
Computer Science

Lightweight Formal Methods for
the Development of

High-Assurance Network Systems

Assaf Kfoury

with contributions from

Azer Bestavros, Adam Bradley, Andrei Lapets, and Michael Ocean

iBench Initiative
http://www.cs.bu.edu/groups/ibench/
snBench
http://csr.bu.edu/snbench/

http://www.cs.bu.edu/groups/ibench/
http://csr.bu.edu/snbench/

Formal Methods in Network Studies …

1. Compositional Analysis/Specification and its Benefits
(mostly with A. Bestavros)

2. An Application of Model Checking: Safe Composition of
Arbitrary Network Protocols
(mostly with A. Bradley and A. Bestavros)

3. Resource Allocation in Sensor Networks using a Strongly-
Typed Domain-Specific Language
(with M. Ocean and A. Bestavros)

4. The Stable-Paths Problem and the Promise of an
Automatic Lightweight Proof-Assistant
(with K. Donnelly and A. Lapets)

2

Formal Methods in Network Studies …

1. Compositional Analysis/Specification and its Benefits
(mostly with A. Bestavros)

4. The Stable-Paths Problem and the Promise of an
Automatic Lightweight Proof-Assistant
(with K. Donnelly and A. Lapets)

time permitting

3

Notes

Many networking problems naturally lend themselves to graph-theoretic formulations that are far more complex

than classical problems of graph theory. The modeling graphs are typically large, with hundreds or thousands or

more nodes, often placed on a fluctuating grid, e.g., paths between nodes may fail or degrade or reappear,

slowly or abruptly, and parameters regulating flow along paths may be conflicting requirements or defined

differently at different nodes, locally or globally.

We propose a methodology for the specification and analysis of network systems which attempts to support such

uneven features in the large graphs modeling them. The proposed methodology would allow for a

compositional (as opposed to whole-system) analysis which is additionally incremental (distributed in time)

and modular (distributed in space). Towards this goal, we leverage concepts and techniques rooted in

mathematical logic and the formal methods of computer science. Our methodology calls for the definition of a

strongly-typed domain-specific language to specify network configurations and the properties we wish to enforce.

We pay special attention to keeping these concepts and techniques lightweight. i.e., making the parts available

to users “friendly” (relatively simple and easy to use) while the more complicated parts remain hidden “under the

roof”. We illustrate these ideas with a particular application: the specification and analysis of vehicular traffic

networks.

The preceding is only one approach out of many that promote the use of formal methods for a rigorous analysis

of properties of network systems. Such approaches have been introduced by many researchers, including

ourselves, in recent years. We conclude with a brief overview of other formal methodologies we have

developed or refined from others. 4

Preamble

In a survey article more than a decade ago, E.M. Clarke and J.M. Wing

identified 6 “fundamental concepts” that should be investigated further in

“future directions” of research in Formal Methods. Of these six, 5 relate to

our concerns in one way or another, now adapted to networking problems:

1. composition

2. decomposition

3. abstraction

4. reusable models and theories

5. combination of mathematical theories

“Formal Methods: State of the Art and Future Directions”

by E.M. Clarke and J.M. Wing,

ACM Computing Surveys, Vol. 28 No. 4, Dec 1996

Notes on Clarke-Wing survey paper

Essentially paraphrasing Clarke and Wing:

Composition = compose methods, compose specifications, compose models,
compose theories, and compose proofs.
Decomposition = develop efficient methods for decomposing computationally
demanding global property into local properties whose verification is
computationally simple.
Abstraction = real systems are difficult to specify/verify without abstraction.
Identify different kinds of abstractions, tailored for certain kinds of systems or
problem domains. Develop ways to justify them formally, possibly using
automated help.
Reusable models and theories = rather than define models/theories from
scratch each time a new application is tackled, develop formal means to have
reusable and parametrized models/theories.
Combination of mathematical theories = many safety-critical systems
have both digital and analog components. Hybrid systems require reasoning
about both discrete and continuous mathematics.
Data structures and algorithms = develop new ones to handle larger
search spaces and larger systems.

