The Computational Complexity of finding Game-Theoretic Solutions

Rahul Savani

University of Liverpool

and

The Alan Turing Institute

Outline

Major results we will cover:

- PURE-NASH for congestion games is PLS-complete
- MIXED-NASH for bimatrix games is PPAD-complete
- CLS = PPAD \cap PLS
(2D-KKT is (PLS \cap PPAD)-complete)
- MIXED-NASH for congestion games is CLS-complete

Outline

Major results we will cover:

- PURE-NASH for congestion games is PLS-complete
- MIXED-NASH for bimatrix games is PPAD-complete
- CLS = PPAD \cap PLS
(2D-KKT is (PLS \cap PPAD)-complete)
- MIXED-NASH for congestion games is CLS-complete

There are many important problems in CLS that are unlikely to be complete for it because they always have a unique solution

We finish by introducing UEOPL, a class within CLS that only contains problems that admit unique solutions...

For PPAD, PLS, CLS, and UEOPL, we will discuss:

- Inspiration and motivation for the classes,
e.g. via algorithmic approaches or properties of solutions
- Technical definitions of the classes
- Examples of complete problems for these classes
- High-level ideas of (the extremely technical) reductions
- Open problems
(1) Total Function problems in NP (TFNP)

Totality and verifiability
Syntactic subclasses of TFNP
2 Polynomial Parity Argument, Directed Version (PPAD)
Bimatrix games, the Lemke-Howson algorithm, membership in PPAD
Sketch of PPAD-hardness
Nash to Brouwer
(3) Polynomial Local Search (PLS)

Congestion games, potential functions, membership in PLS
PLS-hardness for congestion games
(4) Continuous Local Search (CLS)

Gradient Descent
CLS = PPAD \cap PLS
Candidates for CLS-hardness
Finding a mixed equilibrium of a congestion game is CLS-complete
(5) Unique End of Potential Line (UEOPL)

Definition, example problems in UEOPL, and related open problems

Total Function problems in NP (TFNP)

Complexity classes between P and NP

There are many problems that lie between P and NP

- Factoring, graph isomorphism, computing Nash equilibria, local max cut, simple-stochastic games, ...

Complexity classes between P and NP

FNP is the class of function problems in NP

- Given polynomial time computable relation \boldsymbol{R} and value \boldsymbol{x}
- Find \boldsymbol{y} such that $(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{R}$

Complexity classes between P and NP

TFNP is the subclass of problems that always have solutions

- Contains factoring, Nash equilibria, local max cut, simple-stochastic games, ...

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

- NASH:

Find a mixed Nash equilibrium of a game

- PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game

- FACTORING:

Find a prime factor of a number ≥ 2

- BROUWER:

Find a fixed point of a continuous function $f:[\mathbf{0 , 1}]^{3} \mapsto[0,1]^{3}$

- KKT (Karush-Kuhn-Tucker):

Find a KKT point of a C^{1} function $f:[0,1]^{3} \mapsto[0,1]$

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions
Can a TFNP problem be NP-hard?

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions
Can a TFNP problem be NP-hard? Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, KKT, . . .

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions
Can a TFNP problem be NP-hard? Not unless NP = co-NP ... [Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

Syntactic subclasses of TFNP

To classify the complexity of problems within TFNP
syntactic subclasses have been defined based on the (combinatorial) proof principles of totality:

- PPP: totality based on pigeonhole principle
- PLS: totality based on potential function (DAGs have sinks)
- PPAD: totality based on (reversible) line-following argument

TFNP Landscape

Complexity classes between P and NP

PPAD and PLS are two subclasses of TFNP

Complexity classes between P and NP

Are there interesting problems in PPAD and PLS?

Complexity classes between P and NP

CLS (Continuous Local Search) was defined to capture these problems (Daskalakis and Papadimitriou, 2011)

Complexity classes between P and NP

UEOPL - Unique End of Potential Line
UEOPL \subseteq CLS defined to capture problems with unique solutions (2020)

Complexity classes between P and NP

Later CLS was surprisingly shown to equal PPAD \cap PLS (2021)

Complexity classes: PPAD, PLS, CLS, UEOPL

Complexity classes: PPAD, PLS, CLS, UEOPL

- PPAD: Nash equilibrium of a strategic-form game; Brouwer fixed points; market equilibrium...
- PLS: Pure Nash equilibrium of a congestion game; Local Max Cut (and other "local" versions of NP-hard problems)...
- CLS: Continuous Local optima (found e.g. by Gradient Descent); mixed Nash equilibrium of a congestion game
- UEOPL: Parity Games; Simple Stochastic Games; P-matrix LCP; fixed points of contraction maps...

TFNP subclasses

Why believe that PPAD $\neq \mathbf{P}$, PLS $\neq \mathrm{P}$, etc. ?

- many seemingly hard problems lie in PPAD, PLS, ...
- oracle separations (in particular PPAD \neq PLS)
- hard under cryptographic assumptions

Reterences

On Total Functions, Existence Theorems and Computational Complexity by Megiddo and Papadimitriou Theor. Comput. Sci. (1991)

On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence by Papadimitriou J. Comput. Syst. Sci. (1994) PPAD, PPA, PPP, memberships and relationships

Propositional proofs and reductions between NP search problems by Buss and Johnson
Ann. Pure Appl. Log. (2012)
Oracle separations

On the Cryptographic Hardness of Finding a Nash Equilibrium by Bitansky, Paneth, Rosen
FOCS (2015)
Example of cryptographic hardness (for PPAD)

Polynomial Parity Argument, Directed Version (PPAD)

Nash equilibria of bimatrix games

1	1 r	
	1	0
T	3	3
	0	2
M	2	5
	4	3
B	0	6

Nash equilibria of bimatrix games

Nash equilibrium $=$
pair of strategies x, y with
x best response to y and
y best response to x

Mixed equilibria

$$
\begin{aligned}
A y & =\left(\begin{array}{ll}
3 & 3 \\
2 & 5 \\
0 & 6
\end{array}\right)\left(\begin{array}{ll}
1 / 3 & 2 / 3
\end{array}\right)^{\top}=\left(\begin{array}{l}
3 \\
4 \\
4
\end{array}\right) \\
x^{\top} B & =\left(\begin{array}{c}
0 \\
1 / 3 \\
2 / 3
\end{array}\right)^{\top}\left(\begin{array}{ll}
1 & 0 \\
0 & 2 \\
4 & 3
\end{array}\right)=\left(\begin{array}{ll}
8 / 3 & 8 / 3
\end{array}\right)
\end{aligned}
$$

only only pure best responses can have probability >0

Best response polyhedron H_{2} for player 2

$$
\begin{aligned}
& \boldsymbol{H}_{\mathbf{2}}=\left\{\left(\mathrm{y}_{4}, \mathrm{y}_{5}, \mathrm{u}\right) \mid\right. \\
& \text { (1): } 3 \mathrm{y}_{4}+3 \mathrm{y}_{5} \leq \mathrm{u} \\
& \text { (2): } 2 \mathbf{y}_{4}+5 \mathbf{y}_{5} \leq \mathbf{u} \\
& \text { (3): } \quad 6 \mathbf{y}_{5} \leq u \\
& \mathbf{y}_{4}+\mathrm{y}_{5}=1 \\
& \left.\begin{array}{lll}
\text { (4): } & \mathrm{y}_{4} & \geq 0 \\
\text { (5): } & & y_{5} \geq 0
\end{array}\right\}
\end{aligned}
$$

Best response polytope \mathbf{Q} for player 2

$$
\begin{aligned}
& \begin{array}{l}
\left.\quad \begin{array}{ll}
\mathbf{y}_{4} \mathbf{y}_{5} \\
\text { (1) } & 3 \\
3 & 3 \\
\text { (2) } & 2 \\
2 & 5 \\
0 & 6
\end{array} \right\rvert\,=\mathrm{A}
\end{array} \\
& Q=\left\{\left(y_{4}, y_{5}\right) \mid\right. \\
& \text { (1): } 3 \mathbf{y}_{4}+3 \mathbf{y}_{5} \leq 1 \\
& \text { (2): } 2 \mathbf{y}_{4}+5 \mathbf{y}_{5} \leq 1 \\
& \text { (3): } \quad 6 \mathrm{y}_{5} \leq 1 \\
& \left.\begin{array}{lll}
\text { (4): } & \mathrm{y}_{4} & \geq 0 \\
\text { (5): } & & \mathrm{y}_{5} \geq 0
\end{array}\right\} \\
& Q=\{y \mid A y \leq 1, y \geq 0\}
\end{aligned}
$$

Projective transformation

H_{2}, \mathbf{Q} same face incidences

Best response polytope \mathbf{Q} for player 2

$$
\begin{aligned}
& \begin{array}{l}
\left.\quad \begin{array}{ll}
\mathbf{y}_{4} \mathbf{y}_{5} \\
\text { (1) } & 3 \\
3 & 3 \\
\text { (2) } & 2 \\
2 & 5 \\
0 & 6
\end{array} \right\rvert\,=\mathrm{A}
\end{array} \\
& Q=\left\{\left(y_{4}, y_{5}\right) \mid\right. \\
& \text { (1): } 3 \mathbf{y}_{4}+3 \mathbf{y}_{5} \leq 1 \\
& \text { (2): } 2 \mathbf{y}_{4}+5 \mathbf{y}_{5} \leq 1 \\
& \text { (3): } \quad 6 \mathrm{y}_{5} \leq 1 \\
& \left.\begin{array}{lll}
\text { (4): } & \mathrm{y}_{4} & \geq 0 \\
\text { (5): } & & \mathrm{y}_{5} \geq 0
\end{array}\right\} \\
& Q=\{y \mid A y \leq 1, y \geq 0\}
\end{aligned}
$$

Best response polytope P for player 1

Equilibrium = completely labeled pair

pure equilibrium

Equilibrium = completely labeled pair

mixed equilibrium

The Lemke-Howson algorithm

Drop label 3

The Lemke-Howson algorithm

Drop label (3)

