Algebraic theory of automata: historical perspective and new advances (Part II)

Jean-Éric Pin¹

¹LIAFA, CNRS and Université Paris Diderot

Warsaw, 2011

Summary

- $(1)\;$ Profinite topology on A^*
- $\left(2\right)\,$ Equational theories for lattices of languages
- (3) Some examples
- (4) Profinite topologies

A metric space is a set E equipped with a metric d.

A sequence $(x_n)_{n \ge 0}$ is Cauchy if for each $\varepsilon > 0$, there exists k such that, for each $n \ge k$ and $m \ge k$, $d(x_n, x_m) < \varepsilon$.

A function φ from (E, d) into (E', d') is uniformly continuous if for each $\varepsilon > 0$, there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $d'(\varphi(x), \varphi(y)) < \varepsilon$.

A metric space is complete if every Cauchy sequence is convergent.

Completion of a metric space

A completion of a metric space E is a complete metric space \widehat{E} together with an isometric embedding of E as a dense subspace of \widehat{E} .

Every metric space admits a completion, which is unique up to uniform isomorphism. For instance, the completion of \mathbb{Q} is \mathbb{R} .

Any uniformly continuous function $\varphi: E \to E'$ admits a unique uniformly continuous extension $\hat{\varphi}: \widehat{E} \to \widehat{E'}$.

Two examples

Let E be a finite set. The discrete metric d is defined by d(x, y) = 0 if x = y and d(x, y) = 1otherwise. Then (E, d) is a complete metric space.

Let p be a prime number. The p-adic valuation of a non-zero integer n is

$$u_p(n) = \max\left\{k \in \mathbb{N} \mid p^k \text{ divides } n
ight\}$$

By convention, $\nu_p(0) = +\infty$. The *p*-adic norm of *n* is the real number $|n|_p = p^{-\nu_p(n)}$. Finally, the metric d_p is defined by $d_p(u, v) = |u - v|_p$. The completion of \mathbb{N} for d_p is the set of *p*-adic numbers.

Part I

The profinite world

Citation (M. Stone)

A cardinal principle of modern mathematical research may be stated as a maxim: One must always topologize.

A deterministic finite automaton (DFA) separates two words if it accepts one of the words but not the other one.

A monoid M separates two words u and v of A^* if there exists a monoid morphism $\varphi : A^* \to M$ such that $\varphi(u) \neq \varphi(v)$.

Proposition

One can always separate two distinct words by a finite automaton (respectively by a finite monoid).

Separating words

 The morphism which maps each word onto its length modulo 2 is a morphism from $\{a, b\}^*$ onto $\mathbb{Z}/2\mathbb{Z}$ which separates *abaaba* and *abaabab*.

• Similarly, for each letter *a*, one can count the number of a modulo n.

• Let $M = \{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \}$ and let $\varphi: \{a, b\}^* \to M$ defined by $\varphi(a) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ and $\varphi(b) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$. Then, for all u, φ separates ua and *ub* since $\varphi(ua) = \varphi(a)$ and $\varphi(ub) = \varphi(b)$.

The profinite metric

Let u and v be two words. Put

 $r(u,v) = \minig\{|M| \mid M ext{ is a finite monoid} \ ext{ that separates } u ext{ and } vig\}$ $d(u,v) = 2^{-r(u,v)}$

Then d is an ultrametric, that is, for all $x, y, z \in A^*$, (1) d(x, x) = 0, (2) d(x, y) = d(y, x), (3) $d(x, z) \leq \max\{d(x, y), d(y, z)\}$

Another profinite metric

Let

$$r'(u, v) = \min\{\# \text{ states}(\mathcal{A}) \mid \mathcal{A} \text{ is a finite DFA}$$

separating u and $v\}$
 $d'(u, v) = 2^{-r'(u,v)}$

The metric
$$d'$$
 is uniformly equivalent to d :

$$2^{-\frac{1}{d'(u,v)}} \leqslant d(u,v) \leqslant d'(u,v)$$

Therefore, a function is uniformly continuous for d iff it is uniformly continuous for d'.

Intuitively, two words are close for d if one needs a large monoid to separate them.

A sequence of words u_n is a Cauchy sequence iff, for every morphism φ from A^* to a finite monoid, the sequence $\varphi(u_n)$ is ultimately constant.

A sequence of words u_n converges to a word u iff, for every morphism φ from A^* to a finite monoid, the sequence $\varphi(u_n)$ is ultimately equal to $\varphi(u)$.