Overview

Central Theme: Compositionality

7

Overview

Central Theme: Compositionality

o not to overcome a state-explosion phenomenon, as in
Model Checking,

o but rather to support partial/varying specification and
distributivity in time/space, closer to compositionality as
attempted in some approaches (mostly embryonic, many
false starts) in the static analysis of programs.

8

Notes on Model Checking

Model Checking is a method for verifying that finite-state systems, such as sequential circuit

designs and communication protocols, satisfy their specifications. Specifications are expressed

as logic formulas, typically in temporal logic, and the system is modeled as a state-transition

graph. Verification means to check whether every state in this graph satisfies the formula

expressing the specification. For all its great successes, MC also has limitations:

(1) Expressing the specification as a temporal logic formula is not always straightforward,
sometimes impossible. What if, for example, the specification is best expressed in the form of
linear, or quadratic, or other algebraic constraints?

(2) Compositionality and other concepts (such as decompositionality, modularization, abstraction)
are introduced in MC precisely in order to overcome its central obstacle: the state-explosion
problem. For example, compositionality is not envisioned as a way to tackle incremental, time-
varying and space-varying, highly modular systems – our concern!

(3) MC’s greatest successes are in verifying circuit designs and communication protocols. The
verification of other kinds of software and hardware systems is not so easily tackled using MC.
Take for example the verification of programs, much less their specification/design, which have
turned out to be much harder using the tools of MC.

9

Overview

Central Theme: Compositionality

Guiding Questions:
 what is compositional analysis/specification?

 what is it good for?

 how to formulate and implement it?

 any killer app?

10

Overview

Central Theme: Compositionality

Guiding Questions:
 what is compositional analysis/specification?

 what is it good for?

 how to formulate and implement it?

 any killer app?

Thesis: lightweight formal methods can help

Why “lightweight”? The logical formalisms that are required

to use, analyze, and specify systems are kept to a bare minimum,

while more complicated parts of these formalisms remain hidden

“under the hood”
11

What is CA/S? Preliminary schematic answer …

modules

A one-module system

A ⊛ B two-module system

A ⊛ B ⊛ C three-module system

A ⊛〈 〉⊛ C three-module system, one missing ?

A ⊛ D ⊛ C three-module system

… …

12

What is CA/S? Preliminary schematic answer …

modules whole-system analysis

A 〚A〛

A ⊛ B 〚A ⊛ B〛

A ⊛ B ⊛ C 〚A ⊛ B ⊛ C〛

A ⊛〈 〉⊛ C 〚A ⊛〈 〉⊛ C〛?

A ⊛ D ⊛ C 〚A ⊛ D ⊛ C〛

… …

13

What is CA/S? Preliminary schematic answer …

modules whole-system analysis compositional analysis

A 〚A〛 = 〚A〛

A ⊛ B 〚A ⊛ B〛 = 〚A〛⋆〚B〛

A ⊛ B ⊛ C 〚A ⊛ B ⊛ C〛 = 〚A〛⋆〚B〛⋆〚C〛

A ⊛〈 〉⊛ C 〚A ⊛〈 〉⊛ C〛? = 〚A〛⋆〚〈 〉〛⋆〚C〛

A ⊛ D ⊛ C 〚A ⊛ D ⊛ C〛 = 〚A〛⋆〚D〛⋆〚C〛

… … …

what about a system with 1000’s or more components?

14

What is CA/S good for? Preliminary answer …

 It’s good to know that a network agent (e.g., router,
HTTP proxy, …) doesn’t crash, when it’s
disconnected and idle

 It’s better to know it won’t crash when connected to
(composed with) another agent

 It’s even better to know it won’t crash when
composed with a whole bunch of other agents in
some arbitrary configuration!

15

What kind of systems?

Broadly speaking:

 Artifacts – software or hardware or combination

But also:

 Large – 100’s, or 1000’s, or ... components

 Incremental – distributed in time

 Modular – distributed in space

 space/time-varying, separately designed components,

prone to fail abruptly, to decay, to delay, to grow, …

16

Interlude: Scalability

 We build scalable systems –

systems that are easily expanded/upgraded on demand

 Example: a scalable computer network –

one that maintains its performance as it expands

 Different dimensions of scalability:

 load scalability –

system easily modified to handle heavier loads

 geographic scalability –

system easily expanded to a more distributed geographic pattern

 administrative scalability –

system easily supports an increasing number of organizations

 etc.

