Values give pure and positional optimal strategies:
Max (Min) picks succesor with largest (smallest) value.

Optimality equations

• Every state has a value v(s) characterized by:

∀s ∈ SMax : v(s) = max
t∈{λ(s),ρ(s)}

(r(s) + δv(t))

∀s ∈ SMin : v(s) = min
t∈{λ(s),ρ(s)}

(r(s) + δv(t))

• Proofs:
• Banach fixed point theorem for contraction mappings
• Strategy improvement algorithm (constructive)

• Values give pure and positional optimal strategies:
Max (Min) picks succesor with largest (smallest) value.

Unique values for δ = 1/2
32 −4

−1224

4

1

3

20 −20

30 −10

2

v(1) = 32 =r(1) + δmax(v(3), v(4)) = 20+1/2(24)

v(2) = −4 =r(2) + δmax(v(1), v(4)) = −20+1/2(32)
v(3) = 24 =r(3) + δmin(v(1), v(4)) = 30+1/2(−12)
v(4) = −12 =r(4) + δmin(v(2), v(3)) = −10+1/2(−4)

Unique values for δ = 1/2
32 −4

−1224

4

1

3

20 −20

30 −10

2

v(1) = 32 =r(1) + δmax(v(3), v(4)) = 20+1/2(24)
v(2) = −4 =r(2) + δmax(v(1), v(4)) = −20+1/2(32)
v(3) = 24 =r(3) + δmin(v(1), v(4)) = 30+1/2(−12)
v(4) = −12 =r(4) + δmin(v(2), v(3)) = −10+1/2(−4)

Nonnegative slacks and complementarity

v(2) = r(2) + δmax(v(1), v(4))

−4

w(2)

z(2)

−12

32

−20

−10

20
2

4

1

v(2) = w(2)+ r(2) + δv(1)
v(2) = z(2)+ r(2) + δv(4)

w(2), z(2) ≥ 0, w(2) · z(2) = 0

Reduction to LCP

∀s ∈ SMax : v(s) = max
t ∈ {λ(s), ρ(s)}

(r(s) + δv(t))

∀s ∈ SMin : v(s) = min
t ∈ {λ(s), ρ(s)}

(r(s) + δv(t))

Replace max/min with slacks and complementarity condition

∀s ∈ SMax : v(s) = w(s) + r(s) + δv(λ(s))

v(s) = z(s) + r(s) + δv(ρ(s))

∀s ∈ SMin : v(s) = −w(s) + r(s) + δv(λ(s))

v(s) = −z(s) + r(s) + δv(ρ(s))

∀s ∈ S : w(s) ≥ 0⊥ z(s) ≥ 0

Reduction to LCP

∀s ∈ SMax : v(s) = max
t ∈ {λ(s), ρ(s)}

(r(s) + δv(t))

∀s ∈ SMin : v(s) = min
t ∈ {λ(s), ρ(s)}

(r(s) + δv(t))

Replace max/min with slacks and complementarity condition

∀s ∈ SMax : v(s) = w(s) + r(s) + δv(λ(s))

v(s) = z(s) + r(s) + δv(ρ(s))

∀s ∈ SMin : v(s) = −w(s) + r(s) + δv(λ(s))

v(s) = −z(s) + r(s) + δv(ρ(s))

∀s ∈ S : w(s) ≥ 0⊥ z(s) ≥ 0

Reduction to LCP

∀s ∈ SMax : v(s) = max
t ∈ {λ(s), ρ(s)}

(r(s) + δv(t))

∀s ∈ SMin : v(s) = min
t ∈ {λ(s), ρ(s)}

(r(s) + δv(t))

Replace max/min with slacks and complementarity condition

∀s ∈ SMax : v(s) = w(s) + r(s) + δv(λ(s))

v(s) = z(s) + r(s) + δv(ρ(s))

∀s ∈ SMin : v(s) = −w(s) + r(s) + δv(λ(s))

v(s) = −z(s) + r(s) + δv(ρ(s))

∀s ∈ S : w(s) ≥ 0⊥ z(s) ≥ 0

Example

4

1

3

20 −20

30 −10

2

∀s ∈ S :

w(v) ≥ 0⊥ z(v) ≥ 0


v(1)
v(2)
−v(3)
−v(4)

