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A reminder on metric spaces

A metric space is a set E equipped with a metric d.

A sequence (xn)n>0 is Cauchy if for each ε > 0,
there exists k such that, for each n > k and m > k,
d(xn, xm) < ε.

A function ϕ from (E, d) into (E ′, d′) is uniformly
continuous if for each ε > 0, there exists δ > 0 such
that d(x, y) < δ implies d′(ϕ(x), ϕ(y)) < ε.

A metric space is complete if every Cauchy
sequence is convergent.



LIAFA, CNRS and University Paris Diderot

Completion of a metric space

A completion of a metric space E is a complete
metric space Ê together with an isometric
embedding of E as a dense subspace of Ê.

Every metric space admits a completion, which is
unique up to uniform isomorphism. For instance,
the completion of Q is R.

Any uniformly continuous function ϕ : E → E ′

admits a unique uniformly continuous extension

ϕ̂ : Ê → Ê ′.
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Two examples

Let E be a finite set. The discrete metric d is
defined by d(x, y) = 0 if x = y and d(x, y) = 1
otherwise. Then (E, d) is a complete metric space.

Let p be a prime number. The p-adic valuation of a
non-zero integer n is

νp(n) = max
{
k ∈ N | pk divides n

}

By convention, νp(0) = +∞. The p-adic norm of n
is the real number |n|p = p−νp(n). Finally, the metric
dp is defined by dp(u, v) = |u − v|p. The completion
of N for dp is the set of p-adic numbers.
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Part I

The profinite world

Citation (M. Stone)

A cardinal principle of modern mathematical
research may be stated as a maxim: One must
always topologize.



LIAFA, CNRS and University Paris Diderot

Separating words

A deterministic finite automaton (DFA) separates
two words if it accepts one of the words but not the
other one.

A monoid M separates two words u and v of A∗ if
there exists a monoid morphism ϕ : A∗ → M such
that ϕ(u) 6= ϕ(v).

Proposition

One can always separate two distinct words by a
finite automaton (respectively by a finite monoid).



LIAFA, CNRS and University Paris Diderot

Separating words

• The morphism which maps each word onto its
length modulo 2 is a morphism from {a, b}∗ onto
Z/2Z which separates abaaba and abaabab.

• Similarly, for each letter a, one can count the
number of a modulo n.

• Let M = {( 1 0
0 1 ) , ( 1 0

1 0 ) , ( 0 1
0 1 )} and let

ϕ : {a, b}∗ → M defined by ϕ(a) = ( 1 0
1 0 ) and

ϕ(b) = ( 0 1
0 1 ). Then, for all u, ϕ separates ua and

ub since ϕ(ua) = ϕ(a) and ϕ(ub) = ϕ(b).
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The profinite metric

Let u and v be two words. Put

r(u, v) = min
{
|M | M is a finite monoid

that separates u and v
}

d(u, v) = 2−r(u,v)

Then d is an ultrametric, that is, for all x, y, z ∈ A∗,

(1) d(x, x) = 0,

(2) d(x, y) = d(y, x),

(3) d(x, z) 6 max{d(x, y), d(y, z)}
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Another profinite metric

Let

r′(u, v) = min
{
# states(A) A is a finite DFA

separating u and v}

d′(u, v) = 2−r′(u,v)

The metric d′ is uniformly equivalent to d:

2
− 1

d′(u,v) 6 d(u, v) 6 d′(u, v)

Therefore, a function is uniformly continuous for d
iff it is uniformly continuous for d′.



LIAFA, CNRS and University Paris Diderot

Main properties of d

Intuitively, two words are close for d if one needs a
large monoid to separate them.

A sequence of words un is a Cauchy sequence iff, for
every morphism ϕ from A∗ to a finite monoid, the
sequence ϕ(un) is ultimately constant.

A sequence of words un converges to a word u iff,
for every morphism ϕ from A∗ to a finite monoid,
the sequence ϕ(un) is ultimately equal to ϕ(u).
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The free profinite monoid

The completion of the metric space (A∗, d) is the

free profinite monoid on A and is denoted by Â∗. It
is a compact space, whose elements are called
profinite words.

The concatenation product is uniformly continuous

on A∗ and can be extended by continuity to Â∗.

Any morphism ϕ : A∗ → M , where M is a
(discrete) finite monoid extends in a unique way to

a uniformly continuous morphism ϕ̂ : Â∗ → M .
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The free profinite monoid as a projective limit

The monoid Â∗ can be defined as the projective
limit of the directed system formed by the surjective
morphisms between finite A-generated monoids.