17

Analysis or specification?

Broadly speaking:

Analysis is reactive, post system design, for

 Detecting malfunctions

 Certifying absence of malfunctions

Specification is preventive, pre/during design, for

 Enforcing desirable guarantees

 Avoiding malfunctions from faulty design

18

An Application …

 Traffic Network

o air traffic

o railroad traffic

o internet traffic

o telecommunication traffic

o vehicular traffic

o ant traffic

o etc.

 not yet a killer app?
19

Footnote about Ant Traffic

“army ants” in Central America (Eciton burchelli) are the

pinnacle of traffic organization in the actual world. No one’s
time is more valuable than anyone else’s, no one is preventing
anyone else from passing, and no one is making anyone else
wait. In spite of very complex network patterns used by half a
million or more workers, they never get into traffic jams.

“Self-organized lane formation and optimized traffic flow in

army ants”

by I.D. Couzin and N.R.Franks
Proceedings of the Royal Society of London, Series B270, pp
139-146, 2003.

20

Vehicular Traffic

 3 basic traffic parameters along a road segment:

o velocity v

o density (or occupancy or concentration) k

o volume (or traffic flow) q

 Fundamental relation of traffic flow:

q = v ⋅ k

v distance traveled per unit time, e.g. km/hour

k number of vehicles per unit distance, e.g. n/km

q number of vehicles per unit time, e.g. n/hour
21

Vehicular Traffic

Traffic volume restricted to range of safe (or optimal) values:

q = v ⋅ k

q = v ⋅ k

q = v ⋅ k

Actual volume of safe/optimal traffic falls in range:

if q < q < q then q ≠ v · k

and q ≠ v · k

Similar safety/optimality conditions on velocity and density.

max max max

min minmin

ave ave ave

min max min min

max max

22

Vehicular Traffic

Every road is specified by a triple v / k / q or v / [k ,k] / q or

[v ,v] / [k ,k] / q or … etc., each entry in triple prescribing a

safe bound (min or max) or a safe interval.

v / k / q v'/ k'/ q'

1 1

1

2

2

2

23

Vehicular Traffic

 Additional Traffic Parameters:

o size of cluster (of consecutive vehicles) m

o size of gap (distance between two clusters) n

 Other Relation of Traffic Flow:

k = [(∑ m) ∕ (∑ m)+(∑ n)] · k

k = maximum number of vehicles that fit

“bumper-to-bumper” in one unit distance

In actual practice, k is never reached …

jam

jam

jam

24

 the flow-density (q,k) curve – parabolic rather

than linear in k (when v constant):

In Actual Practice …

Courtesy of Tom Matthew
25

 the flow-density (q,k) curve

o the relationship is normally represented by a
parabolic curve

o at jam density, flow will be zero because the
vehicles are not moving.

o there will be some density between zero density
and jam density, when the flow is maximum.

For this presentation: Assume the flow-density

curve is linear in k rather than parabolic (when v is

constant) up to k .

In Actual Practice …

max

26

Notes

A good deal of work in “traffic engineering”, “theory of traffic flow”, and related studies,

involves traffic modeling and computer simulation. Simulation models are designed to mimic the

behavior of traffic networks in the real world, much of it typically based on data collected in

observation of actual vehicular traffic. They are used for many goals:

1. Evaluate signal control strategies for an existing geometric pattern of roads.

2. Quantify traffic performance in response to different geometric design, before

commitment of resources to construction.

3. Train personnel in charge of traffic management and road maintenance (state police, road

repair crews, etc.)

4. Safety analysis. Simulation models are used to “recreate” accident scenarios in the search

to build safer vehicles and roadways.

5. etc.

