Ph.D. Open

Vincent Cohen-Addad

Provable algorithms for data mining and unsupervised machine learning

Grading: Questions numbered 1 are worth 1 each, 2 are worth 2 points each, 3 and 4 are worth 3 points each.

On the k-Center Problem

We recall the k-center problem. Let (X, d) be a metric space (e.g.: X could be $X \subset \mathbb{R}^2$ and d be the ℓ_2 -distance), and k be an integer. The goal is to find a set C of k points in X, called centers, so as to minimize $\max_{p \in X} \min_{c \in C} d(p, c)$.

Exercise 1

- 1. Provide a polynomial time algorithm that solves k-center exactly in $X \subset \mathbb{R}$, where d is the ℓ_1 distance. Namely an algorithm whose running time is polynomial in n, k.
- 2. Provide an algorithm with running time $O(n \log(\Delta) \log n)$ that solves k-center exactly in $X \subset \mathbb{R}$, where d is the ℓ_1 distance, where Δ is the ratio of the maximum distance between input point to the minimum distance between input points.

We recall the notion of ε -coreset for k-center. An ε -coreset of an instance (X, d), k of k-center is a subset of points X' such that the value of the optimum k-center solution on instance (X', d), k is wipthin a $(1 + \varepsilon)$ factor of the value of the optimum k-center solution on instance (X, d), k.

Exercise 2

- 1. Show that if the input instance (X, d), k is arbitrary, namely that (X, d) is an arbitrary finite metric space, then there is no ε -coreset of size o(n) for $\varepsilon < 1$.
- 2. Provide an ε -coreset of size $O(k/\varepsilon)$ for k-center where $X \subset \mathbb{R}$, where d is the ℓ_1 distance.
- 3. Provide an ε -coreset of size $O(k/\varepsilon^{\delta})$ for k-center where $X \subset \mathbb{R}^{\delta}$, where d is the ℓ_2 distance.
- 4. Provide a $(1+\varepsilon)$ -approximation algorithm for k-center with running time $O((k/\varepsilon)^{\delta k/\varepsilon^{\delta}} + nk^2/\varepsilon^{\delta})$ where $X \subset \mathbb{R}^{\delta}$.

On Approximate Nearest Neighbors

We recall the definition of the γ -Approximate Nearest Neighbor problem we saw in class. Given a set $X \subset \mathbb{R}^{\delta}$, a parameter σ , our goal is to build a data structure that on an input query point q, outputs an element $p \in X$ at distance at most σ from p if there is one; or outputs that there is no element of X at distance less than $\gamma\sigma$ from p if there is none; otherwise the data structure may answer arbitrarily. We work with the ℓ_2 distance. The query time refers to the worst-case time the data structure takes to answer a query. Let Δ be the ratio of the maximum distance between input point to the minimum distance between input points.

We would like to build a γ -ANN data structure for \mathbb{R}^{δ} .

Exercise 3

- 1. Provide an exact $(\gamma = 1)$ deterministic data structure for \mathbb{R} with query time $O(\log n)$.
- 2. For any ε , provide a randomized data structure for \mathbb{R}^{δ} and $\gamma = (1 + \varepsilon)$ with query time $O((\varepsilon^{-1} \log n)^{\delta})$, and success probability 1 1/n Assume delta = 2
- 3. For any ε , provide a randomized data structure for \mathbb{R}^{δ} and $\gamma = (1 + \varepsilon)$ with query time $O((\varepsilon^{-1} \log n)^{\delta})$, and success probability 1 1/n
- 4. Provide a randomized data structure for \mathbb{R}^{δ} and $\gamma = O(\delta)$ with query time $O(\delta \log n \log(1/\rho))$ and success probability 1ρ .