The Lemke-Howson algorithm

The Lemke-Howson algorithm

The Lemke-Howson algorithm

Drop label (3)

The Lemke-Howson algorithm

Drop label
(2)

The Lemke-Howson algorithm

Drop label 2

The Lemke-Howson algorithm

Drop label 2

The Lemke-Howson algorithm

Drop label
(2)

The Lemke-Howson algorithm

Drop label 2

The Lemke-Howson algorithm

Drop label 3 from \square

The Lemke-Howson algorithm

Drop label 3 from \square

The Lemke-Howson algorithm

Drop label 3 from \square

Why Lemke-Howson works

LH finds at least one Nash equilibrium because

- finitely many "vertices"
for nondegenerate (generic) games:
- unique starting edge given missing label
- unique continuation
\Rightarrow precludes "coming back" like here:

Lemke-Howson (LH) summary

- LH implies non-degenerate bimatrix game has odd number of equilibria, in particular at least one
- Extendable to full existence proof via degeneracy resolution
- From artificial equilibrium, LH can find upto $\boldsymbol{n}+\boldsymbol{m}$ equilibria of an $\boldsymbol{n} \times \boldsymbol{m}$ game; by chaining LH paths it might be able to find more
- The shortest path can be exponentially long
[S and von Stengel (2004)]
- LH was the main motivation for the complexity class PPAD
- Next: alternative existence proof via fixed points

Existence of Nash equilibria

"Incentive direction" of the players

Player II

left
right

Player I

Nash equilibrium

We are reducing the search for NE to search for a Brouwer fixpoint...

Brouwer's fixpoint theorem

continuous functions from a compact domain to itself, have fixpoints.
proof. construct approximate fixpoints (in a computationally inefficient manner) ...in a way that reduces computation of approx fixpoints to search on large graphs...

L.E.J. Brouwer (1881-1966)

"Incentive direction", colour-coded

Now, pretend this triangle is high-dimension domain

Search for "trichromatic triangles"

...converges to Brouwer fixpoint

The corresponding graph

Motivation for PPAD

Both Lemke-Howson paths and the "Sperner paths" we just saw (as part of the proof of Brouwers fixed point theorem) motivate the definition of PPAD via the problem End-of-Line

PPAD and End-of-Line (Papadimitriou 1991)

End-of-Line:

Given graph G of in/out degree at most 1 and a source start vertex find another vertex of degree 1

PPAD and End-of-Line (Papadimitriou 1991)

Catch:

The graph is exponentially large

It is defined by

- Boolean successor circuit S
- Boolean predecessor circuit \boldsymbol{P}

$$
\begin{aligned}
& S(0000)=0101 \\
& P(0101)=0000
\end{aligned}
$$

PPAD and End-of-Line (Papadimitriou 1991)

Problem \boldsymbol{A} is

- in PPAD if \boldsymbol{A} reduces to EOL
- PPAD-complete if EOL also reduces to it

PPAD and End-of-Line (Papadimitriou 1991)

Not to be confused with
OTHER END OF THIS LINE output unique sink found by "following the line" from the start

- this is PSPACE-hard

A view from the past

Christos Papadimitrou [STOC 2001]:
Together with factoring, the complexity of finding a Nash equilibrium is in my opinion the most important concrete open question on the boundary of P today.

MIXED-NASH of bimatrix games is PPAD-hard

Christos Papadimitrou [STOC 2001]:

Together with factoring, the complexity of finding a Nash equilibrium is in my opinion the most important concrete open question on the boundary of P today.

Resolved in 2006, NASH is PPAD-hard and thus unlikely to be in P:
The Complexity of Computing a Nash Equilibrium
Daskalakis, Goldberg, Papadimitriou
Settling the Complexity of Computing 2-player Nash Equilibria Chen, Deng, Teng

From graph search to Nash equilibrium computation

Daskalakis, Goldberg and Papadimitriou '06, Chen, Deng and Teng '06

Intermediate step:

search for a panchromatic point of a discrete Brouwer function - in 2D,

$$
\mathbf{f}: \mathbf{N} \times \mathbf{N} \longrightarrow\{\text { red, green, blue }\}
$$

where

- the bottom is all red

- the LHS is all green
- the top and RHS is blue
- internal cells colored by poly-size boolean circuit

From graph search to finding Nash equilibria

The reduction from END OF LINE in more detail

Crossover gadget

From discrete to continuous Brouwer functions

>	1	1	\downarrow	1	1	1	\downarrow	1	1
>	1	\downarrow	>	>	>	\downarrow	>	A	\downarrow
>	1	\downarrow	>	A	A	\downarrow	>	A	\downarrow
>	\downarrow	\downarrow	$>$	A	\downarrow	\downarrow	$>$	A	\downarrow
>	>	$>$	$>$	A	\perp	>	$>$	A	\downarrow
$>$	A	A	A	A	\perp	A	A	A	1
>	A	\downarrow							
A	A	A	A	A	A	A	A	A	A

Linear-FIXP (= PPAD)

[Etessami Yannakakis 2006]

INPUT: algebraic circuit (straight-line program) over basis \{+, max, ×c, introduce c\}
OUTPUT: (approximate) fixed point of the circuit

Gates for continuous Brouwer functions

Linear-FIXP (= PPAD)

[Etessami Yannakakis 2006]

INPUT: algebraic circuit (straight-line program) over basis \{+, max, $\times \mathrm{c}$, introduce c\}
OUTPUT: (approximate) fixed point of the circuit

For games, we work with a small variant of the problem:

INPUT: our basis \{bounded + , bounded $\times \mathrm{c}$, introduce c$\}$ where: bounded $(x)=\max (\min (1, x), 0)$ "clips" output to $[0,1]$

Polymatrix Games

- So far we have only looked at two-player bimatrix games
- PPAD-hardness of finding a Nash equilibrium first went via many-player games
- However, a general many-player strategic-form game has exponential size (in the number of players)
- Instead we use a special type of many-player game called a polymatrix game

Polymatrix games

- many-player graphical game
- interaction graph with nodes = players edges $=$ bimatrix games
- single strategy for all player's bimatrix games
- player gets sum of payoffs from bimatrix games

Introduced by Janovskaya (1968)

Succinct representation

	\# players	\# actions per player	\# payoff entries
strategic-form		\boldsymbol{k}	exponential: $\boldsymbol{n} \cdot \boldsymbol{k}^{\boldsymbol{n}}$
	\boldsymbol{n}		quadratic: $\mathbf{2 \boldsymbol { k } ^ { \mathbf { 2 } } \cdot (\begin{array} { l } { n } \\ { 2 } \end{array})}$

DGP gadgets

Gadgets from Daskalakis Goldberg Papadimitriou [2006]:

introduce \boldsymbol{c}

- All these gadgets use 2 actions/player
- They all implement the bounded versions of these gates

EXERCISE: Addition gadget example

$$
\ell=\min (p+q, 1)
$$

${ }^{1}(1-p)$	p	$w{ }^{\ln 2}{ }_{(1}$	$(1-q)$	q
0	0		0	0
0	1		0	1
	0		0	0
	0		0	0
$w{ }_{(1-\ell)}$				
	0	1	1	
	0	0		
	1	0	0	
	0	1		

ANSWER: Addition gadget example

$$
\ell=\min (p+q, 1)
$$

ANSWER: Addition gadget example

Case 1/4: $\quad p+q>1, \quad \ell=\min (p+q, 1)=1$

Out $1-\ell$	ℓ		
	0	1	
$p+q$		$p+q$	
	1		0
0		1	

ANSWER: Addition gadget example

$$
\text { Case 2/4: } \quad p+q=1, \quad \ell=\min (p+q, 1)=1
$$

Out $1-\ell$	ℓ		
	0	1	
$p+q$		$p+q$	
	1		0
0		1	

ANSWER: Addition gadget example

Case 3/4: $\boldsymbol{p}+\boldsymbol{q} \in(0,1), \ell=p+\boldsymbol{q}$

Out $1-\ell$	ℓ	
$p+q$	0	1
	1	
0		1

ANSWER: Addition gadget example

Case 4/4: $\quad \boldsymbol{p}+\boldsymbol{q}=\mathbf{0}, \quad \boldsymbol{\ell}=\boldsymbol{p}+\boldsymbol{q}=\mathbf{0}$

1- ℓ	ℓ
0	1
$p+q$	$p+q$
1	0
0	1

Final step: polymatrix to bimatrix games

- The polymatrix game interaction graph can be made bipartite
- Two players in bimatrix game = two parts of interaction graph
- Additional lawyer game ensures that all gates matter

Recent advances: Pure Circuit

- Nice new PPAD-complete problem that reduces to games very natural with tight hardness of approximation
Pure-Circuit: Strong Inapproximability for PPAD
Deligkas, Fearnley, Hollender, Melissourgos

Ret붑봅

Exponentially Many Steps for Finding a Nash Equilibrium in a Bimatrix Game by Savani and von Stengel FOCS (2004)

Long shortest LH paths

On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence by Papadimitriou
J. Comput. Syst. Sci. (1994) PPAD, PPA, PPP, memberships and relationships

Pure-Circuit: Strong Inapproximability for PPAD by Deligkas, Fearnley, Hollender, Melissourgos
FOCS (2022) Tight inapproximability results for bimatrix/polymatrix/graphical
The Complexity of Computing a Nash Equilibrium by Daskalakis, Goldberg,
Papadimitriou
STOC (2006) PPAD-hardness for 3-NASH and then 2-NASH (bimatrix games)

Settling the Complexity of Computing 2-player Nash Equilibria by Chen, Deng, Teng (2006)

Polynomial Local Search (PLS)

A congestion network

2 users who want to travel from origin \boldsymbol{o} to destination \boldsymbol{d}.

A congestion network

2 users who want to travel from origin \boldsymbol{o} to destination \boldsymbol{d}.

