Exercises

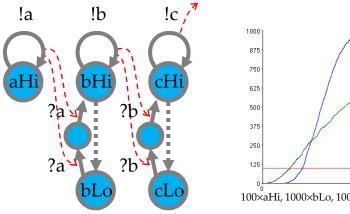
Luca Cardelli

Microsoft Research

Open Lectures for PhD Students in Computer Science Warsaw 2009-03..05

http://lucacardelli.name

Exercise 1



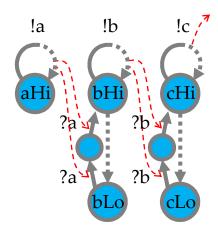
!a !Ь le. 0.03

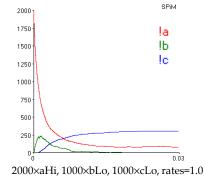
100×aHi, 1000×bLo, 1000×cLo, rates=1.0

Second-Oder Regime cascade: a signal amplifier (MAPK) $aHi > 0 \Rightarrow cHi = max$

diana	ing annula 0.02
	ive sample 0.03
direct	ive plot la; lb; lc
new al	©1,0:chan new b@1,0:chan new c@1,0:chan
let An	np_hi(a:chan, b:chan) =
do !b	; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)
	mp_lo(a:chan, b:chan) =
	a; Amp_hi(a,b)
74, 7	a, ranp_n(a,b)
	00 - f (Ame la(a b) Ame la(b a))
run 10	00 of (Amp_lo(a,b) Amp_lo(b,c))
) = !a; A()
run 10	0 of A()

Write these automata in CGF and translate them to chemical reactions.





Zero-Oder Regime cascade: a signal divider!

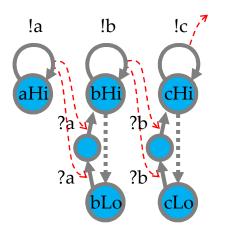
 $aHi = max \implies cHi = 1/3 max$

directive sample 0.03
directive plot la; lb; lc
new a@1,0:chan new b@1.0:chan new c@1,0:chan
let Amp_hi(a:chan, b:chan) =
do !b; delay@1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)
and Amp_lo(a:chan, b:chan) =
2a; 2a; Amp_hi(a,b)
run 1000 of (Amp_lo(a,b) Amp_lo(b,c))
let A() = !a; delay@1.0; A()
run 2000 of A()

Exercise 1a Solution

aHi =
$$!a_{(1.0)}$$
; aHi
bLo = $?a_{(1.0)}$; bMd
bMd = $?a_{(1.0)}$; bHi
bHi = $!b_{(1.0)}$; bHi $\oplus \tau_{(1.0)}$; bLo
cLo = $?b_{(1.0)}$; cMd
cMd = $?b_{(1.0)}$; cHi
cHi = $!c_{(1.0)}$; cHi $\oplus \tau_{(1.0)}$; cLo

aHi + bLo
$$\rightarrow^{1.0}$$
 aHi + bMd
aHi + bMd $\rightarrow^{1.0}$ aHi + bHi
bHi $\rightarrow^{1.0}$ bLo
bHi + cLo $\rightarrow^{1.0}$ bHi + cMd
bHi + cMd $\rightarrow^{1.0}$ bHi + cHi
cHi $\rightarrow^{1.0}$ cLo