Let Φ be the class of all morphisms from A∗ onto a
finite monoid. Consider the product monoid

M =
∏

ϕ∈Φ ϕ(A∗)

A family (sϕ)ϕ∈Φ (where sϕ ∈ ϕ(A∗)) is compatible
if, for each morphism π : ϕ(A∗) → π(ϕ(A∗)), one

has sπ◦ϕ = π(sϕ). Then Â∗ is the submonoid of M
formed by the compatible elements.
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Profinite words

A profinite word u is completely determined by the
elements ϕ̂(u), where ϕ runs over Φ.

Profinite word u ↔ {ϕ̂(u)}ϕ∈Φ

Alternatively, one can define a profinite word as the
limit of a Cauchy sequence of finite words, up to the
following equivalence: two Cauchy sequences
x = (xn)n>0 and y = (yn)n>0 are equivalent if the
interleave sequence x0, y0, x1, y1, . . . is also a
Cauchy sequence.
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The profinite operator ω

For each u ∈ A∗, the sequence un! is a Cauchy

sequence and hence converges in Â∗ to a limit,
denoted by uω. If ϕ is a morphism from A∗ onto a
finite monoid, ϕ(uω) is the unique idempotent xω of
the semigroup generated by x = ϕ(u).

1 x x2 x3

. . .
xi+p = xi

xi+1 xi+2

xi+p−1
xω
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Another profinite word

Let us fix a total order on the alphabet A. Let
u0, u1, . . . be the ordered sequence of all words of
A∗ in the induced shortlex order.

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, . . .
Reilly and Zhang (see also Almeida-Volkov) proved
that the sequence (vn)n>0 defined by

v0 = u0, vn+1 = (vnun+1vn)
(n+1)!

is a Cauchy sequence, which converges to an

idempotent ρA of the minimal ideal of Â∗.
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Regular languages and clopen sets

The maps L 7→ L and K 7→ K ∩ A∗ are inverse
isomorphisms between the Boolean algebras

Reg(A∗) and Clopen(Â∗). For all regular langauges
L, L1, L2 of A∗:

(1) Lc = (L)c,

(2) L1 ∪ L2 = L1 ∪ L2,

(3) L1 ∩ L2 = L1 ∩ L2,

(4) for all x, y ∈ A∗, then x−1Ly−1 = x−1Ly−1.

(5) If ϕ : A∗ → B∗ is a morphism and

L ∈ Reg(B∗), then ϕ̂−1(L) = ϕ−1(L).
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Part II

Equational theory for lattices
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Lattices of languages

Let A be a finite alphabet. A lattice of languages is
a set of regular languages of A∗ containing ∅ and A∗

and closed under finite intersection and finite union.

Let u and v be words of A∗. A language L of A∗

satisfies the equation u → v if

u ∈ L ⇒ v ∈ L

Let E be a set of equations of the form u → v.
Then the languages of A∗ satisfying the equations
of E form a lattice of languages.



LIAFA, CNRS and University Paris Diderot

Equational description of finite lattices

Proposition

A finite set of languages of A∗ is a lattice of
languages iff it can be defined by a set of equations
of the form u → v with u, v ∈ A∗.

Therefore, there is an equational theory for finite
lattices of languages. What about infinite lattices?

One needs the profinite world...
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Profinite equations

Let (u, v) be a pair of profinite words of Â∗. We say
that a regular language L of A∗ satisfies the
profinite equation u → v if

u ∈ L ⇒ v ∈ L

Let η : A∗ → M be the syntactic morphism of L.
Then L satisfies the profinite equation u → v iff

η̂(u) ∈ η(L) ⇒ η̂(v) ∈ η(L)
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Equational theory of lattices

Given a set E of equations of the form u → v
(where u and v are profinite words), the set of all
regular languages of A∗ satisfying all the equations
of E is called the set of languages defined by E.

Theorem (Gehrke, Grigorieff, Pin 2008)

A set of regular languages of A∗ is a lattice of
languages iff it can be defined by a set of equations

of the form u → v, where u, v ∈ Â∗.
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Equations of the form u 6 v

Let us say that a regular language satisfies the

equation u 6 v if, for all x, y ∈ Â∗, it satisfies the
equation xvy → xuy.

Proposition

Let L be a regular language of A∗, let (M, 6L) be
its syntactic ordered monoid and let η : A∗ → M be
its syntactic morphism. Then L satisfies the
equation u 6 v iff η̂(u) 6L η̂(v).
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Quotienting algebras of languages

A lattice of languages is a quotienting algebra of
languages if it is closed under the quotienting
operations L → u−1L and L → Lu−1, for each
word u ∈ A∗.