Possible routes:

both users on top edge, 1 user on top edge and 1 user on bottom edge, both users on bottom edge

A similar "Pigou" congestion network

100 users who want to travel from origin \boldsymbol{o} to destination \boldsymbol{d}.

A similar "Pigou" congestion network

100 users who want to travel from origin \boldsymbol{o} to destination \boldsymbol{d}.
Assume \boldsymbol{y} users on bottom edge, 100 - \boldsymbol{y} on top edge.

Equilibrium?

A similar "Pigou" congestion network

100 users who want to travel from origin \boldsymbol{o} to destination \boldsymbol{d}.
Assume \boldsymbol{y} users on bottom edge, 100 - \boldsymbol{y} on top edge.
Equilibrium? $\boldsymbol{y}=99$ or $\boldsymbol{y}=100$
Optimum?

A similar "Pigou" congestion network

100 users who want to travel from origin \boldsymbol{o} to destination \boldsymbol{d}.
Assume \boldsymbol{y} users on bottom edge, 100 - \boldsymbol{y} on top edge.
Equilibrium? $\boldsymbol{y}=99$ or $\boldsymbol{y}=100$
Optimum? $\quad y=50$

Congestion network - components

- finite set of nodes
- finite collection \boldsymbol{E} of edges $\boldsymbol{e}=\boldsymbol{u} \boldsymbol{v} \longrightarrow(\boldsymbol{\rightharpoonup}$, parallel edges $u \leftrightarrows$ allowed.
- For each $\boldsymbol{e} \in E$ a cost function $\boldsymbol{c}_{\boldsymbol{e}}(\boldsymbol{x})$ for flow (usage) \boldsymbol{x}.
- n users $\boldsymbol{i}=1,2, \ldots, n$ with origin $\boldsymbol{o}_{\boldsymbol{i}}$ and destination $\boldsymbol{d}_{\boldsymbol{i}}$
- strategy of user $\boldsymbol{i}=$ route (path) $\boldsymbol{P}_{\boldsymbol{i}}$ from $\boldsymbol{o}_{\boldsymbol{i}}$ to $\boldsymbol{d}_{\boldsymbol{i}}$.
- Given strategies $\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}$, flow on \boldsymbol{e} is $\boldsymbol{f}_{\boldsymbol{e}}=\left|\left\{\boldsymbol{i} \mid \boldsymbol{e} \in \boldsymbol{P}_{i}\right\}\right|$ and resulting cost $\boldsymbol{c}_{\boldsymbol{e}}\left(f_{e}\right)$ for every user of \boldsymbol{e}.
- Cost to user \boldsymbol{i} for strategy $\boldsymbol{P}_{\boldsymbol{i}}$ is

$$
\sum_{e \in P_{i}} c_{e}\left(f_{e}\right)
$$

Best responses and equilibrium

Given $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ with resulting flow \boldsymbol{f}, strategy $\boldsymbol{P}_{\boldsymbol{i}}$ of user \boldsymbol{i} is a best response \Leftrightarrow for any other deviating strategy Q_{i}

$$
\sum_{e \in P_{i}} c_{e}\left(f_{e}\right) \leq \sum_{e \in Q_{i} \cap P_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in Q_{i} \backslash P_{i}} c_{e}\left(f_{e}+1\right)
$$

Best responses and equilibrium

Given $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ with resulting flow \boldsymbol{f}, strategy $\boldsymbol{P}_{\boldsymbol{i}}$ of user \boldsymbol{i} is a best response \Leftrightarrow for any other deviating strategy Q_{i}

$$
\sum_{e \in P_{i}} c_{e}\left(f_{e}\right) \leq \sum_{e \in Q_{i} \cap P_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in Q_{i} \backslash P_{i}} c_{e}\left(f_{e}+1\right)
$$

Definition

strategy profile $P_{1}, \ldots, P_{\boldsymbol{n}}$ is an equilibrium
\Leftrightarrow every strategy $\boldsymbol{P}_{\boldsymbol{i}}$ is a best response to the others.

Every congestion game has an equilibrium

Proof

Given $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ and flow \boldsymbol{f}, define the potential function

$$
\Phi(f)=\sum_{e \in E}\left(c_{e}(1)+c_{e}(2)+\cdots+c_{e}\left(f_{e}\right)\right)
$$

Every congestion game has an equilibrium

Proof

Given $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ and flow \boldsymbol{f}, define the potential function

$$
\Phi(f)=\sum_{e \in E}\left(c_{e}(1)+c_{e}(2)+\cdots+c_{e}\left(f_{e}\right)\right)
$$

Let Q_{i} be any other strategy of user \boldsymbol{i} with flow $\boldsymbol{f}^{Q_{i}}$. Will show:

$$
\begin{equation*}
\Phi\left(f^{Q_{i}}\right)-\Phi(f)=\sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right)-\sum_{e \in P_{i}} c_{e}\left(f_{e}\right) \tag{2.4}
\end{equation*}
$$

Every congestion game has an equilibrium

Proof

Given $\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\boldsymbol{n}}$ and flow \boldsymbol{f}, define the potential function

$$
\Phi(f)=\sum_{e \in E}\left(c_{e}(1)+c_{e}(2)+\cdots+c_{e}\left(f_{e}\right)\right)
$$

Let Q_{i} be any other strategy of user \boldsymbol{i} with flow $\boldsymbol{f}^{Q_{i}}$. Will show:

$$
\begin{equation*}
\Phi\left(f^{Q_{i}}\right)-\Phi(f)=\sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right)-\sum_{e \in P_{i}} c_{e}\left(f_{e}\right) \tag{2.4}
\end{equation*}
$$

\Rightarrow changes in $\boldsymbol{\Phi}$ reflect changes in cost for (any) user i
\Rightarrow minimum of Φ defines an equilibrium. $\quad \square$

Proof of potential function property (2.4)

$$
\sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right)=\sum_{e \in Q_{i} \cap P_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in Q_{i} \backslash P_{i}} c_{e}\left(f_{e}+1\right)
$$

Proof of potential function property (2.4)

$$
\begin{aligned}
& \sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right)=\sum_{e \in Q_{i} \cap P_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in Q_{i} \mid P_{i}} c_{e}\left(f_{e}+1\right) \\
& \sum_{e \in P_{i}} c_{e}\left(f_{e}\right)=\sum_{e \in P_{i} \cap Q_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in P_{i}, Q_{i}} c_{e}\left(f_{e}\right)
\end{aligned}
$$

Proof of potential function property (2.4)

$$
\begin{aligned}
\sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right) & =\sum_{e \in Q_{i} \cap P_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in Q_{i} \mid P_{i}} c_{e}\left(f_{e}+1\right) \\
\sum_{e \in P_{i}} c_{e}\left(f_{e}\right) & =\sum_{e \in P_{i} \cap Q_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in P_{i} \backslash Q_{i}} c_{e}\left(f_{e}\right)
\end{aligned}
$$

so

$$
\sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right)-\sum_{e \in P_{i}} c_{e}\left(f_{e}\right)=\sum_{e \in Q_{i} \backslash P_{i}} c_{e}\left(f_{e}+1\right)-\sum_{e \in P_{i} \backslash Q_{i}} c_{e}\left(f_{e}\right)
$$

Proof of potential function property (2.4)

$$
\begin{aligned}
\sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right) & =\sum_{e \in Q_{i} \cap P_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in Q_{i} P_{i}} c_{e}\left(f_{e}+1\right) \\
\sum_{e \in P_{i}} c_{e}\left(f_{e}\right) & =\sum_{e \in P_{i} \cap Q_{i}} c_{e}\left(f_{e}\right)+\sum_{e \in P_{i} \backslash Q_{i}} c_{e}\left(f_{e}\right)
\end{aligned}
$$

so

$$
\sum_{e \in Q_{i}} c_{e}\left(f_{e}^{Q_{i}}\right)-\sum_{e \in P_{i}} c_{e}\left(f_{e}\right)=\sum_{e \in Q_{i} \backslash P_{i}} c_{e}\left(f_{e}+1\right)-\sum_{e \in P_{i} \backslash Q_{i}} c_{e}\left(f_{e}\right)
$$

$=\Phi\left(f^{Q_{i}}\right)-\Phi(f)$ because

$$
\Phi(f)=\sum_{e \in E}\left(c_{e}(1)+c_{e}(2)+\cdots+c_{e}\left(f_{e}\right)\right)
$$

Remark

- Pure equilibrium may fail to exist with weighted users (e.g. 1 for passenger car, 2 for lorry)
- Consider the following two-player routing game. Both players want to go from \boldsymbol{s} to \boldsymbol{t}. They have weights $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$ respectively.