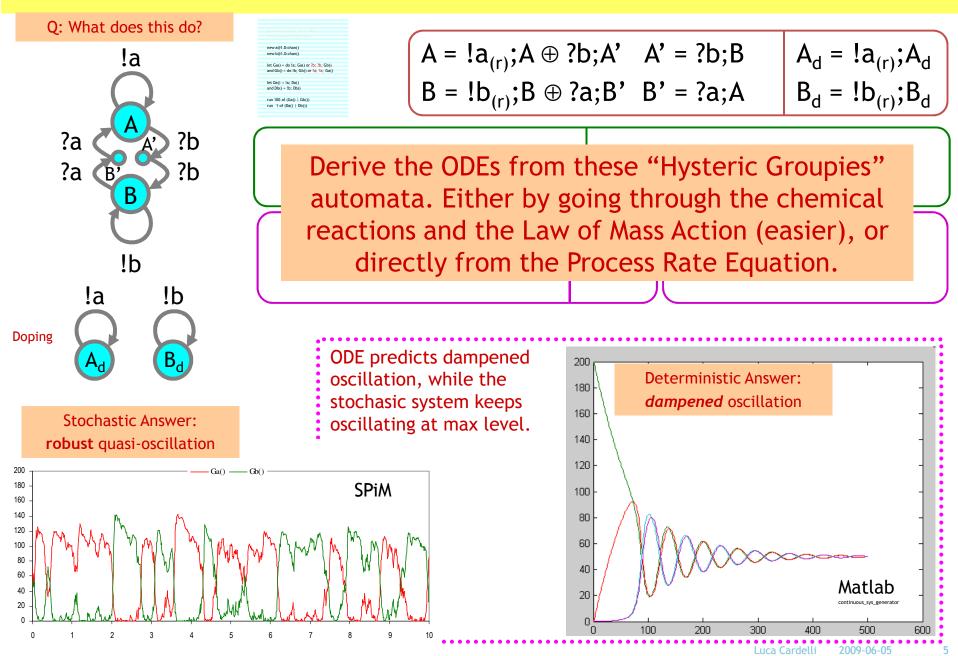
Exercise 1b Solution

aHi =
$$!a_{(1.0)}$$
; aR
aR = $\tau_{(1.0)}$; aHi
bLo = $?a_{(1.0)}$; bMd
bMd = $?a_{(1.0)}$; bHi
bHi = $!b_{(1.0)}$; bR $\oplus \tau_{(1.0)}$; bLo
bR = $\tau_{(1.0)}$; bHi
cLo = $?b_{(1.0)}$; cMd
cMd = $?b_{(1.0)}$; cHi
cHi = $!c_{(1.0)}$; cR $\oplus \tau_{(1.0)}$; cLo
cR = $\tau_{(1.0)}$; cHi

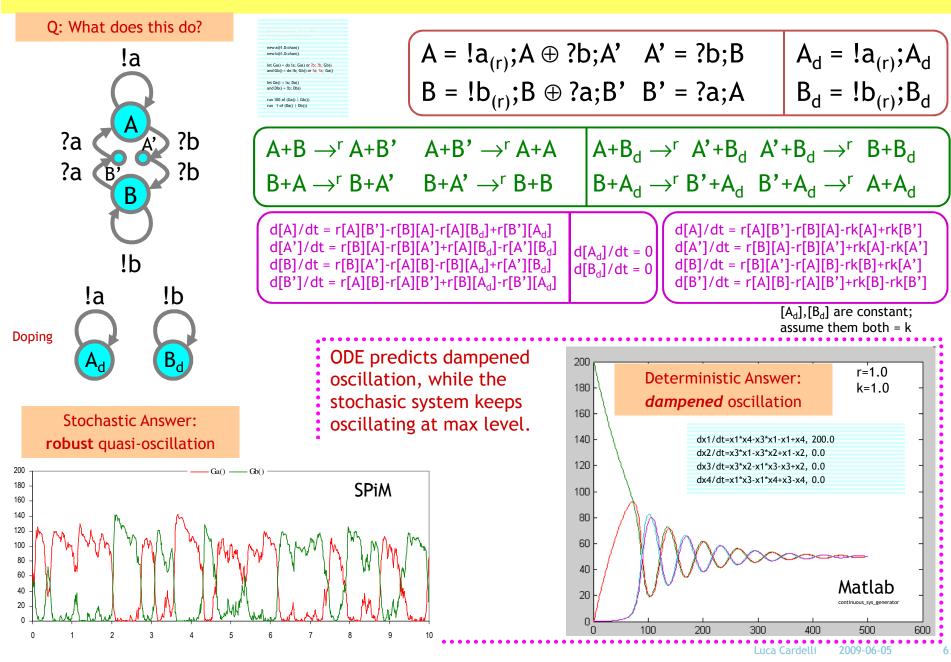
aHi + bLo $\rightarrow^{1.0}$ aR + bMd aHi + bMd $\rightarrow^{1.0}$ aR + bHi aR $\rightarrow^{1.0}$ aHi bHi $\rightarrow^{1.0}$ bLo bHi + cLo $\rightarrow^{1.0}$ bR + cMd bHi + cMd $\rightarrow^{1.0}$ bR + cHi bR $\rightarrow^{1.0}$ bHi cHi $\rightarrow^{1.0}$ cLo cR $\rightarrow^{1.0}$ cHi Note: no reaction from cHi to cR etc. because there is nothing (here) to interact with c.