What stands out in all these studies is the extent to which vehicular traffic is considered an

objective reality, observed and measured from the outside, much like a fluid flowing into different

channels or water into a pattern of streams and rivers. Many of these studies are inspired by fluid

dynamics, not by problems in reactive systems or sense-and-respond systems. Some of these

studies use fairly involved continuous mathematics, requiring a good deal of mathematical

background in differential equations, analysis, ergodic theory, and related areas.

Our standpoint is different. For one thing, the mathematics we use are mostly discrete, with a

good deal of formalisms and conventions drawn from mathematical logic (“formal methods” in CS).

A Small Traffic Network …

28

A Tiny Traffic Network …

29

Different desirable objectives

 fairness: no traffic is permanently blocked

 deadlock-free: no two competing traffics in which
neither will yield for the other

 flow/mass conservation: average entering flow is
equal to average exiting flow

Something more complicated:

 gridlock-free: no grid of competing traffics ultimately
resulting in the blocking of all pathways

Something more complicated still:

 minimize changes in kinetic energy: because less
braking and accelerating means less fuel consumption

kinetic energy = (1/2) ⋅ k ⋅ v 2
30

Difficulties of whole-system analysis …

We illustrate the difficulties with a small example of a

traffic network where each node is one of 3 junctions:

o two-way fork

o two-way merge

o two-way crossing

Invariant property to be enforced across network:

o absence of traffic backups at every junction

Write constraints for the 3 junction types accordingly,

i.e., to ensure there is no traffic backups in the

immediate roads entering the junction.

31

Traffic network nodes

Two-Way Fork

To avoid traffic backups:

1 linear constraint

2 nonlinear constraints

32

Traffic network nodes

Two-Way Merge

To avoid traffic backups:

1 linear constraint

2 nonlinear constraints

33

Traffic network nodes

Two-Way Crossing

To avoid traffic backups:

2 linear constraints

2 nonlinear constraints

(assume k = 100)
max

34

Traffic network nodes

Non-Mixing

Two-Way Crossing

1 linear constraint

to avoid backups

(assume k = 100) max

35

Traffic network nodes

 Assume

Uniform Velocity

throughout network

 To avoid backups:

only linear constraints

o 1 for two-way fork

o 1 for two-way merge

o 2 for two-way crossing

36

Example: Tiny Traffic Network …

Constraints

safe local intervals/types:

no backups:

37

Example: Tiny Traffic Network …

Goal and Guidelines. Each traffic junction computes
least restrictive (velocity interval) (density interval)
on each of its entering/exiting links
without violating:
 the given safe local intervals
 the constraints for no-backups

Possible Limitations.
 Each traffic junction uses only
information from immediate neighbors
 Incomplete global information
 Only partial or no global traffic administrator

More Objective Functions. To be added later, different for different
small groups of contiguous traffic junctions (or “modules”) 38

39

(1) At an entering road (input) the “best” type is the least restrictive to incoming traffic
flow, i.e., the most desirable velocity intervals and density intervals at entering roads
are the widest possible ones.

(2) At an exiting road (output) the “best” type is the most permissive to outgoing flow,
i.e., the most desirable velocity intervals and density intervals at entering roads are
again the widest possible ones.

So, the strongest possible specification for a traffic network tries to maximize velocity
intervals and density intervals at both entering and exiting roads. This is a counterpoint
to what we usually set up as the strongest specification for a computer program: the
weakest or least restrictive type at the input, and the strongest or most precise type at
the output.

We will infer types starting form an exiting link or an entering link. And just as with a
program, our game plan is the following:

Starting at an exit link and a type for this link, find the “best” preconditions , i.e. , the
least restrictive types at entry links.

Starting at an entry link and a type for this link, find the “best” postconditions, i.e.,
also the least restrictive types at exit links.

If we had global information about the network, i.e., simultaneous access to (1) all the velocity
variables, (2) all the density variables, (3) all the given local safe intervals, and (4) all the constraints
for no-backups everywhere, then things would be simpler – just conceptually, because we would
still have to cope with complexity issues that would make computing solutions infeasible in practice.