 =


w(1)
w(2)
w(3)
w(4)

 +


r(1)
r(2)
−r(3)
−r(4)

 + δ


0 0 1 0
1 0 0 0
0 0 0 −1
0 0 −1 0




v(1)
v(2)
v(3)
v(4)




v(1)
v(2)
−v(3)
−v(4)

 =


z(1)
z(2)
z(3)
z(4)

 +


r(1)
r(2)
−r(3)
−r(4)

 + δ


0 0 0 1
0 0 0 1
−1 0 0 0
0 −1 0 0




v(1)
v(2)
v(3)
v(4)



Example

4

1

3

20 −20

30 −10

2

w ≥ 0⊥ z ≥ 0

A :=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



Av = w + Ar + δA

L︷ ︸︸ ︷
0 0 1 0
1 0 0 0
0 0 0 1
0 0 1 0

v

Av = z + Ar + δA


0 0 0 1
0 0 0 1
1 0 0 0
0 1 0 0

︸ ︷︷ ︸
R

v

Eliminate v

A(I − δL)v = w + Ar
A(I − δR)v = z + Ar

Eliminating v we get

w + Ar = A(I − δL)(A(I − δR))−1(z + Ar)

w = Mz + q

w ≥ 0⊥ z ≥ 0

M = A(I − δL)(I − δR)−1A, q = (M − I)Ar

Example

w = Mz + q

w ≥ 0⊥ z ≥ 0

M = A(I − δL)(I − δR)−1A, q = (M − I)Ar

A(I − δL) =


1 0 −δ 0
−δ 1 0 0

0 0 −1 δ
0 0 δ −1

 A(I − δR) =


1 0 0 −δ
0 1 0 −δ
δ 0 −1 0
0 δ 0 −1



Levy-Desplanques Theorem

If A ∈ Rn×n is strictly diagonally dominant, i.e., |aii | > ∑
j,i |aij |

for all i , then A is non-singular.

• A(I − δL) and A(I − δR) are strictly diagonally dominant. E.g.

A(I − δL) =


1 0 −δ 0
−δ 1 0 0

0 0 −1 δ
0 0 δ −1

 A(I − δR) =


1 0 0 −δ
0 1 0 −δ
δ 0 −1 0
0 δ 0 −1


• So M = A(I − δL)(I − δR)−1A is well defined

Levy-Desplanques Theorem

If A ∈ Rn×n is strictly diagonally dominant, i.e., |aii | > ∑
j,i |aij |

for all i , then A is non-singular.

• A(I − δL) and A(I − δR) are strictly diagonally dominant. E.g.

A(I − δL) =


1 0 −δ 0
−δ 1 0 0

0 0 −1 δ
0 0 δ −1

 A(I − δR) =


1 0 0 −δ
0 1 0 −δ
δ 0 −1 0
0 δ 0 −1


• So M = A(I − δL)(I − δR)−1A is well defined

Theorem (Johnson and Tsatsomeros (1995))

Let M = BC−1, where B,C ∈ Rn×n. Then, M is a P-matrix if
TC + (I − T)B is invertible for all T ∈ [0, I].

w = Mz + q

w ≥ 0⊥ z ≥ 0

M = A(I − δL)(I − δR)−1A, q = (M − I)Ar

B = A(I − δL) and C = A(I − δR) are strictly diagonally dominant.

Thus, TC + (I − T)B is s.d.d., and hence invertible, for all T ∈ [0, I].

Thus, M = BC−1 is a P-matrix.

Theorem (Johnson and Tsatsomeros (1995))

Let M = BC−1, where B,C ∈ Rn×n. Then, M is a P-matrix if
TC + (I − T)B is invertible for all T ∈ [0, I].

w = Mz + q

w ≥ 0⊥ z ≥ 0

M = A(I − δL)(I − δR)−1A, q = (M − I)Ar

B = A(I − δL) and C = A(I − δR) are strictly diagonally dominant.

Thus, TC + (I − T)B is s.d.d., and hence invertible, for all T ∈ [0, I].

Thus, M = BC−1 is a P-matrix.