The chemical system is incomplete (it does not say how cHi would behave in a bigger system), while the automata already specify what would happen (if we remove the red bit in cHi above we obtain the same chemical reactions).

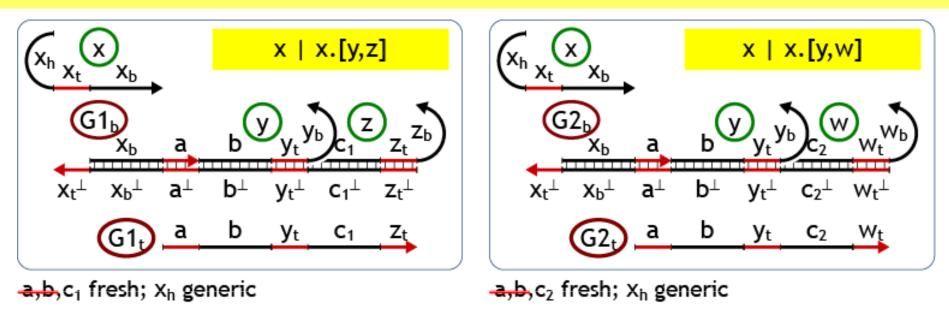
Exercise 2



Exercise 2 Solution



Exercise 3: x.[y,z] | x.[y,w] Interference



• Suppose we 'forgot' to take a,b fresh, so they are shared by the two gates. Something goes horribly wrong from these initial conditions:

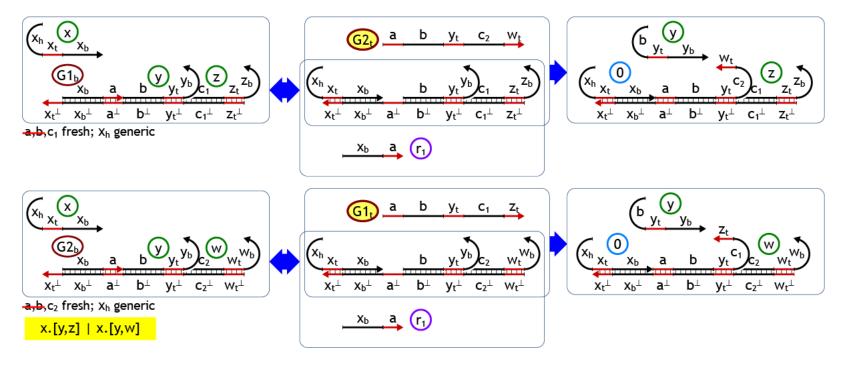
x | x.[y,z] | x | x.[y,w]

where $x.[y,z] = G1_b, G1_t$ and $x.[y,w] = G2_b, G2_t$

• What goes wrong?

Exercise 3 Solution

Deadlocks! Consider $x \mid x \mid x.[y,z] \mid x.[y,w]$, and suppose we had taken c fresh (hence different c_1, c_2), but did *not* used gate-unique segments for a,b:



The $G2_t$ trigger can bind to the wrong $G1_b$ backbone and get stuck there, and vice versa, without ever releasing z or w.

This is just a made-up problem, but one must watch out for all kinds of possible interferences.

Exercise 4: x.y.z | [x,y].w Interference

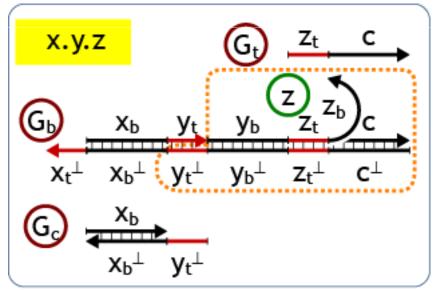
Consider curried gates without the a,b segments (example below): instead of releasing x_b , a and b, y_t segments, they would release x_b , y_t .

But that is exactly the strand r_1 of an [x,y].w gate: the strand that reverts the x input. This definitely causes an interference between x.y.z and [x,y].w.

Find a situation where the presence (x.y.z as below) or absence (x.y.z as in previous slide) of this interference causes different outcomes.

Hint: it changes outcome probability.