Suppose we give priority to link 5, i.e., we want the least stringent (velocity,density) requirements at
link 5 and then compute the least stringent (v,d) requirements for the other links accordingly. The
corresponding (velocity,density) variables at link 5 are v_5 and k_5, and we want to maximize
the velocity interval and density interval. We therefore have 4 objective functions:

Minimize (k_5^min – 40) with 40 <= k_5^min <= 70
Minimize (70 – k_5^max) with 40 <= k_5^max <= 70
Minimize (v_5^min – 30) with 30 <= v_5^min <= 60
Minimize (60 – v_5^max) with 30 <= v_5^max <= 60

where k_5^min, k_5^max, v_5^min, v_5^max are new variables corresponding to min and max
of the density and velocity on link 5, which we can solve for according to established techniques
of linear programming, quadratic programming, quadratically-constrained quadratic programming,
and other similar optimization methods. But all of these methods quickly run into complexity
obstacles.

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [_,_] / [40,70]

[_,_] / [_,_]

[_,_] / [_,_]

[_,_] / [_,_]

[_,_] / [_,_]

start here,

if given priority

41

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [_,_] / [40,70]

[_,_] / [20,35]

[_,_] / [20,35]

[_,_] / [_,_]

[_,_] / [_,_]

42

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [_,_] / [40,70]

[_,_] / [20,35]

[_,_] / [20,35]

[_,_] / [_,_]

[_,_] / [_,_]

50

50
–

–

recorded constraints:

43

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [_,_] / [40,70]

[_,_] / [20,50]

[_,_] / [20,50]

[_,_] / [40,70]

[_,_] / [_,_]

recorded constraints:

44

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [_,_] / [40,70]

[_,_] / [20,50]

[_,_] / [20,50]

[_,_] / [40,70]

[_,_] / [40,50]

recorded constraints:

45

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [30,60] / [40,70]

[_,_] / [20,50]

[_,_] / [20,50]

[_,_] / [40,70]

[_,_] / [40,50]

recorded constraints:

46

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [30,60] / [40,70]

[20,76] / [20,50]

[20,76] / [20,50]

[_,_] / [40,70]

[_,_] / [40,50]

recorded constraints:

47

Manipulating constraints …

48

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [30,60] / [40,70]

[20,76] / [20,50]

[20,76] / [20,50]

[20,60] / [40,70]

[_,_] / [40,50]

recorded constraints:

49

Tiny Traffic Network …

Inferring Safe Intervals/Types

safe local intervals/types:

no backups: [30,60] / [40,70]

[20,76] / [20,50]

[20,76] / [20,50]

[20,60] / [40,70]

[30,60] / [40,50]

recorded constraints:

50

Tiny Traffic Network, specified for no-backups

 All inferred intervals are subintervals/subtypes of
initially given local intervals.

[30,60] / [40,70]

[20,76] / [20,50]

[20,76] / [20,50]

[20,60] / [40,70]

[30,60] / [40,50]

 Restricting in-flows and to inferred types
and , respectively, will guarantee no traffic backups.

[20,60] / [40,70]

[30,60] / [40,50]

safe local intervals/types:

recorded constraints:

51

Tiny Traffic Network, another specification for no-backups

 All inferred intervals are subintervals/subtypes of
initially given local intervals.

[30,60] / [40,50]

[20,86] / [20,30]

[20,86] / [20,30]

[20,60] / [40,50]

[30,60] / [40,60]

 Restricting in-flows and to inferred types
and , respectively, will guarantee no traffic backups.

[20,60] / [40,50]

[30,60] / [40,60]

safe local intervals/types:

recorded constraints:

52

again here,

start at link 5

Tiny Traffic Network, as a module based on 1st specification

subtyping relationships:

We can ignore the recorded constraint because it
regulates traffic densities inside the encapsulation/module.

53

Safe Composition of Several Modules (based on spec 1)

Guaranteed no-backups,
if in-flows satisfy input types

, , and .
54

Tiny Traffic Network, as a module based on 2nd specification

subtyping relationships:

We can ignore the recorded constraint because it
regulates traffic densities inside the encapsulation/module.

55

Another Safe Composition of Modules (based on spec 2)

Guaranteed no-backups,
if in-flows satisfy input types

, , and .