- Consider two cases:
(i) $\boldsymbol{w}_{1}=\mathbf{1}, \boldsymbol{w}_{2}=\mathbf{2}$ (weighted); (ii) $\boldsymbol{w}_{1}=\boldsymbol{w}_{\mathbf{2}}=\mathbf{1}$ (unweighted)
- For each case, convert the game to a bimatrix game and compute all equilibria (pure and mixed). Show your working. Hint: For case (i), you can dramatically simplify the game with

Polynomial Local Search (PLS)

Given

- a DAG
- a starting vertex

Find

- a sink vertex

Polynomial Local Search (PLS)

Catch:

The graph is exponentially large

Defined by

- A circuit \boldsymbol{S} giving the successor vertices
- A circuit pgiving a potential

Every edge decreases the potential

$$
p(S(v))<p(v)
$$

Complexity results for congestion games

Finding a pure Nash equilibrium in a congestion game is

- Polynomial-time solvable for symmetric network games
- PLS-complete for asymmetric network games
- PLS-complete for symmetric general games
- PLS-complete for asymmetric general games

Local Max Cut

- Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can change sides)

- Schäffer and Yannakakis [SICOMP, 1991] showed that Local Max Cut is PLS-complete (via an extremely involved reduction)
- Local Max Cut is to PLS what 3-SAT is to NP

Local Max Cut

- Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can change sides)

- Schäffer and Yannakakis [SICOMP, 1991] showed that Local Max Cut is PLS-complete (via an extremely involved reduction)
- Local Max Cut is to PLS what 3-SAT is to NP

Local Max Cut

- Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can change sides)

- Schäffer and Yannakakis [SICOMP, 1991] showed that Local Max Cut is PLS-complete (via an extremely involved reduction)
- Local Max Cut is to PLS what 3-SAT is to NP

Solutions:

\{\{1, 3, 4\}, \{2\}\} (actual Max Cut)

Local Max Cut

- Find local optimum of

Max Cut with the FLIP-neighbourhood (exactly one node can change sides)

- Schäffer and Yannakakis [SICOMP, 1991] showed that Local Max Cut is PLS-complete (via an extremely involved reduction)
- Local Max Cut is to PLS what 3-SAT is to NP

Solutions:

$\{\{1,3,4\},\{2\}\}$ (actual Max Cut)
$\{\{3\},\{1,2,4\}\}$

Local-Max-Cut as the Party Affiliation Game

Players correspond to nodes in weighted graph $G=(\boldsymbol{V}, \boldsymbol{E})$:

- Every player has 2 strategies: left or right.
- Strategy profile yields a cut, i.e., partition of V into left/right nodes
- Edge weights represent antisympathy
- Players maximize sum of weights of incident cut edges
- Nash equilibria in 1-1 correspondence with local max cuts

Minimization Variant of Party Affiliation Game

- For the congestion game we want costs: sum of incident edges on the same side of the cut
- This is equivalent because, for each node and strategy profile:

Total weight of all incident edges = incident cut edges + incident edges on same side
where the left-hand-side is a constant

General congestion game for
 Minimization Party Affiliation Game

- Represent each edge e by two resources:
$\boldsymbol{e}_{\text {left }}, \boldsymbol{e}_{\text {right }}$ with delay functions $\boldsymbol{d}(1)=\mathbf{0}$ and $\boldsymbol{d}(2)=\boldsymbol{w}_{\boldsymbol{e}}$
- For each player:
- strategy $\boldsymbol{S}_{\text {efft }}$ contains resource $\boldsymbol{e}_{\text {eft }}$ for all incident edges;
- strategy $\boldsymbol{S}_{\text {right }}$ contains resources $\mathbf{e}_{\text {right }}$ for all incident edges
- Players in the congestion game have exactly the same cost as players in the minimization variant of the party affiliation game
- Hence, the Nash equilibria of this congestion game coincide with local max cuts, QED

PLS-hardness for congestion games

Results from Fabrikant, Papadimitriou, Talwar [2004]

	network games	general games
symmetric	In P-time	PLS-complete
asymmetric	PLS-complete	PLS-complete

We presented simplest case of asymmetric congestion games

PLS-hardness for congestion games

Results from Fabrikant, Papadimitriou, Talwar [2004]

	network games	general games
symmetric	In P-time	PLS-complete
asymmetric	PLS-complete	PLS-complete

We presented simplest case of asymmetric congestion games

Why is the resulting game

- asymmetric and
- not a network congestion game?

Reterences

A class of games possessing pure-strategy Nash equilibria by Rosenthal Int. J. of Game Theory (1973) Congestion games have pure equilibria

Potential Games by Monderer and Shapley Games \& Economic Behavior (1996)

Congestion \equiv potential games

How Easy is Local Search? by Johnson, Papadimitriou, Yannakakis
J. Comput. Syst. Sci (1998)

Introduced PLS

The complexity of pure Nash equilibria by Fabrikant, Papadimitriou, Talwar STOC 2004 PLS-completeness in congestion games

On the impact of combinatorial structure on congestion games by Ackermann, Röglin, Vöcking Journal of the ACM (2008)

Further PLS-hardness

Continuous Local Search (CLS)

Gradient descent

minimise $f(x)$ s.t. $\quad x \in[0,1]^{n}$

assume \boldsymbol{f} continuously differentiable, but not necessarily convex

Gradient descent

minimise $f(x) \quad$ s.t. $\quad x \in[0,1]^{n}$

NP-hard even for a quadratic polynomial given explicitly

Gradient descent

$$
\text { minimise } f(x) \quad \text { s.t. } \quad x \in[0,1]^{n} \quad \text { NP-hard }
$$

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right)$
 (η : step size)

Intuition: "move in the direction of steepest descent"

Gradient descent

(1): minimise $f(x)$ s.t. $\quad x \in[0,1]^{n}$

NP-hard

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right) \quad(\eta$: step size)

Gradient descent being applied to a function $\boldsymbol{f}:[0,1]^{2} \mapsto[0,1]$

Gradient descent

(1): minimise $f(x)$ s.t. $\quad x \in[0,1]^{n}$

NP-hard

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right)$ (η : step size)

Doesn't actually solve (1); can get stuck in any stationary point

Gradient descent

$$
\text { minimise } f(x) \text { s.t. } \quad x \in[0,1]^{n}
$$

NP-hard

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right) \quad(\eta$: step size)

Doesn't actually solve (1); can get stuck in any stationary point actually a Karush-Kuhn-Tucker point (due to boundaries)

Gradient descent

$$
\text { minimise } f(x) \quad \text { s.t. } \quad x \in[0,1]^{n} \quad \text { NP-hard }
$$

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right) \quad(\eta$: step size)

What is the complexity of finding a solution where gradient descent terminates?

Gradient descent

$$
\text { minimise } f(x) \quad \text { s.t. } \quad x \in[0,1]^{n} \quad \text { NP-hard }
$$

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right) \quad(\eta$: step size)

What is the complexity of finding a solution where gradient descent terminates?
Let's explore how to formalise this...

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0}, 1]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>0$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[0,1]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>0$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

$$
\left.\left[x^{\prime}:=x-\eta \nabla f(x)\right)\right]
$$

GD-Local-Search: find x s.t. $f\left(x^{\prime}\right) \geq f(x)-\epsilon$
limited improvement

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[0,1]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>0$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. $f\left(x^{\prime}\right) \geq f(x)-\epsilon$
limited improvement
GD-Fixed-Point: find \boldsymbol{x} s.t. $\left\|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right\| \leq \epsilon$
\boldsymbol{x} not moved by much

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[0,1]^{n} \mapsto \mathbb{R}$, stepsize $\eta>0$, precision $\epsilon>0$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. $f\left(x^{\prime}\right) \geq f(x)-\epsilon$
limited improvement
GD-Fixed-Point: find x s.t. $\left\|x^{\prime}-x\right\| \leq \epsilon$
\boldsymbol{x} not moved by much
These two problems are polynomial-time equivalent

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>0$
(\boldsymbol{f} and $\boldsymbol{\nabla} \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

One way to solve this problem: run Gradient Descent!
Running time: polynomial in $1 / \epsilon$, not in input size

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>0$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Can it be solved in time polynomial in $\log (1 / \epsilon)$?
(\boldsymbol{f} convex: yes, e.g., via the Ellipsoid method)

PPAD \cap PLS

PPAD \cap PLS

PPAD \cap PLS

Unlikely containments

Consider a problem \boldsymbol{A} in PPAD \cap PLS
Since \boldsymbol{A} is in both classes:

- If \boldsymbol{A} is PPAD-hard then PPAD \subseteq PLS
- If \boldsymbol{A} is PLS-hard then PLS \subseteq PPAD

Unlikely containments

Consider a problem \boldsymbol{A} in PPAD \cap PLS
Since \boldsymbol{A} is in both classes:

- If \boldsymbol{A} is PPAD-hard then PPAD \subseteq PLS
- If \boldsymbol{A} is PLS-hard then PLS \subseteq PPAD

We do not believe that either containments holds, so we do not believe A is PPAD-hard or PLS-hard

PPAD \cap PLS seems unnatural...

Suppose problem \boldsymbol{A} is PPAD-complete
Suppose problem B is PLS-complete
The following problem is PPAD \cap PLS-complete:

EITHER(A,B)

Input: an instance $\boldsymbol{I}_{\boldsymbol{A}}$ of \boldsymbol{A}, an instance $\boldsymbol{I}_{\boldsymbol{B}}$ of \boldsymbol{B}
Output: a solution of $\boldsymbol{I}_{\boldsymbol{A}}$, or a solution of $\boldsymbol{I}_{\boldsymbol{B}}$

PPAD \cap PLS seems unnatural...

BROUWER (PPAD-complete):

Input: continuous function $f:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: approximate fixpoint \boldsymbol{x} :

$$
\|f(x)-x\| \leq \epsilon
$$

PPAD \cap PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function $f:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: approximate fixpoint \boldsymbol{x} :

$$
\|f(x)-x\| \leq \epsilon
$$

LOCAL-OPT (PLS-complete):
Input: continuous function $p:[0,1]^{3} \mapsto[0,1]$, (non-continuous) function $g:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: local minimum \boldsymbol{x} of \boldsymbol{p} w.r.t. \boldsymbol{g} :

$$
p(g(x)) \geq p(x)-\epsilon
$$

PPAD \cap PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function $f:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: approximate fixpoint \boldsymbol{x} :

$$
\|f(x)-x\| \leq \epsilon
$$

LOCAL-OPT (PLS-complete):
Input: continuous function $p:[0,1]^{3} \mapsto[0,1]$, (non-continuous) function $g:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: local minimum \boldsymbol{x} of \boldsymbol{p} w.r.t. \boldsymbol{g} :

$$
p(g(x)) \geq p(x)-\epsilon
$$

EITHER(BROUWER,LOCAL-OPT) is PPAD \cap PLS-complete

Continuous Local Search (CLS)

Daskalakis \& Papadimitriou [SODA 2011] defined a new class via:

CONTINUOUS-LOCAL-OPT

Input:
continuous $p:[0,1]^{3} \mapsto[0,1]$ and
continuous $f:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$

