
Gossiping in Distributed Systems
Foundations

Maarten van Steen

2 of 41

Introduction

Observation: We continue to face hard scalability problems in
distributed systems:

• Systems continue to grow in size:

– There are many participating nodes
– Membership changes: there is no equilibrium

• Systems continue to expand geographically:

– Nodes lie farther apart, leading to an increase in latency
– Diameter (expressed in time) increases
– Nodes fall under different administrative domains

Needed: General-purpose, decentralized solutions
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Gossiping as a partial solution

Principle: spread (meta-)information to allow for local-only
decision making:

• Nodes exchange data with neighbors:

– data is efficiently disseminated
– set of neighbors need not be fixed

• Nodes rely only on incomplete information

• Exchanged data can be anything: from actual data to
references to nodes to programs

• There is no centralized control or management
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Gossip-based applications

• Raw information dissemination

• Data aggregation

• Topology construction for overlay networks

• Semantic clustering of nodes

• Realizing storage facilities in ad hoc networks

Note: Gossiping is not a universal solution
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Some observations

• There’s a lot of emergent behavior (i.e., behavior we don’t
understand).

• Theory is (partially) lacking: models are often difficult to
validate.

• There are many practical issues still to solve:

– Adaptiveness (too many design-time parameters)
– Security (attacking a gossip-based system is easy)
– Competitive alternative single-point solutions
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Lectures: overview

• Lecture 1: Foundations

– Basics
– Peer selection
– Theory versus practice

• Lecture 2: Applications

– Data aggregation
– Structure management:
∗ topology management
∗ file searching

– Storage in wireless networks
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Gossiping: principle operation

Anti-entropy: Each replica regularly chooses another replica at
random, and exchanges state differences, leading to identical
states at both afterwards.

Gossiping: A replica which has just been updated (i.e., has
been contaminated), tells a number of other replicas about its
update (contaminating them as well).
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System Model

• Consider N nodes, each storing a number of objects

• Each object O has a primary node at which updates for O are
always initiated.

• An update of object O at node S is always timestamped; the
value of O at S is denoted val(O,S)

• T (O,S) is the timestamp of the value of object O at node S
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Anti-Entropy

Basic issue: When a node S contacts another node S∗ to
exchange state information, three different strategies can be
followed:

Push: T (O,S∗) < T (O,S)⇒ val(O,S∗)← val(O,S)
Pull: T (O,S∗) > T (O,S)⇒ val(O,S)← val(O,S∗)
Push-Pull: S and S∗ exchange their updates

Observation: if each node periodically randomly chooses another
node for exchanging updates, an update is propagated in
O(log(N)) cycles.
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Anti-Entropy: Analysis

Consider a single source, propagating its update. Let pi be the
probability that a node has not received the update after the i-th
cycle.

• With pull, pi+1 = (pi)2: the node was not updated during the i-th cycle and
should contact another ignorant node during the next cycle.

• With push, pi+1 = pi(1− 1
N)N(1−pi) ≈ pie−1 (for small pi and large N): the node

was ignorant during the i-th cycle and no updated node chooses to contact
it during the next cycle.
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Anti-entropy: some figures

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  2  4  6  8  10  12  14

P
ro

ba
bi

lit
y

Cycle

"pull100.csv"
"push100.csv"

"pull20.csv"
"push20.csv"

11 of 41

12 of 41

Pure gossiping: basic model

1. A node P with an update (P is infected) contacts other node Q.

2. If Q already knows the update (Q is not susceptible), P stops
with probability 1/k (P is effectively removed).

3. Otherwise, P contacts another (randomly selected) node.
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Gossiping: basic math

Notation: s is fraction of nodes not yet updated, i is fraction of
active (updated) nodes, r is fraction of passive (updated) nodes:
s+ i+ r = 1. From epidemics:

(1) ds/dt = −si
(2) di/dt = si− 1

k(1− s)i

(3) di/ds = −k+1
k + 1

ks

(4) i(s) = −k+1
k s+ 1

k lns+C
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Gossiping: basic math

With i(1) = 0, we obtain C = k+1
k , and thus

i(s) =
k +1

k
(1− s)+

1
k

lns

left to right
k = 10,9, . . . ,1
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Gossiping: the unaffected

i(s) = 0 implies no more activity⇒ s = e−(k+1)(1−s)
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Consider 10,000 nodes
k s Ns

1 0.203188 2032
2 0.059520 595
3 0.019827 198
4 0.006977 70
5 0.002516 25
6 0.000918 9
7 0.000336 3

Observation: all nodes need to be updated⇒ pure gossiping is
not enough.
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Getting a random peer

Important: Gossip-based systems rely on the following
important assumption:

A node P can select another peer Q drawn uniform at
random from the current set of nodes.