Unique End of Potential Line (UEOPL)

P

NP

UEOPL

CLS

PPADPLS

TFNP

UEOPL ⊆ EOPL = CLS = PPAD ∩ PLS

UEOPL 2nd motivation: Contraction Maps

f is contracting if

||f (x) − f (x ′)|| ≤ c · ||x − x ′|| for c < 1

UEOPL 2nd motivation: Contraction Maps

Banach’s fixpoint theorem
• Every contraction map has a unique fixpoint

UEOPL 2nd motivation: Contraction Maps

Problem: given a contraction map as an arithmetic circuit
• Find a fixpoint or a violation of contraction

No violations⇒ the problem has a unique solution

The three problems

• Contraction (for piecewise-linear circuits)
• Unique sink orientation (definition to come later)
• P-matrix LCP

Each can be formulated so that there are

• proper solutions
• violation solutions

When there are no violations there is a unique solution

UEOPL is intended to capture problems like this

Defining (U)EOPL

CLS combines

• the continuous PPAD-complete problem Brouwer
• the canonical PLS-complete problem

EOPL

Why not combine both canonical problems?

End Of Potential Line (EOPL)

PLS

start

PPAD

start

end

Hardness of CLS: Query Complexity and Cryptographic Lower Bounds
Hubác̆ek and Yogev [SODA 2017]

CLS: New Problems and Completeness (arXiv)
[Fearnley, Gordon, Mehta, S. 2017–]

End of Potential Line (EOPL)

6

5

3

2
1

5
8

7
6

j
7

6
5

4

o

8
start

1
end

8

3
5

Combines the two canonical
complete problems
• An End-of-the-Line instance
• That has a potential

Find
• The end of a line
• A vertex where the potential

increases

Unique End of Potential Line (UEOPL)

0
0n

1 2 3
x

5
S(x)

7 8 9

2 3 4
y

5 7

• Proper solution: The end of a line
• Violation 1: The start of a line other than 0n

• Violation 2: An edge that increases the potential
• Violation 3: Any pair of vertices v and u satisfying

V (x) < V (y) < V (S(x))

Unique End of Potential Line (UEOPL)

0
0n

1 2 3
x

5
S(x)

7 8 9

2 3 4
y

5 7

If there are no violations then there is a unique line
• That starts at at 0n

• And ends at the unique proper solution to the problem

Main results

Simple Stochastic Games

Discounted Games

Mean-payoff games

Parity games

Fixpoint of Piecewise-Linear
Contraction Map

P-matrix Linear
Complementarity Problem

Unique Sink Orientation

UEOPL

Main results

One Permutation Discrete Contraction is UEOPL-complete

• A technical tool used in our reductions
• USO reduces to OPDC
• Contraction reduces to OPDC
• OPDC is “close“ to both problems

OPDC is not very natural...

Piecewise-Linear Contraction

Input

• contraction map f given as an arithmetic circuit

• gates: max,min,+,−, and ×ζ (multiplication by a constant)

• a LinearFIXP circuit defines a piecewise linear function

• we seek a fixpoint, i.e., x∗ such that f (x∗) = x

• x∗ is unique and has polynomial bit complexity

Find

• A fixpoint of f (which will be unique if f is contracting)
• A violation that shows f is not contracting

PL-Contraction to UEOPL

0

0

0

0

0

0 0 0

0

0

First we discretize the problem

• Lay a grid of points over the space
• For each dimension construct a direction function

PL-Contraction to UEOPL

0

0

0

0

0

0 0 0

0

0

0

0

0

0

0

0

0

0

Discrete contraction

• Find a point that is 0 in all dimensions

PL-Contraction to UEOPL

A point is on the surface if it is 0 for some direction

• Every vertical slice has a unique point on the blue surface
• At each of these, we can follow the red direction function

PL-Contraction to UEOPL

The path
1 Start at (0, 0)
2 Find the blue surface
3 If not at red surface, move across one, return to bottom, go to 2

PL-Contraction to UEOPL

The potential
• The path never moves left
• In every slice, it either moves moves up or down

PL-Contraction to UEOPL

So we can use a pair (a, b) ordered lexicographically where
• a is the x coordinate of the vertex
• b is