Output: local minimum \boldsymbol{x} of \boldsymbol{p} w.r.t. \boldsymbol{f} :

$$
p(f(x)) \geq p(x)-\epsilon
$$

CLS is the class of all problems that are polynomial-time reducible to CONTINUOUS-LOCAL-OPT

PPAD \cap PLS and CLS

PPAD \cap PLS and CLS

Collapse

Collapse

Collapse

Main Result

GRADIENT-DESCENT is PPAD \cap PLS - hard

Main Result

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT where
A is the PPAD-complete problem End-of-Line
B is the PLS-complete problem ITER

Proof Sketch

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT where
A is the PPAD-complete problem End-of-Line
B is the PLS-complete problem ITER

Constructing a 2D-GRADIENT-DESCENT instance \boldsymbol{f}

- Domain is the square $[0,1]^{2}$
- Overlay grid and assign values for f and ∇f at grid points
- Use bicubic interpolation to produce smooth function
- All stationary points are either End-Of-Line or ITER solutions

Background "landscape"

Background "landscape"

PPAD-complete problem: End-Of-Line

Given a graph of
indegree/outdegree at most 1
and a source
(indegree 0, outdegree 1)
find another vertex of degree 1

PPAD-complete problem: End-Of-Line

Catch:

 graph is exponentially large defined by boolean circuits $\boldsymbol{S}, \boldsymbol{P}$ that map a vertex $\{\mathbf{0}, \mathbf{1}\}^{n}$ to its successor and predecessor$$
\begin{aligned}
& S(0000)=0101 \\
& P(0101)=0000
\end{aligned}
$$

PPAD-complete problem: End-Of-Line

[^0]

Locally-computable green paths: Hubáček and Yogev SODA'17 (used to show conditional hardness of CLS)

PLS labyrinths hide stationary points at green/orange meetings

All stationary points are: solutions of End-of-Line instance; or solutions of PLS-complete labyrinth

We have shown: 2D-GRADIENT-DESCENT is PPAD \cap PLS - hard

Increasing lines: EOPL

- After our result in a further collapse it was proved that:

$$
\text { EOPL = PPAD } \cap \text { PLS }
$$

- EOPL is closely related to UEOPL; more later/tomorrow...
- For now the key point is that the paths are monotone
- Hubacek and Yogev had already shown that EOPL \subseteq CLS
- Thus combining these two results:

$$
C L S=E O P L=P P A D \cap P L S
$$

- This means that: for an alternative way to get our CLS-hardness results for 2D-KKT, one can assume monotone paths
- I.e., no need for PLS labyrinths

Take home message: PPAD \cap PLS

Before:

- PPAD and PLS both successful classes
- PPAD \cap PLS not believed to have interesting complete problems
- CLS introduced as "natural" (presumed distinct) counterpart

Now:

- PPAD \cap PLS is a natural class with complete problems
- Captures complexity of problems solved by gradient descent
- PPAD \cap PLS = CLS
- Many important problems are now candidates for hardness

Motivation behind classes

PPAD: all problems that can be solved by path following
(the Lemke-Howson algorithm for Nash equilibria)

PLS: all problems that can be solved by local search

CLS: all problems that can be solved by continuous local search

Motivation behind classes

PPAD: all problems that can be solved by path following
(the Lemke-Howson algorithm for Nash equilibria)

PLS: all problems that can be solved by local search

CLS: all problems that can be solved by continuous local search

GD = CLS: all problems that can be solved by gradient descent

Open Problems

The following are candidates for PPAD \cap PLS-completeness:

- POLYNOMIAL-KKT
- MIXED-CONGESTION
- CONTRACTION
- TARSKI
- COLORFUL-CARATHEODORY

Open Problems

The following are candidates for PPAD \cap PLS-completeness:

- POLYNOMIAL-KKF
- MIXED-CONGESTION [Babichenko, Rubinstein STOC'21]
- POLYNOMIAL-KKT for degree < 5
- MIXED-NETWORK-CONGESTION
- CONTRACTION
- TARSKI
- COLORFUL-CARATHEODORY

Reterences

The Complexity of Gradient Descent: CLS = PPAD \cap PLS by Fearnley, Goldberg, Hollender, Savani STOC 2021

Settling the complexity of Nash equilibrium in congestion games by Babichenko and Rubinstein STOC 2021

Further Collapses in TFNP by Göös, Hollender, Jain, Maystre, Pires, Robere, Tao
CCC 2022

$$
\text { EOPL = PPAD } \cap \text { PLS }
$$

Hardness of Continuous Local Search by Hubácek and Yogev SICOMP 2020 EOPL in CLS, query/crypto hardness of (U)EOPL

Unique End of Potential Line (UEOPL)

Outline

- P-matrix Linear Complementarity Problem (P-LCP)
- Complementary cones view
- Unique Sink Orientations (USO) of cubes
- Reduction from P-LCP to USOs as an exercise
- Two-player zero-sum turn-based discounted games
- Optimality equations characterize unique values
- Reduction to P-LCP
- Reduction to USO via strategy improvement algorithms
- Reduction to Contraction via strategy iteration
- Unique End of Potential Line (the problem and the class)
- Piecewise-linear Contraction in UEOPL
- P-LCP in UEOPL
- Open problems

Linear Complementarity Problem (LCP)

Given: $\boldsymbol{q} \in \mathbb{R}^{\boldsymbol{n}}, \boldsymbol{M} \in \mathbb{R}^{\boldsymbol{n \times n}} \quad$ Find: $z, w \in \mathbb{R}^{\boldsymbol{n}}$ so that

$$
z \geq 0 \quad \perp \quad w=q+M z \geq 0
$$

\perp means orthogonal:

$$
\begin{aligned}
& z^{\boldsymbol{T}} w
\end{aligned}=0 \quad 1 \quad \text { all } \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}
$$

Linear Complementarity Problem (LCP)

Given: $\boldsymbol{q} \in \mathbb{R}^{\boldsymbol{n}}, \boldsymbol{M} \in \mathbb{R}^{\boldsymbol{n \times n}} \quad$ Find: $z, w \in \mathbb{R}^{\boldsymbol{n}}$ so that

$$
z \geq 0 \quad \perp \quad w=q+M z \geq 0
$$

\perp means orthogonal:

$$
\begin{aligned}
z^{\boldsymbol{T}} w & =0 \\
\Leftrightarrow \quad z_{i} w_{i} & =0 \quad \text { all } \boldsymbol{i}=\mathbf{1}, \ldots, n
\end{aligned}
$$

If $\boldsymbol{q} \geq \mathbf{0}$, the LCP has trivial solution $\boldsymbol{w}=\boldsymbol{q}, \boldsymbol{z}=\mathbf{0}$.

LP in inequality form

$$
\left.\begin{array}{lll}
\text { primal : } & \text { max } & \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x} \\
& \text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \\
& \boldsymbol{x} \geq 0
\end{array}\right] \begin{array}{ll}
& \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{b} \\
\text { dual : } & \text { min } \\
& \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{A} \geq \boldsymbol{c}^{\boldsymbol{T}} \\
& \text { subject to } \\
& \boldsymbol{y} \geq 0
\end{array}
$$

LP in inequality form

$$
\begin{array}{lll}
\text { primal : } & \text { max } & \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x} \\
& \text { subject to } & \boldsymbol{A x} \leq \boldsymbol{b} \\
& \\
& \\
& \\
\text { dual }: & \text { min } & \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{b} \\
& \text { subject to } & \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{A} \geq \boldsymbol{c}^{\boldsymbol{T}} \\
& & \boldsymbol{y} \geq 0
\end{array}
$$

Weak duality: $\boldsymbol{x}, \boldsymbol{y}$ feasible (fulfilling constraints)

$$
\Rightarrow \quad c^{T} x \leq y^{T} A x \leq y^{T} b
$$

LP in inequality form

$$
\begin{aligned}
& \text { primal: max } \\
& \text { subject to } \\
& c^{T} X \\
& \boldsymbol{A x} \leq \boldsymbol{b} \\
& x \geq 0 \\
& \text { dual: min } \\
& y^{T} b \\
& \text { subject to } \\
& y^{T} A \geq c^{T} \\
& y \geq 0
\end{aligned}
$$

Weak duality: $\boldsymbol{x}, \boldsymbol{y}$ feasible (fulfilling constraints)

$$
\Rightarrow \quad c^{T} x \leq y^{T} A x \leq y^{T} b
$$

Strong duality: primal and dual feasible
$\Rightarrow \exists$ feasible $x, y: \quad c^{\boldsymbol{T}} \boldsymbol{x}=\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{b} \quad(\boldsymbol{x}, \boldsymbol{y}$ optimal $)$

LCP generalizes LP

LCP encodes complementary slackness of strong duality:

$$
\begin{array}{cll}
c^{T} x= & y^{T} A x & =y^{T} b \\
\Leftrightarrow & y^{T}(b-A x) & =0 . \\
\geq 0 \quad \geq 0 & \geq 0 \geq 0 &
\end{array}
$$

LCP generalizes LP

LCP encodes complementary slackness of strong duality:

$$
\begin{array}{cll}
c^{T} x= & y^{T} A x & =y^{T} b \\
\Leftrightarrow & y^{T}(b-A x) & =0 . \\
\geq 0 \quad \geq 0 & \geq 0 \geq 0 &
\end{array}
$$

LP $\Leftrightarrow \mathrm{LCP}$

$$
\underbrace{\binom{x}{y}}_{z} \geq 0 \perp \underbrace{\binom{-c}{b}}_{q}+\underbrace{\left(\begin{array}{rl}
0 & A^{T} \\
-A & 0
\end{array}\right)}_{M} \underbrace{\binom{x}{y}}_{z} \geq 0
$$

