
Exercises

Luca CardelliLuca Cardelli

Microsoft Research

Open Lectures for PhD Students in Computer Science

Warsaw 2009-03..05

http://lucacardelli.name

Exercise 1

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

100×aHi, 1000×bLo, 1000×cLo, rates=1.0

Second-Oder Regime cascade:
a signal amplifier (MAPK)

aHi > 0 ⇒ cHi = max

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; A()

run 100 of A()

Write these automata in
CGF and translate them

22009-06-05Luca Cardelli 22009-06-05 22009-06-05Luca Cardelli

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) =

do !b; delay@1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) =

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; delay@1.0; A()

run 2000 of A()

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

2000×aHi, 1000×bLo, 1000×cLo, rates=1.0

Zero-Oder Regime cascade:
a signal divider!
aHi = max ⇒ cHi = 1/3 max

CGF and translate them
to chemical reactions.

Exercise 1a Solution

aHi = !a(1.0);aHi

bLo = ?a(1.0); bMd

bMd = ?a(1.0); bHi

bHi = !b(1.0); bHi ⊕ τ(1.0); bLo

cLo = ?b(1.0); cMd

cMd = ?b(1.0); cHi

cHi = !c(1.0); cHi ⊕ τ(1.0); cLo

aHi + bLo →1.0 aHi + bMd

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

32009-06-05Luca Cardelli 32009-06-05 32009-06-05Luca Cardelli

aHi + bLo →1.0 aHi + bMd

aHi + bMd →1.0 aHi + bHi

bHi →1.0 bLo

bHi + cLo →1.0 bHi + cMd

bHi + cMd →1.0 bHi + cHi

cHi →1.0 cLo

Exercise 1b Solution

aHi = !a(1.0);aR

aR = τ(1.0); aHi

bLo = ?a(1.0); bMd

bMd = ?a(1.0); bHi

bHi = !b(1.0); bR ⊕ τ(1.0); bLo

bR = τ(1.0); bHi

cLo = ?b(1.0); cMd

cMd = ?b(1.0); cHi

cHi = !c(1.0); cR ⊕ τ(1.0); cLo

τ

cR

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

aR bR

bMd cMd

42009-06-05Luca Cardelli 42009-06-05 42009-06-05Luca Cardelli

cHi = !c(1.0); cR (1.0); cLo

cR = τ(1.0); cHi

aHi + bLo →1.0 aR + bMd

aHi + bMd →1.0 aR + bHi

aR →1.0 aHi

bHi →1.0 bLo

bHi + cLo →1.0 bR + cMd

bHi + cMd →1.0 bR + cHi

bR →1.0 bHi

cHi →1.0 cLo

cR →1.0 cHi

Note: no reaction from cHi to cR etc. because

there is nothing (here) to interact with c.

The chemical system is incomplete (it does not

say how cHi would behave in a bigger system),

while the automata already specify what would

happen (if we remove the red bit in cHi above

we obtain the same chemical reactions).

Exercise 2

A = !a(r);A ⊕ ?b;A’ A’ = ?b;B

B = !b(r);B ⊕ ?a;B’ B’ = ?a;A

Ad = !a(r);Ad

Bd = !b(r);Bd
A

B
?a

?a

?b

?b

!a

!b

A’

B’

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

Q: What does this do?

!a !b

Derive the ODEs from these “Hysteric Groupies”

automata. Either by going through the chemical

reactions and the Law of Mass Action (easier), or

directly from the Process Rate Equation.

52009-06-05Luca Cardelli 52009-06-05 52009-06-05Luca Cardelli

Matlab
continuous_sys_generator

ODE predicts dampened

oscillation, while the

stochasic system keeps

oscillating at max level.