The free profinite monoid

The completion of the metric space (A^*, d) is the free profinite monoid on A and is denoted by $\widehat{A^*}$. It is a compact space, whose elements are called profinite words.

The concatenation product is uniformly continuous on A^* and can be extended by continuity to $\widehat{A^*}$.

Any morphism $\varphi : A^* \to M$, where M is a (discrete) finite monoid extends in a unique way to a uniformly continuous morphism $\hat{\varphi} : \widehat{A^*} \to M$.

The free profinite monoid as a projective limit

The monoid $\widehat{A^*}$ can be defined as the projective limit of the directed system formed by the surjective morphisms between finite *A*-generated monoids.

Let Φ be the class of all morphisms from A^* onto a finite monoid. Consider the product monoid

 $M = \prod_{\varphi \in \Phi} \varphi(A^*)$

A family $(s_{\varphi})_{\varphi \in \Phi}$ (where $s_{\varphi} \in \varphi(A^*)$) is compatible if, for each morphism $\pi : \varphi(A^*) \to \pi(\varphi(A^*))$, one has $s_{\pi \circ \varphi} = \pi(s_{\varphi})$. Then $\widehat{A^*}$ is the submonoid of Mformed by the compatible elements.

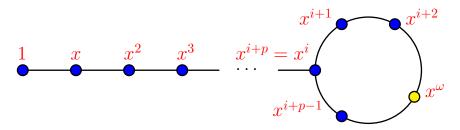
A profinite word u is completely determined by the elements $\hat{\varphi}(u)$, where φ runs over Φ .

Profinite word $u \leftrightarrow \{\hat{\varphi}(u)\}_{\varphi \in \Phi}$

Alternatively, one can define a profinite word as the limit of a Cauchy sequence of finite words, up to the following equivalence: two Cauchy sequences $x = (x_n)_{n \ge 0}$ and $y = (y_n)_{n \ge 0}$ are equivalent if the interleave sequence $x_0, y_0, x_1, y_1, \ldots$ is also a Cauchy sequence.

The profinite operator ω

For each $u \in A^*$, the sequence $u^{n!}$ is a Cauchy sequence and hence converges in $\widehat{A^*}$ to a limit, denoted by u^{ω} . If φ is a morphism from A^* onto a finite monoid, $\varphi(u^{\omega})$ is the unique idempotent x^{ω} of the semigroup generated by $x = \varphi(u)$.



Another profinite word

Let us fix a total order on the alphabet A. Let u_0, u_1, \ldots be the ordered sequence of all words of A^* in the induced shortlex order.

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ... Reilly and Zhang (see also Almeida-Volkov) proved that the sequence $(v_n)_{n \ge 0}$ defined by

$$v_0 = u_0, \ v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$$

is a Cauchy sequence, which converges to an idempotent ρ_A of the minimal ideal of $\widehat{A^*}$.

Regular languages and clopen sets

The maps $L \mapsto \overline{L}$ and $K \mapsto K \cap A^*$ are inverse isomorphisms between the Boolean algebras $\operatorname{Reg}(A^*)$ and $\operatorname{Clopen}(A^*)$. For all regular langauges L, L_1, L_2 of A^* : (1) $\overline{L^c} = (\overline{L})^c$, (2) $\overline{L_1 \cup L_2} = \overline{L_1} \cup \overline{L_2}$. (3) $\overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$, (4) for all $x, y \in A^*$, then $\overline{x^{-1}Ly^{-1}} = x^{-1}\overline{L}y^{-1}$. (5) If $\varphi: A^* \to B^*$ is a morphism and $L \in \operatorname{Reg}(B^*)$, then $\hat{\varphi}^{-1}(\overline{L}) = \overline{\varphi^{-1}(L)}$.

Part II

Equational theory for lattices

Let A be a finite alphabet. A lattice of languages is a set of regular languages of A^* containing \emptyset and A^* and closed under finite intersection and finite union.

Let u and v be words of A^* . A language L of A^* satisfies the equation $u \to v$ if

 $u \in L \Rightarrow v \in L$

Let E be a set of equations of the form $u \to v$. Then the languages of A^* satisfying the equations of E form a lattice of languages.

Equational description of finite lattices

Proposition

A finite set of languages of A^* is a lattice of languages iff it can be defined by a set of equations of the form $u \to v$ with $u, v \in A^*$.