LCPs and complementary cones

Given: $q \in \mathbb{R}^{\boldsymbol{n}}, M \in \mathbb{R}^{\boldsymbol{n \times n}} \quad$ Find: $z \in \mathbb{R}^{\boldsymbol{n}}$ so that

$$
z \geq 0 \perp w=q+M z \geq 0
$$

LCPs and complementary cones

Given: $q \in \mathbb{R}^{\boldsymbol{n}}, M \in \mathbb{R}^{\boldsymbol{n \times n}} \quad$ Find: $z \in \mathbb{R}^{\boldsymbol{n}}$ so that

$$
z \geq 0 \perp w=q+M z \geq 0
$$

$$
\Leftrightarrow \quad z \geq 0 \perp w \geq 0 \quad q=I w-M z
$$

LCPs and complementary cones

Given: $q \in \mathbb{R}^{\boldsymbol{n}}, M \in \mathbb{R}^{\boldsymbol{n \times n}} \quad$ Find: $z \in \mathbb{R}^{\boldsymbol{n}}$ so that

$$
\begin{aligned}
& z \geq 0 \perp w=q+M z \geq 0 \\
\Leftrightarrow & z \geq 0 \perp w \geq 0 \quad q=I w-M z
\end{aligned}
$$

$\Leftrightarrow \quad q$ belongs to a complementary cone:

$$
\boldsymbol{q} \in \mathbf{C}(\alpha)=\text { cone }\left\{-\mathbf{M}_{i}, \mathbf{e}_{j} \mid \boldsymbol{i} \in \alpha, \boldsymbol{j} \notin \alpha\right\}
$$

$$
\text { for some } \alpha \subseteq\{1, \ldots, n\}, \quad M=\left[M_{1} M_{2} \cdots M_{n}\right]
$$

$$
\alpha=\left\{i \mid z_{i}>0\right\}
$$

LCPs and complementary cones

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

LCPs and complementary cones

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

LCPs and complementary cones

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

LCPs and complementary cones

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

LCPs and complementary cones

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

LCPs and complementary cones

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

P-matrices

Def: $M \in \mathbb{R}^{n \times n}$ is a P-matrix if all its principal minors are positive.

Thm: \boldsymbol{M} is a \mathbf{P}-matrix $\Leftrightarrow \operatorname{LCP}(\boldsymbol{M}, \boldsymbol{q})$ has unique solution $\forall q \in \mathbb{R}^{\boldsymbol{n}}$.

P-matrices

Def: $M \in \mathbb{R}^{n \times n}$ is a P-matrix if all its principal minors are positive.

Thm: \boldsymbol{M} is a \mathbf{P}-matrix $\Leftrightarrow \operatorname{LCP}(\boldsymbol{M}, \boldsymbol{q})$ has unique solution $\forall q \in \mathbb{R}^{\boldsymbol{n}}$.

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right) \quad M^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)
$$

M is a P-matrix, as

$$
\begin{aligned}
\operatorname{det}\left(M_{11}\right) & =2>0 \\
\operatorname{det}\left(M_{22}\right) & =3>0 \\
\operatorname{det}(M) & =5>0
\end{aligned}
$$

M^{\prime} is not a P-matrix, as $\operatorname{det}\left(M^{\prime}\right)=-5<0$

Complementary cones: P-matrix

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

Multiple solutions

Binary zero-sum discounted games

- Finite directed graph on states $S=\{1, \ldots, n\}$
- Partition $\boldsymbol{S}=\boldsymbol{S}_{\text {Max }} \cup \boldsymbol{S}_{\text {Min }}$

Binary zero-sum discounted games

- Finite directed graph on states $S=\{\mathbf{1}, \ldots, n\}$
- Partition $\boldsymbol{S}=\boldsymbol{S}_{\text {Max }} \cup \boldsymbol{S}_{\text {Min }}$
- Every state has a left successor $\lambda(\boldsymbol{s})$ and right successor $\rho(\boldsymbol{s})$

Binary zero-sum discounted games

- Finite directed graph on states $S=\{\mathbf{1}, \ldots, n\}$
- Partition $\boldsymbol{S}=\boldsymbol{S}_{\text {Max }} \cup \boldsymbol{S}_{\text {Min }}$
- Every state has a left successor $\lambda(\boldsymbol{s})$ and right successor $\rho(\boldsymbol{s})$
- Every state has a reward - $r: S \mapsto \mathbb{Z}$

Binary zero-sum discounted games

- Finite directed graph on states $S=\{\mathbf{1}, \ldots, n\}$
- Partition $\boldsymbol{S}=\boldsymbol{S}_{\text {Max }} \cup \boldsymbol{S}_{\text {Min }}$
- Every state has a left successor $\lambda(\boldsymbol{s})$ and right successor $\rho(\boldsymbol{s})$
- Every state has a reward - $r: S \mapsto \mathbb{Z}$
- Discount factor $\delta \in(0,1)$ (same for both players)

Binary zero-sum discounted games

- Finite directed graph on states $S=\{\mathbf{1}, \ldots, n\}$
- Partition $\boldsymbol{S}=\boldsymbol{S}_{\text {Max }} \cup \boldsymbol{S}_{\text {Min }}$
- Every state has a left successor $\lambda(\boldsymbol{s})$ and right successor $\rho(\boldsymbol{s})$
- Every state has a reward - $r: S \mapsto \mathbb{Z}$
- Discount factor $\delta \in(0,1)$ (same for both players)

Player objectives

- A play is an infinite path $\pi=s_{0}, s_{1}, s_{3}, \ldots$
- initial state s_{0}
- owner of s_{i} chooses $s_{i+1} \in\left\{\lambda\left(s_{i}\right), \rho\left(s_{i}\right)\right\}$

Player objectives

- A play is an infinite path $\pi=s_{0}, s_{1}, s_{3}, \ldots$
- initial state s_{0}
- owner of s_{i} chooses $s_{i+1} \in\left\{\lambda\left(s_{i}\right), \rho\left(s_{i}\right)\right\}$
- Max maximizes and Min minimizes

$$
\sum_{i=0}^{\infty} \delta^{i} r\left(s_{i}\right)
$$

Optimality equations

- Every state has a value $v(\boldsymbol{s})$ characterized by:

$$
\begin{array}{ll}
\forall s \in S_{\text {Max }}: & v(s)=\max _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t)) \\
\forall s \in S_{\text {Min }}: & v(s)=\min _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t))
\end{array}
$$

Optimality equations

- Every state has a value $v(\boldsymbol{s})$ characterized by:

$$
\begin{array}{ll}
\forall \boldsymbol{s} \in \boldsymbol{S}_{\text {Max }}: & v(\boldsymbol{s})=\max _{t \in\{\lambda(\boldsymbol{s}), \rho(\boldsymbol{s})\}}(r(\boldsymbol{s})+\delta v(\boldsymbol{t})) \\
\forall \boldsymbol{s} \in \boldsymbol{S}_{\text {Min }}: & v(\boldsymbol{s})=\min _{\boldsymbol{t} \in\{\lambda(\boldsymbol{s}), p(\boldsymbol{s})\}}(r(\boldsymbol{s})+\delta v(\boldsymbol{t}))
\end{array}
$$

- Proofs:
- Banach fixed point theorem for contraction mappings
- Strategy improvement algorithm (constructive)

Optimality equations

- Every state has a value $v(\boldsymbol{s})$ characterized by:

$$
\begin{array}{ll}
\forall s \in S_{\text {Max }}: & v(s)=\max _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t)) \\
\forall s \in S_{\text {Min }}: & v(s)=\min _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t))
\end{array}
$$

- Proofs:
- Banach fixed point theorem for contraction mappings
- Strategy improvement algorithm (constructive)
- Values give pure and positional optimal strategies: Max (Min) picks succesor with largest (smallest) value.

Unique values for $\delta=1 / 2$

$v(1)=32=r(1)+\delta \max (v(3), v(4))=20+1 / 2(24)$

Unique values for $\delta=1 / 2$

$$
\begin{array}{llr}
v(1)=32 & =r(1)+\delta \max (v(3), v(4))= & 20+1 / 2(24) \\
v(2)=-4 & =r(2)+\delta \max (v(1), v(4))= & -20+1 / 2(32) \\
v(3)=24 & =r(3)+\delta \min (v(1), v(4))= & 30+1 / 2(-12) \\
v(4)=-12 & =r(4)+\delta \min (v(2), v(3))= & -10+1 / 2(-4)
\end{array}
$$

Nonnegative slacks and complementarity

$$
v(\mathbf{2})=r(\mathbf{2})+\delta \max (v(\mathbf{1}), v(\mathbf{4}))
$$

$$
\begin{array}{ccc}
v(2)= & w(2)+ & r(2)+\delta v(1) \\
v(2)= & z(2)+ & r(2)+\delta v(4)
\end{array}
$$

$$
w(2), z(2) \geq 0, \quad w(2) \cdot z(2)=0
$$

Reduction to LCP

$$
\forall s \in S_{M a x}: \quad v(s)=\max _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t))
$$

Replace max/min with slacks and complementarity condition

Reduction to LCP

$$
\forall s \in S_{\text {Max }}: \quad v(s)=\max _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t))
$$

Replace max/min with slacks and complementarity condition

$$
\begin{aligned}
\forall s \in S_{\text {Max }}: & v(s)=w(s)+r(s)+\delta v(\lambda(s)) \\
& v(s)=z(s)+r(s)+\delta v(\rho(s))
\end{aligned}
$$

$$
\forall s \in S: w(s) \geq 0 \perp z(s) \geq 0
$$

Reduction to LCP

$$
\begin{array}{ll}
\forall s \in S_{\text {Max }}: & v(s)=\max _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t)) \\
\forall s \in S_{\text {Min }}: & v(s)=\min _{t \in\{\lambda(s), \rho(s)\}}(r(s)+\delta v(t))
\end{array}
$$

Replace max/min with slacks and complementarity condition

$$
\begin{array}{ll}
\forall s \in S_{\text {Max }}: & v(s)=w(s)+r(s)+\delta v(\lambda(s)) \\
& v(s)=z(s)+r(s)+\delta v(\rho(s)) \\
\forall s \in S_{\text {Min }}: & v(s)=-w(s)+r(s)+\delta v(\lambda(s)) \\
& v(s)=-z(s)+r(s)+\delta v(\rho(s)) \\
\forall s \in S: & w(s) \geq 0 \perp z(s) \geq 0
\end{array}
$$