Note: the a,b segments prevent the interference.



c fresh; X_h, y_h generic (without the a,b segments)

Exercise 4 Solution

[David Soloveichik]

Consider curried gates without the a,b segment; instead of releasing x_b ,a and b, y_t segments, they would release x_b , y_t .

But that is exactly the segment r_1 of the [x,y].z gate; the one that reverts the x input. And x.y.z has a an x_b, y_t collector that will remove r_1 , and make x bind to [x,y].z irreversibly! That's not supposed to happen (in absence of y).

This interference would not change the logic of the gates, but it would change their stochastic behavior.

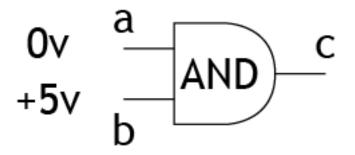
Consider: x | x.y.z | [x,y].w. Without interference, x can bind only reversibly to [x,y].w, and irreversibly to x.y.z. Hence with high probability this would produce y.z | [x,y].w, and if *later* providing y it would produce <u>z with high</u> probability.

However, with the r_1 interference, x would initially bind equally likely to [x,y].w (and x.y.z), and the x_b, y_t could be removed by the x.y.z collector. Hnece x would irreversibly bind equally likely to [x,y].w and x.y.z, and if *later* providing y, we would now get <u>z or w with equal probability</u>.

The extra a,b segments break the contiguity of x_b, y_t , avoiding the interference.

Exercise 5: Boolean Networks

Boolean Networks to Strand Algebra

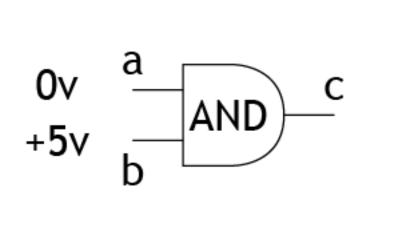


Find an encoding of Boolean networks in Strand Algebra.

It's enough to show how to encode and AND gate that takes Boolean signals on a,b wires and produces a Boolean signal on the c wire, and a NOT gate. (Their combination, a NAND gate, is a universal gate.)

Exercise 5 Solution

Boolean Networks to Strand Algebra



Represent each wire in the system (e.g. 'a') as a pair of signals (' a_T ', ' a_F '). Represent each Boolean gate by its truth table, with a join for each truth table entry. Map initial voltages to initial signals.

NOT gate is similar: $(a_F.b_T)^* | (a_T.b_F)^*$

Exercise 6: Wet Vending Machine Controller

A coffee vending machine controller, Vend, accepts two coins for coffee; an ok is given after the first coin and then either a second coin (for coffee) or an abort (for refund) is accepted:

Vend = ?coin. ![ok,mutex]. (Coffee | Refund)
Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend)
Refund = ?[mutex,abort]. !refund. (Refund | Vend)

Exercise: compile that to the Combinatorial Strand Algebra; if you do it by the U(P) algorithm you can then heavily hand-optimize it.

Each Vend iteration spawns two branches, Coffee and Refund, waiting for either coin or abort. The branch not taken in the mutual exclusion is left behind; this could skew the system towards one population of branches. Therefore, when the Coffee branch is chosen and the system is reset to Vend, we also spawn another Coffee branch to dynamically balance the Refund branch that was not chosen; conversely for Refund.

Standard questions can be asked: what happens if somebody inserts three coins very quickly? Or somebody presses refund twice? Etc.

Exercise 6 Solution

Two hand-optimized solutions:

Vend |
([Vend,coin].[ok,mutex,Coffee,Refund])* |
([Coffee,mutex,coin].[coffee,Vend,Coffe])* |
([Refund,mutex,abort].[refund,Vend,Refund])*

This second solution however removes the 'branch balancing' effect:

Vend |
([Vend,coin].[ok,mutex])* |
([mutex,coin].[coffee,Vend])* |
([mutex,abort].[refund,Vend])*

The algorithmic solution, with some optimization, should be [Marek Cygan]:

Y | Z | T | (Y.[Y,Y2] | [Y2, Vend].Y3 | [Y3,coin].[ok,mutex,Coffee,Refund])* (Z.[Z,Z2] | [Z2, Coffee].Z3 | [Z3,mutex,coin].[coffee,Coffee,Vend])* (T.[T,T2] | [T2, Refund].T3 | [T3,mutex,abort].[refund,Refund,Vend])*