• y if we are moving up
• −y if we are moving down

This monotonically increases along the line

PL-Contraction to UEOPL

Actually, this formulation only gives us a forward circuit
• But the line is unique
• So we can apply a technique of Hubáček and Yogev (2017) to

make the line reversible

PL-Contraction to UEOPL

This generalises to arbitrary dimension
• We walked along the blue surface to reach the red surface

PL-Contraction to UEOPL

In 3D
• Walk along the red/blue surface to find the green surface
• Between any two points on the red/blue surface

• Walk along the blue surface to find the red surface

PL-Contraction to UEOPL

Theorem

Contraction is in UEOPL

Consequences for contraction

Theorem

Given an arithmetic circuit C encoding a contraction map

f : [0, 1]d → [0, 1]d

with respect to any ℓp norm

there is an algorithm, based on a nested binary search

that finds a fixpoint of f in time

• polynomial in size(C)

• exponential in d

Before, such algorithms were only known for ℓ2 and ℓ∞

Unique Sink Orientations of Cubes

Orient the edges of an n-dimensional cube

• So that every face has a unique sink

Unique Sink Orientations of Cubes

A 3-dimensional USO

Unique Sink Orientations of Cubes

Can be cyclic (EXERCISE)

UniqueSinkOrientation
Given a polynomial-time boolean circuit

C : {0, 1}n 7→ {0, 1}n

that maps a vertex v of then n-cube to the orientation at v :
• find the sink of the cube
• or a violation to the USO property

Why is USO interesting?

Long line of work on UniqueSinkOrientation:

P-matrix LCP reduces to UniqueSinkOrientation
[Stickney and Watson ’78]

Non-trivial USO algorithms (previously best for P-matrix LCP)
[Szabó and Welzl ’01]

Some problems reduce to acyclic USO
• parity games
• mean-payoff games
• discounted games
• simple-stochastic games

USO in UEOPL

Previously
• USO was known to be in TFNP
• But not PPAD or PLS

USO in UEOPL

Theorem

USO is in UEOPL

(USO is a “width 2” instance of discrete contraction)

USO in UEOPL

So we put USO in UEOPL, CLS, PPAD, and PLS

P-matrix Linear Complementarity Problem

M1

[
2
1

]

M2

[
1
3

]

−e1

−e2

−q =

[
1
1

]

Input:
• Vectors M1, M2, . . . , Md

• A vector q

P-matrix Linear Complementarity Problem

M1

[
2
1

]

M2

[
1
3

]

−e1

−e2

−q =

[
1
1

]

A complementary cone is all non-negative linear combinations of
• A subset of M1, M2, . . . , Md , with
• −ei in place of each vector not chosen

P-matrix Linear Complementarity Problem

M1

[
2
1

]

M2

[
1
3

]

−e1

−e2

−q =

[
1
1

]

The linear complementarity problem (LCP)
• Find a cone that contains q

P-matrix Linear Complementarity Problem

M1

[
2
1

]

M2

[
1
3

]

−e1

−e2

−q =

[
1
1

]

P-matrix LCPs
• The cones are guaranteed to exactly partition the space

P-matrix Linear Complementarity Problem

M1

[
2
1

]

M2

[
1
3

]

−e1

−e2

−q =

[
1
1

]

d =

[
−2
−1

]

We reduce P-matrix LCP to UEOPL using Lemke’s algorithm
• Start at the vector d in the cone −e1, −e2

• Walk through the sequence of cones from d to q

P-matrix Linear Complementarity Problem

M1

[
2
1

]

M2

[
1
3

]

−e1

−e2

−q =

[
1
1

]

d =

[
−2
−1

]

The progress along the path gives us a potential
• The algorithm has a variable z
• z corresponds to distance along the path
• it monotonically decreases

P-matrix LCP→ UEOPL

If the input is not a P-matrix, then z may increase

• We deal with this by introducing new solutions

primary
ray

z z z z z z z z

0

P

S

P

S

P

S

P

S

S,P S,P
P

S

P

S

P

S

P-matrix LCP→ UEOPL

Theorem
P-matrix LCP is in UEOPL

Consequences for P-matrix LCP

Blowup of reduction to UEOPL is only linear

This allows us to apply an algorithm of Aldous (1983)