Example

$$
\begin{aligned}
& 120-\cdots--^{2} \\
& \forall s \in S: \\
& w(v) \geq 0 \perp z(v) \geq 0 \\
& \left(\begin{array}{c}
v(1) \\
v(2) \\
-v(3) \\
-v(4)
\end{array}\right)=\left(\begin{array}{l}
w(1) \\
w(2) \\
w(3) \\
w(4)
\end{array}\right)+\left(\begin{array}{r}
r(1) \\
r(2) \\
-r(3) \\
-r(4)
\end{array}\right)+\delta\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
v(1) \\
v(2) \\
v(3) \\
v(4)
\end{array}\right) \\
& \left(\begin{array}{c}
v(1) \\
v(2) \\
-v(3) \\
-v(4)
\end{array}\right)=\left(\begin{array}{l}
z(1) \\
z(2) \\
z(3) \\
z(4)
\end{array}\right)+\left(\begin{array}{r}
r(1) \\
r(2) \\
-r(3) \\
-r(4)
\end{array}\right)+\delta\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
v(1) \\
v(2) \\
v(3) \\
v(4)
\end{array}\right)
\end{aligned}
$$

Example

$w \geq 0 \perp z \geq 0$
$A:=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$
$\boldsymbol{A} v=w+\boldsymbol{A r}+\delta A\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) v$

$$
A v=z+A r+\delta A \underbrace{\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)}_{R}
$$

Eliminate v

$$
\begin{aligned}
& \boldsymbol{A}(I-\delta L) v=w+\boldsymbol{A r} \\
& \boldsymbol{A}(I-\delta \boldsymbol{R}) v=z+\boldsymbol{A r}
\end{aligned}
$$

Eliminating v we get

$$
\begin{gathered}
w+A r=A(I-\delta L)(A(I-\delta R))^{-1}(z+A r) \\
w=M z+q \\
w \geq 0 \perp z \geq 0 \\
M=A(I-\delta L)(I-\delta R)^{-1} A, \quad q=(M-I) A r
\end{gathered}
$$

Example

$$
\begin{gathered}
w=M z+q \\
w \geq 0 \perp z \geq 0 \\
M=A(I-\delta L)(I-\delta R)^{-1} A, \quad q=(M-I) A r \\
A(I-\delta L)=\left(\begin{array}{rrrr}
1 & 0 & -\delta & 0 \\
-\delta & 1 & 0 & 0 \\
0 & 0 & -1 & \delta \\
0 & 0 & \delta & -1
\end{array}\right) \quad A(I-\delta R)=\left(\begin{array}{rrrr}
1 & 0 & 0 & -\delta \\
0 & 1 & 0 & -\delta \\
\delta & 0 & -1 & 0 \\
0 & \delta & 0 & -1
\end{array}\right)
\end{gathered}
$$

Levy-Desplanques Theorem

If $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, i.e., $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for all \boldsymbol{i}, then \boldsymbol{A} is non-singular.

Levy-Desplanques Theorem

If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, i.e., $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for all \boldsymbol{i}, then \boldsymbol{A} is non-singular.

- $\boldsymbol{A}(I-\delta L)$ and $\boldsymbol{A}(I-\delta \boldsymbol{R})$ are strictly diagonally dominant. E.g.

$$
A(I-\delta L)=\left(\begin{array}{rrrr}
1 & 0 & -\delta & 0 \\
-\delta & 1 & 0 & 0 \\
0 & 0 & -1 & \delta \\
0 & 0 & \delta & -1
\end{array}\right) \quad A(I-\delta R)=\left(\begin{array}{rrrr}
1 & 0 & 0 & -\delta \\
0 & 1 & 0 & -\delta \\
\delta & 0 & -1 & 0 \\
0 & \delta & 0 & -1
\end{array}\right)
$$

- So $M=A(I-\delta L)(I-\delta R)^{-1} A$ is well defined

Theorem (Johnson and Tsatsomeros (1995))
Let $\boldsymbol{M}=\boldsymbol{B C} \boldsymbol{C}^{-1}$, where $\boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{\boldsymbol{n \times n}}$. Then, \boldsymbol{M} is a P-matrix if $\boldsymbol{T C}+(I-T) B$ is invertible for all $\boldsymbol{T} \in[0, I]$.

Theorem (Johnson and Tsatsomeros (1995))

Let $\boldsymbol{M}=\boldsymbol{B C} \boldsymbol{C}^{\mathbf{- 1}}$, where $\boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{\boldsymbol{n \times n}}$. Then, \boldsymbol{M} is a P-matrix if $\boldsymbol{T C}+(I-T) B$ is invertible for all $\boldsymbol{T} \in[0, I]$.

$$
\begin{gathered}
w=M z+q \\
w \geq 0 \perp z \geq 0
\end{gathered}
$$

$$
M=A(I-\delta L)(I-\delta R)^{-1} A, \quad q=(M-I) A r
$$

$B=\boldsymbol{A}(I-\delta L)$ and $C=\boldsymbol{A}(I-\delta \boldsymbol{R})$ are strictly diagonally dominant.
Thus, $\boldsymbol{T} C+(I-T) B$ is s.d.d., and hence invertible, for all $\boldsymbol{T} \in[0, I]$.
Thus, $M=B C^{-1}$ is a P-matrix.

Unique End of Potential Line (UEOPL)

$\mathrm{UEOPL} \subseteq \mathrm{EOPL}=\mathrm{CLS}=\mathrm{PPAD} \cap$ PLS

UEOPL 2nd motivation：Contraction Maps

$$
\begin{aligned}
& \downarrow \text { t t t t t 」 く 」 } \\
& \text { 入 人 * + t t 大 大 }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \rightarrow \nearrow 入 \rightarrow \cdots, ~ 人 x
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow イ メ ナ+\times \times \times 1
\end{aligned}
$$

\boldsymbol{f} is contracting if

$$
\left\|f(x)-f\left(x^{\prime}\right)\right\| \leq c \cdot\left\|x-x^{\prime}\right\| \quad \text { for } c<1
$$

UEOPL 2nd motivation: Contraction Maps

$$
\begin{aligned}
& \downarrow t+\downarrow \downarrow \downarrow \downarrow \measuredangle \measuredangle \\
& \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \measuredangle< \\
& \searrow\rangle \rightarrow \downarrow \downarrow \downarrow \downarrow \downarrow \leftarrow \leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& \searrow \rightarrow \lambda \lambda \rightarrow V \times k \times x
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \nearrow \not \subset \uparrow \times k \times k
\end{aligned}
$$

Banach's fixpoint theorem

- Every contraction map has a unique fixpoint

UEOPL 2nd motivation: Contraction Maps

Problem: given a contraction map as an arithmetic circuit

- Find a fixpoint or a violation of contraction

No violations \Rightarrow the problem has a unique solution

The three problems

- Contraction (for piecewise-linear circuits)
- Unique sink orientation (definition to come later)
- P-matrix LCP

Each can be formulated so that there are

- proper solutions
- violation solutions

When there are no violations there is a unique solution

UEOPL is intended to capture problems like this

Defining (U)EOPL

CLS combines

- the continuous PPAD-complete problem Brouwer
- the canonical PLS-complete problem

EOPL

Why not combine both canonical problems?

End Of Potential Line (EOPL)

PLS

PPAD

Hardness of CLS: Query Complexity and Cryptographic Lower Bounds Hubáček and Yogev [SODA 2017]

CLS: New Problems and Completeness (arXiv)
[Fearnley, Gordon, Mehta, S. 2017-]

End of Potential Line (EOPL)

Combines the two canonical
complete problems

- An End-of-the-Line instance
- That has a potential

Find

- The end of a line
- A vertex where the potential increases

Unique End of Potential Line (UEOPL)

- Proper solution: The end of a line
- Violation 1: The start of a line other than 0^{n}
- Violation 2: An edge that increases the potential
- Violation 3: Any pair of vertices \boldsymbol{v} and \boldsymbol{u} satisfying

$$
V(x)<V(y)<V(S(x))
$$

Unique End of Potential Line (UEOPL)

If there are no violations then there is a unique line

- That starts at at $\mathbf{0}^{\boldsymbol{n}}$
- And ends at the unique proper solution to the problem

Main results

Main results

One Permutation Discrete Contraction is UEOPL-complete

- A technical tool used in our reductions
- USO reduces to OPDC
- Contraction reduces to OPDC
- OPDC is "close" to both problems

OPDC is not very natural...