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

Stochastic Answer:

robust quasi-oscillation

Deterministic Answer:

dampened oscillation

SPiM

Ad Bd

!a !b

Doping

d[A]/dt = r[A][B’]-r[B][A]-r[A][Bd]+r[B’][Ad]

d[A’]/dt = r[B][A]-r[B][A’]+r[A][Bd]-r[A’][Bd]

d[B]/dt = r[B][A’]-r[A][B]-r[B][Ad]+r[A’][Bd]

d[B’]/dt = r[A][B]-r[A][B’]+r[B][Ad]-r[B’][Ad]

Exercise 2 Solution

A+B →r A+B’ A+B’ →r A+A

B+A →r B+A’ B+A’ →r B+B

A = !a(r);A ⊕ ?b;A’ A’ = ?b;B

B = !b(r);B ⊕ ?a;B’ B’ = ?a;A

Ad = !a(r);Ad

Bd = !b(r);Bd

A+Bd →r A’+Bd A’+Bd →r B+Bd

B+Ad →r B’+Ad B’+Ad →r A+Ad

A

B
?a

?a

?b

?b

!a

!b

A’

B’

d[Ad]/dt = 0

d[Bd]/dt = 0

d[A]/dt = r[A][B’]-r[B][A]-rk[A]+rk[B’]

d[A’]/dt = r[B][A]-r[B][A’]+rk[A]-rk[A’]

d[B]/dt = r[B][A’]-r[A][B]-rk[B]+rk[A’]

d[B’]/dt = r[A][B]-r[A][B’]+rk[B]-rk[B’]

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run 1 of (Da() | Db())

Q: What does this do?

!a !b

62009-06-05Luca Cardelli 62009-06-05 62009-06-05Luca Cardelli

[Ad],[Bd] are constant;

assume them both = k

Matlab
continuous_sys_generator

dx1/dt=x1*x4-x3*x1-x1+x4, 200.0

dx2/dt=x3*x1-x3*x2+x1-x2, 0.0

dx3/dt=x3*x2-x1*x3-x3+x2, 0.0

dx4/dt=x1*x3-x1*x4+x3-x4, 0.0

r=1.0

k=1.0

ODE predicts dampened

oscillation, while the

stochasic system keeps

oscillating at max level.

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

Stochastic Answer:

robust quasi-oscillation

Deterministic Answer:

dampened oscillation

SPiM

Ad Bd

!a !b

Doping

Exercise 3: x.[y,z] | x.[y,w] Interference

72009-06-05Luca Cardelli 72009-06-05 72009-06-05Luca Cardelli

● Suppose we ‘forgot’ to take a,b fresh, so they are shared by the two

gates. Something goes horribly wrong from these initial conditions:

x | x.[y,z] | x | x.[y,w]

where x.[y,z] = G1b,G1t and x.[y,w] = G2b,G2t

● What goes wrong?

Exercise 3 Solution

Deadlocks! Consider x | x | x.[y,z] | x.[y,w], and suppose we had

taken c fresh (hence different c1,c2), but did not used gate-unique

segments for a,b:

82009-06-05Luca Cardelli 82009-06-05 82009-06-05Luca Cardelli

The G2t trigger can bind to the wrong G1b backbone and get stuck
there, and vice versa, without ever releasing z or w.

This is just a made-up problem, but one must watch out for all kinds
of possible interferences.

Exercise 4: x.y.z | [x,y].w Interference

Consider curried gates without the a,b segments (example below): instead of

releasing xb,a and b,yt segments, they would release xb,yt.

But that is exactly the strand r1 of an [x,y].w gate: the strand that reverts the x

input. This definitely causes an interference between x.y.z and [x,y].w.

Find a situation where the presence (x.y.z as below) or absence (x.y.z as in

previous slide) of this interference causes different outcomes.

Hint: it changes outcome probability.

[David Soloveichik]

92009-06-05Luca Cardelli 92009-06-05 92009-06-05Luca Cardelli

Hint: it changes outcome probability.

Note: the a,b segments prevent the

interference.

Exercise 4 Solution

Consider curried gates without the a,b segment; instead of releasing xb,a and
b,yt segments, they would release xb,yt.

But that is exactly the segment r1 of the [x,y].z gate; the one that reverts the
x input. And x.y.z has a an xb,yt collector that will remove r1, and make x bind
to [x,y].z irreversibly! That’s not supposed to happen (in absence of y).