Theorem

A set of regular languages of A∗ is a quotienting
algebra of languages iff it can be defined by a set of

equations of the form u 6 v, where u, v ∈ Â∗.
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Boolean algebras

Let us write

u ↔ v for u → v and v → u,

u = v for u 6 v and v 6 u.

Theorem

(1) A set of regular languages of A∗ is a Boolean
algebra iff it can be defined by a set of
equations of the form u ↔ v.

(2) It is a Boolean algebra closed under quotients
iff it can be defined by a set of equations of
the form u = v.
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Interpreting equations

Let u and v be two profinite words.

Closed under Interpretation

∪,∩ u → v u ∈ L ⇒ v ∈ L

+ quotient u 6 v ∀x, y xvy → xuy

+ complement (Lc) u ↔ v u → v and v → u

+ quotient and Lc u = v xuy ↔ xvy
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Identities

One can also recover Eilenberg’s variety theorem
and its variants by using identities. An identity is an
equation in which letters are considered as variables.

Closed under inverse of Interpretation

· · · morphisms of variables

all words

length increasing nonempty words

length preserving letters

length multiplying words of equal length
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Equational descriptions

• Every lattice of regular languages has an
equational description.

• In particular, any class of regular languages
defined by a fragment of logic closed under
conjunctions and disjunctions (first order,
monadic second order, temporal, etc.) admits
an equational description.

• This result can also be adapted to languages of
infinite words, words over ordinals or linear
orders, and hopefully to tree languages.
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The virtuous circle

Logical

fragments

Lattices of

languages

Profinite

identities

Decidability

Hopefully
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Part III

Some examples

• Languages with zero

• Nondense languages

• Slender languages

• Sparse languages

• Examples from logic

• Examples of identities
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Languages with zero

A language with zero is a language whose syntactic
monoid has a zero. The class of regular languages
with zero is closed under Boolean operations and
quotients, but not under inverse of morphisms.

Proposition

A regular language has a zero iff it satisfies the
equation xρA = ρA = ρAx for all x ∈ A∗.

In the sequel, we simply write 0 for ρA to mean that
L has a zero.
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Nondense languages

A language L of A∗ is dense if, for each word
u ∈ A∗, L ∩ A∗uA∗ 6= ∅.

Regular non-dense or full languages form a lattice
closed under quotients.

Theorem

A regular language of A∗ is non-dense or full iff it
satisfies the equations x 6 0 for all x ∈ A∗.
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Slender or full languages

A regular language is slender iff it is a finite union of
languages of the form xu∗y, where x, u, y ∈ A∗.

Fact. A regular language is slender iff its minimal
deterministic automaton does not contain any pair
of connected cycles.

u

x y

Two connected cycles, where x, y ∈ A+ and u ∈ A∗.
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Equations for slender languages

Denote by i(x) the initial of a word x.

Theorem

Suppose that |A| > 2. A regular language of A∗ is
slender or full iff it satisfies the equations x 6 0 for
all x ∈ A∗ and the equation xωuyω = 0 for each
x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).

u

x y
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Sparse languages

A regular language is sparse iff it is a finite union of
languages of the form u0v

∗
1u1 · · · v∗nun, where u0, v1,

. . . , vn, un are words.

Theorem

Suppose that |A| > 2. A regular language of A∗ is
sparse or full iff it satisfies the equations x 6 0 for
all x ∈ A∗ and the equations (xωyω)ω = 0 for each
x, y ∈ A+ such that i(x) 6= i(y).
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Boolean closures

Suppose that |A| > 2.

Theorem

A regular language of A∗ is slender or coslender iff it
satisfies the equations xωuyω = 0 for each
x, y ∈ A+, u ∈ A∗ such that i(uy) 6= i(x).

Theorem

A regular language of A∗ is sparse or cosparse iff it
satisfies the equations (xωyω)ω = 0 for each
x, y ∈ A+ such that i(x) 6= i(y).
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Identities of well-known logical fragments

(1) Star-free languages: xω+1 = xω. Captured by
the logical fragment FO[<].

(2) Finite unions of languages of the form
A∗a1A

∗a2A
∗ · · · akA

∗, where a1, . . . , ak are
letters: x 6 1. Captured by Σ1[<].

(3) Piecewise testable languages = Boolean
closure of (3): xω+1 = xω and (xy)ω = (yx)ω.
Captured by BΣ1[<].