Piecewise-Linear Contraction

Input

- contraction map \boldsymbol{f} given as an arithmetic circuit
- gates: max, $\boldsymbol{m i n},+,-$, and $\times \zeta$ (multiplication by a constant)
- a LinearFIXP circuit defines a piecewise linear function
- we seek a fixpoint, i.e., \boldsymbol{X}^{*} such that $\boldsymbol{f}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{x}$
- \boldsymbol{x}^{*} is unique and has polynomial bit complexity

Find

- A fixpoint of \boldsymbol{f} (which will be unique if \boldsymbol{f} is contracting)
- A violation that shows \boldsymbol{f} is not contracting

PL－Contraction to UEOPL

$t+t+t+1$										
入入入入入＊										
$\rightarrow 11+1 \times k$										

| \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \downarrow |
\downarrow	\downarrow	0	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	0
\downarrow	\downarrow	\uparrow	0	\downarrow	\downarrow	\downarrow	\downarrow	0	\uparrow
\downarrow	0	\uparrow	\uparrow	0	\downarrow	\downarrow	\downarrow	\uparrow	\uparrow
\downarrow	\uparrow	\uparrow	\uparrow	\uparrow	0	0	0	\uparrow	\uparrow
0	\uparrow								
\uparrow									

First we discretize the problem
－Lay a grid of points over the space
－For each dimension construct a direction function

PL-Contraction to UEOPL

| \downarrow |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \downarrow |
\downarrow	\downarrow	0	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	0
\downarrow	\downarrow	\uparrow	0	\downarrow	\downarrow	\downarrow	\downarrow	0	\uparrow
\downarrow	0	\uparrow	\uparrow	0	\downarrow	\downarrow	\downarrow	\uparrow	\uparrow
\downarrow	\uparrow	\uparrow	\uparrow	\uparrow	0	0	0	\uparrow	\uparrow
0	\uparrow								
\downarrow	\uparrow								

\rightarrow	\rightarrow	0	\leftarrow						
\rightarrow	\rightarrow	\rightarrow	0	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
\rightarrow	\rightarrow	\rightarrow	\rightarrow	0	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
\rightarrow	\rightarrow	\rightarrow	\rightarrow	0	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	0	\leftarrow	\leftarrow	\leftarrow	\leftarrow
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	0	\leftarrow	\leftarrow	\leftarrow
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	0	\leftarrow	\leftarrow	\leftarrow	\leftarrow
\rightarrow	\rightarrow	\rightarrow	\rightarrow	0	\leftarrow	\leftarrow	\leftarrow	\leftarrow	\leftarrow

Discrete contraction

- Find a point that is $\mathbf{0}$ in all dimensions

PL-Contraction to UEOPL

A point is on the surface if it is $\mathbf{0}$ for some direction

- Every vertical slice has a unique point on the blue surface
- At each of these, we can follow the red direction function

PL-Contraction to UEOPL

The path
(1) Start at $(0,0)$
(2) Find the blue surface
(3) If not at red surface, move across one, return to bottom, go to 2

PL-Contraction to UEOPL

The potential

- The path never moves left
- In every slice, it either moves moves up or down

PL-Contraction to UEOPL

So we can use a pair $(\boldsymbol{a}, \boldsymbol{b})$ ordered lexicographically where

- \boldsymbol{a} is the \boldsymbol{x} coordinate of the vertex
- \boldsymbol{b} is
- \boldsymbol{y} if we are moving up
- -y if we are moving down

This monotonically increases along the line

PL-Contraction to UEOPL

Actually, this formulation only gives us a forward circuit

- But the line is unique
- So we can apply a technique of Hubáček and Yogev (2017) to make the line reversible

PL-Contraction to UEOPL

This generalises to arbitrary dimension

- We walked along the blue surface to reach the red surface

PL-Contraction to UEOPL

In 3D

- Walk along the red/blue surface to find the green surface
- Between any two points on the red/blue surface
- Walk along the blue surface to find the red surface

PL-Contraction to UEOPL

Theorem
Contraction is in UEOPL

Consequences for contraction

Theorem

Given an arithmetic circuit \boldsymbol{C} encoding a contraction map

$$
f:[0,1]^{d} \rightarrow[0,1]^{d}
$$

with respect to any $\boldsymbol{\ell}_{\boldsymbol{p}}$ norm
there is an algorithm, based on a nested binary search that finds a fixpoint of \boldsymbol{f} in time

- polynomial in size(\boldsymbol{C})
- exponential in d

Before, such algorithms were only known for ℓ_{2} and ℓ_{∞}

Unique Sink Orientations of Cubes

Orient the edges of an \boldsymbol{n}-dimensional cube

- So that every face has a unique sink

Unique Sink Orientations of Cubes

A 3-dimensional USO

Unique Sink Orientations of Cubes

Can be cyclic (EXERCISE)

UniqueSinkOrientation

Given a polynomial-time boolean circuit

$$
C:\{0,1\}^{n} \mapsto\{0,1\}^{n}
$$

that maps a vertex \boldsymbol{v} of then \boldsymbol{n}-cube to the orientation at \boldsymbol{v} :

- find the sink of the cube
- or a violation to the USO property

Why is USO interesting?

Long line of work on UniqueSinkOrientation:

P-matrix LCP reduces to UniqueSinkOrientation
[Stickney and Watson '78]

Non-trivial USO algorithms (previously best for P-matrix LCP)
[Szabó and Welzl '01]

Some problems reduce to acyclic USO

- parity games
- mean-payoff games
- discounted games
- simple-stochastic games

USO in UEOPL

Previously

- USO was known to be in TFNP
- But not PPAD or PLS

USO in UEOPL

Theorem
USO is in UEOPL
(USO is a "width 2" instance of discrete contraction)

USO in UEOPL

So we put USO in UEOPL, CLS, PPAD, and PLS

P-matrix Linear Complementarity Problem

Input:

- Vectors $\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}_{2}, \ldots, \boldsymbol{M}_{\boldsymbol{d}}$
- A vector \boldsymbol{q}

P-matrix Linear Complementarity Problem

A complementary cone is all non-negative linear combinations of

- A subset of $\boldsymbol{M}_{\mathbf{1}}, \boldsymbol{M}_{\mathbf{2}}, \ldots, \boldsymbol{M}_{\boldsymbol{d}}$, with
- $\boldsymbol{- e}_{\boldsymbol{i}}$ in place of each vector not chosen

P-matrix Linear Complementarity Problem

The linear complementarity problem (LCP)

- Find a cone that contains \mathbf{q}

P-matrix Linear Complementarity Problem

P-matrix LCPs

- The cones are guaranteed to exactly partition the space

P-matrix Linear Complementarity Problem

We reduce P-matrix LCP to UEOPL using Lemke's algorithm

- Start at the vector \boldsymbol{d} in the cone $-\boldsymbol{e}_{\mathbf{1}},-\boldsymbol{e}_{\mathbf{2}}$
- Walk through the sequence of cones from \boldsymbol{d} to \boldsymbol{q}

P-matrix Linear Complementarity Problem

The progress along the path gives us a potential

- The algorithm has a variable \boldsymbol{z}
- \boldsymbol{z} corresponds to distance along the path
- it monotonically decreases

P-matrix LCP \rightarrow UEOPL

If the input is not a P-matrix, then \boldsymbol{z} may increase

- We deal with this by introducing new solutions

P-matrix LCP \rightarrow UEOPL

Theorem
P-matrix LCP is in UEOPL

Consequences for P-matrix LCP

Blowup of reduction to UEOPL is only linear
This allows us to apply an algorithm of Aldous (1983)
Gives fastest-known (randomized) algorithm for P-matrix
LCP, with running time

$$
2^{\frac{n}{2}} \cdot \operatorname{poly}(n)
$$

Conjectures

USO is complete for UEOPL

Contraction is complete for UEOPL

PLCP is complete for UEOPL

Conjectures

USO is complete for UEOPL

Contraction is complete for UEOPL

PLCP is complete for UEOPL

EOPL = CLS $\neq \mathrm{UEOPL}$

Unique sink orientations of cubes

[Stickney and Watson (1978)][Szabó and Welzl (2001)]

- n-dimensional hypercube
- edges oriented such that every face has a unique sink
- thus unique global sink

The two USOs for $\boldsymbol{n}=\mathbf{2}$:

Fact: Every one of 2^{d} outmaps occurs at some vertex

Unique sink orientations of cubes

[Stickney and Watson (1978)][Szabó and Welzl (2001)]

- n-dimensional hypercube
- edges oriented such that every face has a unique sink
- thus unique global sink

The two USOs for $\boldsymbol{n}=\mathbf{2}$:

Fact: Every one of $\mathbf{2}^{\boldsymbol{d}}$ outmaps occurs at some vertex In particular, there's also a single source on each face too

EXERCISES

Reduce the promise version of the P-matrix LCP problem to the USO problem.

Construct a USO in 3 dimensions that contains a cyclic. Hints:
(1) Recall that the cycle cannot exist within a 2 face
(2) Recall that the USO must have an overall source and an overall sink

ANSWER 1: USO for P-matrix LCP

LCP: $z \geq 0 \perp w \geq 0, \quad q=I w-M z$

For every $\alpha \subseteq\{\mathbf{1}, \ldots, \boldsymbol{n}\}$, define $\boldsymbol{B}^{\alpha} \in \mathbb{R}^{\boldsymbol{n \times n}}$ by

$$
\left(B^{\alpha}\right)_{i}= \begin{cases}-M_{i}, & i \in \alpha \\ \boldsymbol{e}_{i,}, & i \notin \alpha\end{cases}
$$

Orient edges at vertex α oriented according to

$$
\operatorname{sign}\left(\left(B^{\alpha}\right)^{-1} q\right)
$$

ANSWER 1: PLCP USO example

$$
\begin{gathered}
-1 / 5\left(\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right) z^{\prime}+I w^{\prime}=q^{\prime}=\binom{2 / 5}{1 / 5} \geq 0 \\
\alpha=\{1,
\end{gathered}
$$

$$
\begin{gathered}
\alpha=\emptyset \\
I w-M z=I w-\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right) z=q=\binom{-1}{-1}
\end{gathered}
$$

Cyclic USO

Antipodal sink and source; remaining form cycle (two directions possible)

Note:

- this cyclic USOs arises from a P-matrix LCP
- subexponential algorithms $\left(2^{\circ}(\sqrt{(n))})\right.$ known, but rely on acyclicity
- none known for P-LCP, major open problem

P-LCP in UEOPL two ways

- We presented a direct reduction from P-LCP to UEOPL possible via Lemke's algorithm
- P-LCP can be reduced to USO by a rather straightforward reduction (exercise)
- This gives an alternative (but less "efficient") proof of membership in UEOPL for P-LCP

References

Unique end of potential line by Fearnley, Gordon, Mehta, Savani
ICALP 2019 / JCSS 2020
Definition of UEOPL and containment results

Hardness of Continuous Local Search by Hubácek and Yogev SODA 2017 / SICOMP 2020 EOPL in CLS, query/crypto hardness of (U)EOPL

Further Collapses in TFNP by
Göös, Hollender, Jain, Maystre, Pires, Robere, Tao CCC 2022

Thanks!

[^0]: (6)

