Ph.D. Open

Vincent Cohen-Addad

Provable algorithms for data mining and unsupervised machine learning

Grading: Questions numbered 1 are worth 1 each, 2 are worth 2 points each, 3 and 4 are worth 3 points each.

On the k-Center Problem

We recall the k-center problem. Let (X, d) be a metric space (e.g.: X could be $X \subset \mathbb{R}^{2}$ and d be the ℓ_{2}-distance), and k be an integer. The goal is to find a set C of k points in X, called centers, so as to minimize $\max _{p \in X} \min _{c \in C} d(p, c)$.

Exercise 1

1. Provide a polynomial time algorithm that solves k-center exactly in $X \subset \mathbb{R}$, where d is the ℓ_{1} distance. Namely an algorithm whose running time is polynomial in n, k.
2. Provide an algorithm with running time $O(n \log (\Delta) \log n$ that solves k-center exactly in $X \subset \mathbb{R}$, where d is the ℓ_{1} distance, where Δ is the ratio of the maximum distance between input point to the minimum distance between input points.

We recall the notion of ε-coreset for k-center. An ε-coreset of an instance $(X, d), k$ of k-center is a subset of points X^{\prime} such that the value of the optimum k-center solution on instance $\left(X^{\prime}, d\right), k$ is wipthin a $(1+\varepsilon)$ factor of the value of the optimum k-center solution on instance $(X, d), k$.

Exercise 2

1. Show that if the input instance $(X, d), k$ is arbitrary, namely that (X, d) is an arbitrary finite metric space, then there is no ε-coreset of size $o(n)$ for $\varepsilon<1$.
2. Provide an ε-coreset of size $O(k / \varepsilon)$ for k-center where $X \subset \mathbb{R}$, where d is the ℓ_{1} distance.
3. Provide an ε-coreset of size $O\left(k / \varepsilon^{\delta}\right)$ for k-center where $X \subset \mathbb{R}^{\delta}$, where d is the ℓ_{2} distance.
4. Provide a $(1+\varepsilon)$-approximation algorithm for k-center with running time $O\left((k / \varepsilon)^{\delta k / \varepsilon^{\delta}}+\right.$ $\left.n k^{2} / \varepsilon^{\delta}\right)$ where $X \subset \mathbb{R}^{\delta}$.

On Approximate Nearest Neighbors

We recall the definition of the γ-Approximate Nearest Neighbor problem we saw in class. Given a set $X \subset \mathbb{R}^{\delta}$, a parameter σ, our goal is to build a data structure that on an input query point q, outputs an element $p \in X$ at distance at most σ from p if there is one; or outputs that there is no element of X at distance less than $\gamma \sigma$ from p if there is none; otherwise the data structure may answer arbitrarily. We work with the ℓ_{2} distance. The query time refers to the worst-case time the data structure takes to answer a query. Let Δ be the ratio of the maximum distance between input point to the minimum distance between input points.

We would like to build a γ-ANN data structure for \mathbb{R}^{δ}.

Exercise 3

1. Provide an exact $(\gamma=1)$ deterministic data structure for \mathbb{R} with query time $O(\log n)$.
2. For any ε, provide a randomized data structure for \mathbb{R}^{δ} and $\gamma=(1+\varepsilon)$ with query time $O\left(\left(\varepsilon^{-1} \log n\right)^{\delta}\right)$, and success probability $1-1 / n$ Assume delta = 2
3. For any ε, provide a randomized data structure for \mathbb{R}^{δ} and $\gamma=(1+\varepsilon)$ with query time $O\left(\left(\varepsilon^{-1} \log n\right)^{\delta}\right)$, and success probability $1-1 / n$
4. Provide a randomized data structure for \mathbb{R}^{δ} and $\gamma=O(\delta)$ with query time $O(\delta \log n \log (1 / \rho))$ and success probability $1-\rho$.