Gives fastest-known (randomized) algorithm for P-matrix
LCP, with running time

2
n
2 · poly(n)

Simple Stochastic Games

Discounted Payoff Games

Mean-payoff Games

Parity Games

Contraction P-LCP

USO

UEOPL

EOML EOPL

CLS
[HY SODA17]

Conjectures

USO is complete for UEOPL

Contraction is complete for UEOPL

PLCP is complete for UEOPL

EOPL = CLS, UEOPL

Conjectures

USO is complete for UEOPL

Contraction is complete for UEOPL

PLCP is complete for UEOPL

EOPL = CLS, UEOPL

Unique sink orientations of cubes
[Stickney and Watson (1978)][Szabó and Welzl (2001)]

• n-dimensional hypercube
• edges oriented such that every face has a unique sink
• thus unique global sink

The two USOs for n = 2:

Fact: Every one of 2d outmaps occurs at some vertex

In particular, there’s also a single source on each face too

Unique sink orientations of cubes
[Stickney and Watson (1978)][Szabó and Welzl (2001)]

• n-dimensional hypercube
• edges oriented such that every face has a unique sink
• thus unique global sink

The two USOs for n = 2:

Fact: Every one of 2d outmaps occurs at some vertex
In particular, there’s also a single source on each face too

EXERCISES

Reduce the promise version of the P-matrix LCP problem to the
USO problem.

Construct a USO in 3 dimensions that contains a cyclic.
Hints:

1 Recall that the cycle cannot exist within a 2 face
2 Recall that the USO must have an overall source and an

overall sink

ANSWER 1: USO for P-matrix LCP

LCP: z ≥ 0⊥ w ≥ 0, q = Iw − Mz

For every α ⊆ {1, . . . , n}, define Bα ∈ Rn×n by

(Bα)i =

−Mi , i ∈ α
ei , i < α

Orient edges at vertex α oriented according to

sign
(
(Bα)−1q

)

ANSWER 1: PLCP USO example

−1/5
(

3 −1
−1 2

)
z′ + Iw ′ = q′ =

(
2/5
1/5

)
≥ 0

α = {1, 2}

α = {1} α = {2}

α = ∅

Iw − Mz = Iw −
(

2 1
1 3

)
z = q =

(−1
−1

)

Cyclic USO
Antipodal sink and source; remaining form cycle (two directions possible)

Note:

• this cyclic USOs arises from a P-matrix LCP

• subexponential algorithms (2O(
√

(n))) known, but rely on acyclicity

• none known for P-LCP, major open problem

P-LCP in UEOPL two ways

• We presented a direct reduction from P-LCP to UEOPL
possible via Lemke’s algorithm

• P-LCP can be reduced to USO by a rather straightforward
reduction (exercise)

• This gives an alternative (but less “efficient”) proof of
membership in UEOPL for P-LCP

References

Unique end of potential line by Fearnley, Gordon, Mehta, Savani
ICALP 2019 / JCSS 2020 Definition of UEOPL and containment results

Hardness of Continuous Local Search by Hubácek and Yogev
SODA 2017 / SICOMP 2020 EOPL in CLS, query/crypto hardness of (U)EOPL

Further Collapses in TFNP by
Göös, Hollender, Jain, Maystre, Pires, Robere, Tao
CCC 2022 EOPL = PPAD ∩ PLS

Thanks!

	Total Function problems in NP (TFNP)
	Totality and verifiability
	Syntactic subclasses of TFNP

	Polynomial Parity Argument, Directed Version (PPAD)
	Bimatrix games, the Lemke-Howson algorithm, membership in PPAD
	Sketch of PPAD-hardness
	Nash to Brouwer

	Polynomial Local Search (PLS)
	Congestion games, potential functions, membership in PLS
	PLS-hardness for congestion games

	Continuous Local Search (CLS)
	Gradient Descent
	CLS = PPAD PLS
	Candidates for CLS-hardness
	Finding a mixed equilibrium of a congestion game is CLS-complete

	Unique End of Potential Line (UEOPL)
	Definition, example problems in UEOPL, and related open problems

