Molecules as Automata (Refresh)

Luca Cardelli

Microsoft Research

Open Lectures for PhD Students in Computer Science Warsaw 2009-05-07

http://lucacardelli.name

Chemical Systems

• Finite Stochastic Reaction Networks

Unary Reaction Hetero Reaction Homeo Reaction d[A]/dt = -r[A]

 $d[A_i]/dt = -r[A_1][A_2]$

 $d[A]/dt = -2r[A]^2$

Exponential Decay Mass Action Law Mass Action Law

(assuming $A \neq B_i \neq A_j$ for all i, j)

Luca Cardelli 2009-05-07 2

Process Algebra

- Reactive systems (living organisms, computer networks, operating systems, ...)
 - Math is based on *entities that react/interact with their environment* (*"processes"*), not on functions from domains to codomains.
- Concurrent
 - Events (reactions/interactions) happen concurrently and asynchronously, not sequentially like in function composition.
- Stochastic
 - Or probabilistic, or nondeterministic, but is never about deterministic system evolution.
- Stateful
 - Each concurrent activity ("process") maintains its own local state, as opposed to stateless functions from inputs to outputs.
- Discrete
 - Evolution through discrete transitions between discrete states, not incremental changes of continuous quantities.
- Kinetics of interaction
 - An "interaction" is anything that moves a system from one state to another.

Interacting Automata

The equivalent process algebra model

Chemical Ground Form (CGF)

E ::= 0 : X=M, E M ::= 0 : π ;P \oplus M P ::= 0 : X P π ::= $\tau_{(r)}$: $?a_{(r)}$: $!a_{(r)}$ CGF ::= E,P	Reagents Molecules Solutions Actions (de Reagents p	lay, input, output) lus Initial Conditions	A stochastic subset of CCS (no values, no restriction)
(To translate chemistry to processes we need a bit more than interacting automata: we may have "+" on the right of \rightarrow , that is we may need " " after π .)		 ⊕ is stochastic choice (vs. + for chemical reactions) 0 is the null solution (P 0 = 0 P = P) and null molecule (M⊕0 = 0⊕M = M) Each X in E is a distinct <i>species</i> Each name a is assigned a fixed rate r: a_(r) 	

Quantitative Process Semantics