This interference would not change the logic of the gates, but it would change
their stochastic behavior.

Consider: x | x.y.z | [x,y].w. Without interference, x can bind only reversibly

[David Soloveichik]

102009-06-05Luca Cardelli 102009-06-05 102009-06-05Luca Cardelli

Consider: x | x.y.z | [x,y].w. Without interference, x can bind only reversibly
to [x,y].w, and irreversibly to x.y.z. Hence with high probability this would
produce y.z | [x,y].w, and if later providing y it would produce z with high
probability.

However, with the r1 interference, x would initially bind equally likely to
[x,y].w (and x.y.z), and the xb,yt could be removed by the x.y.z collector.
Hnece x would irreversibly bind equally likely to [x,y].w and x.y.z, and if later
providing y, we would now get z or w with equal probability.

The extra a,b segments break the contiguity of xb,yt, avoiding the
interference.

Exercise 5: Boolean Networks

Boolean Networks to Strand Algebra

112009-06-05Luca Cardelli 112009-06-05 112009-06-05Luca Cardelli

Find an encoding of Boolean networks in Strand Algebra.

It’s enough to show how to encode and AND gate that takes Boolean signals on

a,b wires and produces a Boolean signal on the c wire, and a NOT gate. (Their

combination, a NAND gate, is a universal gate.)

Exercise 5 Solution

Boolean Networks to Strand Algebra

122009-06-05Luca Cardelli 122009-06-05 122009-06-05Luca Cardelli

Represent each wire in the system (e.g. ‘a’) as a pair of signals (‘aT’,’aF’).

Represent each Boolean gate by its truth table, with a join for each truth

table entry. Map initial voltages to initial signals.

NOT gate is similar: (aF.bT)* | (aT.bF)*

Exercise 6: Wet Vending Machine Controller

A coffee vending machine controller, Vend, accepts two coins for coffee;
an ok is given after the first coin and then either a second coin (for
coffee) or an abort (for refund) is accepted:

Vend = ?coin. ![ok,mutex]. (Coffee | Refund)
Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend)
Refund = ?[mutex,abort]. !refund. (Refund | Vend)

Exercise: compile that to the Combinatorial Strand Algebra; if you do it
by the U(P) algorithm you can then heavily hand-optimize it.

132009-06-05Luca Cardelli 132009-06-05 132009-06-05Luca Cardelli

by the U(P) algorithm you can then heavily hand-optimize it.

Each Vend iteration spawns two branches, Coffee and Refund, waiting
for either coin or abort. The branch not taken in the mutual exclusion is
left behind; this could skew the system towards one population of
branches. Therefore, when the Coffee branch is chosen and the system
is reset to Vend, we also spawn another Coffee branch to dynamically
balance the Refund branch that was not chosen; conversely for Refund.

Standard questions can be asked: what happens if somebody inserts
three coins very quickly? Or somebody presses refund twice? Etc.

Exercise 6 Solution

Two hand-optimized solutions:

���� |

([����,����].[��,	
���,�����,���
��])* |

([�����,	
���,����].[������,����,����])* |

([���
��,	
���,�����].[���
��,����,���
��])*

142009-06-05Luca Cardelli 142009-06-05 142009-06-05Luca Cardelli

����� 	
��� ���� ������ ���� ����

���
�� 	
��� ����� ���
�� ���� ���
��

This second solution however removes the ‘branch balancing’ effect:

���� |

([����,����].[��,	
���])* |

([
���,����].[������,����])* |

([
���,�����].[���
��,����])*

The algorithmic solution, with some optimization, should be [Marek Cygan]:

Y | Z | T |

(Y.[Y,Y2] | [Y2, Vend].Y3 | [Y3,coin].[ok,mutex,Coffee,Refund])*

(Z.[Z,Z2] | [Z2, Coffee].Z3 | [Z3,mutex,coin].[coffee,Coffee,Vend])*

(T.[T,T2] | [T2, Refund].T3 | [T3,mutex,abort].[refund,Refund,Vend])*

152009-06-05Luca Cardelli 152009-06-05 152009-06-05Luca Cardelli