(4) Unambiguous star-free languages: xω+1 = xω

and (xy)ω(yx)ω(xy)ω = (xy)ω. Captured by
FO2[<] (first order with two variables) or by
Σ2[<] ∩ Π2[<] or by unary temporal logic.
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Another fragment of Büchi’s sequential calculus

Denote by BΣ1(S) the Boolean combinations of
existential formulas in the signature {S, (a)a∈A}.
This logical fragment allows to specify properties
like the factor aa occurs at least twice. Here is an
equational description of the BΣ1(S)-definable
languages, where r, s, u, v, x, y ∈ A∗:

uxωv ↔ uxω+1v

uxωryωsxωtyωv ↔ uxωtyωsxωryωv

xωuyωvxω ↔ yωvxωuyω

y(xy)ω ↔ (xy)ω ↔ (xy)ωx



LIAFA, CNRS and University Paris Diderot

Examples of length-multiplying identities

Length-multiplying identities: x and y represent
words of the same length.

(1) Regular languages of AC0:
(xω−1y)ω = (xω−1y)ω+1. Captured by
FO[< +MOD].

(2) Finite union of languages of the form
(Ad)∗a1(A

d)∗a2(A
d)∗ · · · ak(A

d)∗, with d > 0:
xω−1y 6 1 and yxω−1 6 1. Captured by
Σ1[< +MOD].
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Part IV

Profinite topologies
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Profinite metrics (Boolean case)

Let L be a Boolean algebra of regular languages of
A∗. A language L separates two words if it contains
one of the words but not the other one. Put

rL(u, v) = min
{
#(L) L is a language of L

that separates u and v}

dL(u, v) = 2−rL(u,v)

Intuitively, two words are close for dL if one needs a
complex language to separate them.
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Properties of dL

For all x, y, z ∈ A∗,

(1) dL(x, x) = 0,

(2) dL(x, y) = dL(y, x),

(3) dL(x, z) 6 max{dL(x, y), dL(y, z)}

Thus dL is a pseudo-ultrametric, which defines the
pro-L topology. It is an ultrametric iff L separates
words.

The completion of A∗ for dL is denoted by Â∗
L
. It

is a compact space (Hausdorff iff L separates
words) and a monoid if L is closed under quotients.
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Examples

If L finite or cofinite languages of A∗, then

Â∗
L

= A∗ ∪ {0} (one point compactification).

If L is the set of languages of the form FA∗ ∪ G,

where F and G are finite, then Â∗
L

= A∗ ∪ Aω.

If L is the set of piecewise testable languages, then

Â∗
L

is countable and is structure is well understood.

In general, it is a difficult problem to describe Â∗
L
.

See [J. Almeida, Gesammelte Werke].
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L-preserving functions

Definition. A function f : A∗ → A∗ is L-preserving
if, for each language L ∈ L, f−1(L) ∈ L.

Theorem

A function from f : A∗ → A∗ is uniformly
continuous for dL iff it is L-preserving.

• One can extend this result to lattices of regular
languages by using quasi-uniform structures.

• Regular-preserving functions are exactly the
uniformly continuous functions for d.
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A well-known exercise. . .

If L is a language, its square root is
K = {u ∈ A∗ | u2 ∈ L}.

Exercise. Show that the square root of a regular
[star-free] language is regular [star-free].

Proof. Note that K = f−1(L), where f(u) = u2.
Let L be a quotienting algebra of languages. Since
the product is uniformly continuous for dL, f is
uniformly continuous. Thus f is L-preserving.
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Extension to lattices

If L is a lattice of languages, the same ideas can be
applied. One defines a quasi-uniform structure
generated by the sets

UL = (L × A∗) ∪ (A∗ × Lc) (L ∈ L)

called the pro-L (quasi)-uniform structure.

Theorem

A function from A∗ to A∗ is uniformly continuous
for the pro-L uniform structure iff it is L-preserving.
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Summary

• Every lattice of regular languages admits an
equational description, a result that subsumes
Eilenberg’s variety theorem and its extensions.

• In particular, any class of regular languages
defined by a fragment of logic closed under
conjunctions and disjunctions (first order,
monadic second order, temporal logic, etc.)
admits an equational description.
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Conclusion

Two difficult problems:

(1) Finding a set of equations defining a lattice can
be difficult. In good cases, equations involve only
words and simple operators like ω, but this is not
the rule.

(2) Given a set of equations, one still needs to
decide whether a given regular language satisfies
these equations.
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