Therefore, there is an equational theory for finite lattices of languages. What about infinite lattices?

One needs the profinite world...

Profinite equations

Let (u, v) be a pair of profinite words of $\widehat{A^*}$. We say that a regular language L of A^* satisfies the profinite equation $u \to v$ if

$$u \in \overline{L} \Rightarrow v \in \overline{L}$$

Let $\eta: A^* \to M$ be the syntactic morphism of L. Then L satisfies the profinite equation $u \to v$ iff

$$\hat{\eta}(u) \in \eta(L) \Rightarrow \hat{\eta}(v) \in \eta(L)$$

Equational theory of lattices

Given a set E of equations of the form $u \to v$ (where u and v are profinite words), the set of all regular languages of A^* satisfying all the equations of E is called the set of languages defined by E.

Theorem (Gehrke, Grigorieff, Pin 2008)

A set of regular languages of A^* is a lattice of languages iff it can be defined by a set of equations of the form $u \to v$, where $u, v \in \widehat{A^*}$.

Equations of the form $u \leq v$

Let us say that a regular language satisfies the equation $u \leq v$ if, for all $x, y \in \widehat{A^*}$, it satisfies the equation $xvy \to xuy$.

Proposition

Let *L* be a regular language of A^* , let (M, \leq_L) be its syntactic ordered monoid and let $\eta : A^* \to M$ be its syntactic morphism. Then *L* satisfies the equation $u \leq v$ iff $\hat{\eta}(u) \leq_L \hat{\eta}(v)$.

Quotienting algebras of languages

A lattice of languages is a quotienting algebra of languages if it is closed under the quotienting operations $L \rightarrow u^{-1}L$ and $L \rightarrow Lu^{-1}$, for each word $u \in A^*$.

Theorem

A set of regular languages of A^* is a quotienting algebra of languages iff it can be defined by a set of equations of the form $u \leq v$, where $u, v \in \widehat{A^*}$.

Boolean algebras

Let us write

 $\begin{array}{ll} u \leftrightarrow v & \quad \mbox{for } u \rightarrow v \mbox{ and } v \rightarrow u, \\ u = v & \quad \mbox{for } u \leqslant v \mbox{ and } v \leqslant u. \end{array}$

Theorem

- (1) A set of regular languages of A^* is a Boolean algebra iff it can be defined by a set of equations of the form $u \leftrightarrow v$.
- (2) It is a Boolean algebra closed under quotients iff it can be defined by a set of equations of the form u = v.

Interpreting equations

Let u and v be two profinite words.

Closed under		Interpretation
\cup,\cap	$u \rightarrow v$	$u\in\overline{L}\Rightarrow v\in\overline{L}$
+ quotient	$u \leqslant v$	$\forall x, y xvy \to xuy$
$+ \text{ complement } (L^c)$	$u \leftrightarrow v$	$u \rightarrow v \text{ and } v \rightarrow u$
+ quotient and L^c	u = v	$xuy \leftrightarrow xvy$

Identities

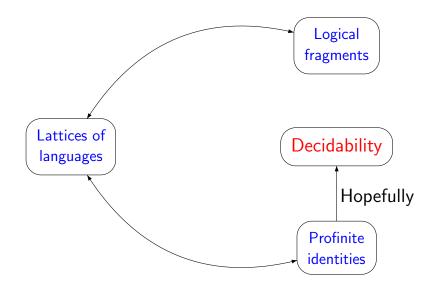
One can also recover Eilenberg's variety theorem and its variants by using identities. An identity is an equation in which letters are considered as variables.

Closed under inverse of ··· morphisms	Interpretation of variables
all	words
length increasing	nonempty words
length preserving	letters
length multiplying	words of equal length

Equational descriptions

- Every lattice of regular languages has an equational description.
- In particular, any class of regular languages defined by a fragment of logic closed under conjunctions and disjunctions (first order, monadic second order, temporal, etc.) admits an equational description.
- This result can also be adapted to languages of infinite words, words over ordinals or linear orders, and hopefully to tree languages.

The virtuous circle



Part III

Some examples

- Languages with zero
- Nondense languages
- Slender languages
- Sparse languages
- Examples from logic
- Examples of identities

Languages with zero

A language with zero is a language whose syntactic monoid has a zero. The class of regular languages with zero is closed under Boolean operations and quotients, but not under inverse of morphisms.

Proposition

A regular language has a zero iff it satisfies the equation $x\rho_A = \rho_A = \rho_A x$ for all $x \in A^*$.