56

More Safe Composition of Several Modules …

Guaranteed no-backups,
if in-flows satisfy input types

, , , and .

Note: and .
57

Tiny Traffic Network + Objective Functions

Constraints

safe local intervals/types:

no backups:

Several Objectives (among others)

A. maximize sum of in-flows:

B. minimize in-flow diff:

minimize out-flow diff:

C. minimize change in kinetic energies:

new

58

Tiny Traffic Network + Objective Functions

Two approaches to solving objectives A, B, and C,

without violating constraints for no-backups:

1. Find solution or solutions, if any, ignoring inferred types for no-
backups.

2. Find solution or solutions, if any, respecting inferred types for
no-backups.

 Approach 1 will return optimal solutions, at the price of higher
complexity, forcing us to revisit all the constraints for no-
backups. Or it is impossible because of unavailable global
communication.

 Approach 2 will return less-than-optimal solutions, but with the
benefit of not revisiting the original constraints for no-backups
(except for the recorded ones).

Objectives A, B, and C can be considered jointly (more difficult to

solve) or separately (easier to solve).
59

Tiny Traffic Network + Objective A

60·70 60·70

60·70 60·70

60·35

60·35

60·65

60·65

80·35

40·35

Only difference between solutions
is in the internal velocities (in red)

Among all solutions for objective A, top
solution is only solution for objective C

Solutions for objective A, ignoring inferred types for no-backups:

60

Tiny Traffic Network + Objective A

60·70 60·70

60·70 60·70

60·35

60·35

60·65

60·50

76·35

44·35

Only difference between solutions
is in the internal velocities (in red)

Among all solutions for objective A respecting inferred types for
no-backups, top solution is only solution for objective C

Solutions for objective A, respecting inferred types for no-backups
(in the 1-st specification):

61

Tiny Traffic Network + Objective B

Maximal-flow (integer) solutions for objective B, ignoring
inferred types for no-backups:

60·66 60·66

60·66 60·66

60·33

60·33

60·66

60·66

80·33

40·33

Only difference between solutions
is in the internal velocities (in red)

Among all solutions for objective B, top
solution is only solution for objective C

62

Tiny Traffic Network + Objective B

Maximal-flow (integer) solutions for objective B, respecting
inferred types for no-backups (in the 1-st specification):

60·50 60·50

60·50 60·50

60·25

60·25

60·50

60·50

76·25

44·25

Only difference between solutions
is in the internal velocities (in red)

Among all solutions for objective B respecting inferred types for
no-backups, top solution is only solution for objective C

63

Is the Composition Safe?

If traffic flows in two top left modules
satisfy objective A (without violating
constraints for no-backups), does traffic
flows for entire grid also satisfy objective A
(without violating constraints for no-backups)?

Objective A Satisfied in Two Top Left Modules

64

Is the Composition Safe?

If traffic flows in each module satisfies
objective B, does traffic flows in entire
grid satisfies objective B also?

Objective B Satisfied in Every Module

65

Is the Composition Safe?

Which of the three objectives are satisfied
globally? Are the constraints for no-backups
satisfied?

Mixing Objectives A, B, and C, in Different Modules

66

Complexity Considerations

Cost of whole-system analysis, ignoring inferred types
for no-backups, and finding solutions using:

o linear programming

o integer linear programming

o linearly constrained quadratic programming

o quadratically constrained quadratic programming

o worse

67

Questions So Far?

68

Formal Methods in Networking Studies …

1. Compositional Analysis/Specification and its Benefits
(mostly with A. Bestavros)

4. The Stable-Paths Problem and the Promise of an
Automatic Lightweight Proof-Assistant
(with K. Donnelly and A. Lapets)

time permitting

69

Computer Science

Lightweight Formal Methods for
the Development of

High-Assurance Network Systems

Assaf Kfoury

with contributions from

Azer Bestavros, Adam Bradley, Andrei Lapets, and Michael Ocean

iBench Initiative
http://www.cs.bu.edu/groups/ibench/
snBench
http://csr.bu.edu/snbench/

http://www.cs.bu.edu/groups/ibench/
http://csr.bu.edu/snbench/