In the sequel, we simply write 0 for ρ_A to mean that L has a zero.

Nondense languages

A language L of A^* is dense if, for each word $u \in A^*$, $L \cap A^*uA^* \neq \emptyset$.

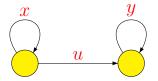
Regular non-dense or full languages form a lattice closed under quotients.

Theorem

A regular language of A^* is non-dense or full iff it satisfies the equations $x \leq 0$ for all $x \in A^*$.

A regular language is slender iff it is a finite union of languages of the form xu^*y , where $x, u, y \in A^*$.

Fact. A regular language is slender iff its minimal deterministic automaton does not contain any pair of connected cycles.



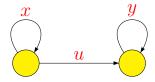
Two connected cycles, where $x, y \in A^+$ and $u \in A^*$.

Equations for slender languages

Denote by i(x) the initial of a word x.

Theorem

Suppose that $|A| \ge 2$. A regular language of A^* is slender or full iff it satisfies the equations $x \le 0$ for all $x \in A^*$ and the equation $x^{\omega}uy^{\omega} = 0$ for each $x, y \in A^+$, $u \in A^*$ such that $i(uy) \ne i(x)$.



Sparse languages

A regular language is sparse iff it is a finite union of languages of the form $u_0v_1^*u_1\cdots v_n^*u_n$, where u_0 , v_1 , ..., v_n , u_n are words.

Theorem

Suppose that $|A| \ge 2$. A regular language of A^* is sparse or full iff it satisfies the equations $x \le 0$ for all $x \in A^*$ and the equations $(x^{\omega}y^{\omega})^{\omega} = 0$ for each $x, y \in A^+$ such that $i(x) \ne i(y)$.

Boolean closures

Suppose that $|A| \ge 2$.

Theorem

A regular language of A^* is slender or coslender iff it satisfies the equations $x^{\omega}uy^{\omega} = 0$ for each $x, y \in A^+$, $u \in A^*$ such that $i(uy) \neq i(x)$.

Theorem

A regular language of A^* is sparse or cosparse iff it satisfies the equations $(x^{\omega}y^{\omega})^{\omega} = 0$ for each $x, y \in A^+$ such that $i(x) \neq i(y)$.

Identities of well-known logical fragments

- (1) Star-free languages: $x^{\omega+1} = x^{\omega}$. Captured by the logical fragment FO[<].
- (2) Finite unions of languages of the form $A^*a_1A^*a_2A^* \cdots a_kA^*$, where a_1, \ldots, a_k are letters: $x \leq 1$. Captured by $\Sigma_1[<]$.
- (3) Piecewise testable languages = Boolean closure of (3): $x^{\omega+1} = x^{\omega}$ and $(xy)^{\omega} = (yx)^{\omega}$. Captured by $\mathcal{B}\Sigma_1[<]$.

(4) Unambiguous star-free languages: $x^{\omega+1} = x^{\omega}$ and $(xy)^{\omega}(yx)^{\omega}(xy)^{\omega} = (xy)^{\omega}$. Captured by $FO_2[<]$ (first order with two variables) or by $\Sigma_2[<] \cap \Pi_2[<]$ or by unary temporal logic.

Another fragment of Büchi's sequential calculus

Denote by $\mathcal{B}\Sigma_1(S)$ the Boolean combinations of existential formulas in the signature $\{S, (\mathbf{a})_{a \in A}\}$. This logical fragment allows to specify properties like the factor *aa* occurs at least twice. Here is an equational description of the $\mathcal{B}\Sigma_1(S)$ -definable languages, where $r, s, u, v, x, y \in A^*$:

$$ux^{\omega}v \leftrightarrow ux^{\omega+1}v$$
$$ux^{\omega}ry^{\omega}sx^{\omega}ty^{\omega}v \leftrightarrow ux^{\omega}ty^{\omega}sx^{\omega}ry^{\omega}v$$
$$x^{\omega}uy^{\omega}vx^{\omega} \leftrightarrow y^{\omega}vx^{\omega}uy^{\omega}$$
$$y(xy)^{\omega} \leftrightarrow (xy)^{\omega} \leftrightarrow (xy)^{\omega}x$$

Examples of length-multiplying identities

Length-multiplying identities: x and y represent words of the same length.

- (1) Regular languages of AC^0 : $(x^{\omega-1}y)^{\omega} = (x^{\omega-1}y)^{\omega+1}$. Captured by FO[<+MOD].
- (2) Finite union of languages of the form $(A^d)^*a_1(A^d)^*a_2(A^d)^* \cdots a_k(A^d)^*$, with d > 0: $x^{\omega-1}y \leq 1$ and $yx^{\omega-1} \leq 1$. Captured by $\Sigma_1[<+MOD]$.

Part IV

Profinite topologies

Profinite metrics (Boolean case)

Let \mathcal{L} be a Boolean algebra of regular languages of A^* . A language L separates two words if it contains one of the words but not the other one. Put

$$r_{\mathcal{L}}(u, v) = \min\{\#(L) \mid L \text{ is a language of } \mathcal{L} \\ \text{that separates } u \text{ and } v\}$$

$$d_{\mathcal{L}}(u,v) = 2^{-r_{\mathcal{L}}(u,v)}$$

Intuitively, two words are close for $d_{\mathcal{L}}$ if one needs a complex language to separate them.

Properties of $d_{\mathcal{L}}$

For all $x, y, z \in A^*$, (1) $d_{\mathcal{L}}(x, x) = 0$, (2) $d_{\mathcal{L}}(x, y) = d_{\mathcal{L}}(y, x)$, (3) $d_{\mathcal{L}}(x, z) \leq \max\{d_{\mathcal{L}}(x, y), d_{\mathcal{L}}(y, z)\}$ Thus $d_{\mathcal{L}}$ is a pseudo-ultrametric, which defines the pro- \mathcal{L} topology. It is an ultrametric iff \mathcal{L} separates words.

The completion of A^* for $d_{\mathcal{L}}$ is denoted by $\widehat{A^*}^{\mathcal{L}}$. It is a compact space (Hausdorff iff \mathcal{L} separates words) and a monoid if \mathcal{L} is closed under quotients.

Examples

If \mathcal{L} finite or cofinite languages of A^* , then $\widehat{A^*}^{\mathcal{L}} = A^* \cup \{0\}$ (one point compactification).

If \mathcal{L} is the set of languages of the form $FA^* \cup G$, where F and G are finite, then $\widehat{A^*}^{\mathcal{L}} = A^* \cup A^{\omega}$.

If \mathcal{L} is the set of piecewise testable languages, then $\widehat{A^*}^{\mathcal{L}}$ is countable and is structure is well understood.

In general, it is a difficult problem to describe $\widehat{A^*}^{\mathcal{L}}$. See [J. Almeida, Gesammelte Werke].

\mathcal{L} -preserving functions

Definition. A function $f : A^* \to A^*$ is \mathcal{L} -preserving if, for each language $L \in \mathcal{L}$, $f^{-1}(L) \in \mathcal{L}$.

Theorem

A function from $f : A^* \to A^*$ is uniformly continuous for $d_{\mathcal{L}}$ iff it is \mathcal{L} -preserving.

• One can extend this result to lattices of regular languages by using quasi-uniform structures.

• Regular-preserving functions are exactly the uniformly continuous functions for *d*.

If L is a language, its square root is $K = \{u \in A^* \mid u^2 \in L\}.$

Exercise. Show that the square root of a regular [star-free] language is regular [star-free].

Proof. Note that $K = f^{-1}(L)$, where $f(u) = u^2$. Let \mathcal{L} be a quotienting algebra of languages. Since the product is uniformly continuous for $d_{\mathcal{L}}$, f is uniformly continuous. Thus f is \mathcal{L} -preserving. If \mathcal{L} is a lattice of languages, the same ideas can be applied. One defines a quasi-uniform structure generated by the sets

 $U_L = (L \times A^*) \cup (A^* \times L^c) \qquad (L \in \mathcal{L})$

called the pro- \mathcal{L} (quasi)-uniform structure.

Theorem

A function from A^* to A^* is uniformly continuous for the pro- \mathcal{L} uniform structure iff it is \mathcal{L} -preserving.

Summary

- Every lattice of regular languages admits an equational description, a result that subsumes Eilenberg's variety theorem and its extensions.
- In particular, any class of regular languages defined by a fragment of logic closed under conjunctions and disjunctions (first order, monadic second order, temporal logic, etc.) admits an equational description.

Conclusion

Two difficult problems:

(1) Finding a set of equations defining a lattice can be difficult. In good cases, equations involve only words and simple operators like ω , but this is not the rule.

(2) Given a set of equations, one still needs to decide whether a given regular language satisfies these equations.