Observation: This seems to imply that every node as an
accurate view on the complete membership!
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Getting a random peer

Question: What does it take to build a decent peer-sampling
service?

• Nodes are provided a peer drawn uniform at random from the complete set
of nodes

• Sampling is accurate, reflecting current set of nodes

• Draws by different nodes are independent

• The service should be scalable

Key issue: The service can be built entirely with epidemic-based
techniques.
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Framework - overview

Active thread Passive thread
selectPeer(&Q);
selectToSend(&bufs);
sendTo(Q, bufs);

receiveFrom(Q, &bufr);
selectToKeep(p view, bufr);

receiveFromAny(&P, &bufr);
selectToSend(&bufs);
sendTo(P, bufs);
selectToKeep(p view, bufr);

selectPeer Randomly select a neighbor
selectToSend Select some entries from local list
selectToKeep Add received entries to local list. Remove repeated

items.

Simple? Not quite when getting into some details...
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Framework - for real

• N nodes, each having an address

• Every node has a partial view: a local list of c node descriptors

• Node descriptor = 〈 address, age 〉 pair

• Operations on partial view:

selectPeer() return an item
permute() randomly shuffle items
increaseAge() forall items add 1 to age
append(...) append a number of items
removeDuplicates() remove duplicates (on same address), keep youngest
removeOldItems(n) remove n descriptors with highest age
removeHead(n) remove n first descriptors
removeRandom(n) remove n random descriptors
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Active thread (one per node)

do forever
wait(T time units) // T is called the cycle length
p← view.selectPeer() // Sample a live peer from the current view
if push then // Take initiative in exchanging partial views

buffer← (〈 MyAddress,0 〉) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

else // empty view to trigger response
send (null) to p

if pull then // Pick up the response from your peer
receive bufferp from p
view.select(c,H,S,bufferp) // Core of framework – to be explained

view.increaseAge()
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Passive thread (one per node)

do forever
receive bufferp from p // Wait for any initiated exchange
if pull then // Executed if you’re supposed to react to initiatives

buffer← (〈 MyAddress,0 〉) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

view.select(c,H,S,bufferp) // Core of framework – to be explained
view.increaseAge()
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View selection

Parameters:

c: length of partial view
H: number of items moved to end of list (healing)
S: number of items that are swapped with a peer
bufferp: received list from peer

method view.select( c, H, S, bufferp )
view.append(bufferp) // expand the current view
view.removeDuplicates() // Remove by duplicate address, keeping youngest
view.removeOldItems( min(H,view.size-c) ) // Drop oldest, but keep c items
view.removeHead( min(S,view.size-c) ) // Drop the ones you sent to peer
view.removeAtRandom(view.size-c) // Keep c items (if still necessary)
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Design space – peer selection

selectPeer() returns a live peer from the current view. Essentially,
there are three possibilities:

head: pick the address of the youngest descriptor (i.e., with low age) – bad
choice, since this is the neighbor the node most recently communicated
with⇒ offers little opportunities for selecting unknown nodes (confirmed by
experiments)

rand: pick the address of a randomly selected descriptor

tail: pick the address of the oldest descriptor (i.e., with high age)
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Design space – view propagation

push: Node sends descriptors to selected peer

pull: Node only pulls in descriptors from selected peer

pushpull: Node and selected peer exchange descriptors

Note: pulling alone is pretty bad: a node has no opportunity to
insert information on itself. Loss of all incoming connections will
throw a node out of the network (may actually happen).
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Design space – view selection

Note: Critical parameters are H and S in method
select( c, H, S, buffer ). Assume c is even.

• [H > c/2]≡ [H = c/2], as minimum view size is always c
• Likewise, [S > c/2−H]≡ [S = c/2−H]
• Do random removal (last step) only if S < c/2−H
• Conclusion: consider only 0≤ H ≤ c/2 and 0≤ S≤ c/2−H

blind: remove(H = 0,S = 0) — select blindly a random subset

healer: remove(H = c/2,S = 0) — select freshest items

swapper: remove(H = 0,S = c/2) — min. loss of descriptors
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Local evaluations (1/2)

Method: Organize a network of N = 2n +1 nodes and let node N
sample the network, each time providing an n-bit sample.

• With n = 10, node N generates 4 samples per cycle, and constructs a 32-bit
integer.

• The 32-bit integers together form a stream of numbers, which should be
random if peer sampling is random.

• Series is tested by the “diehard battery of randomness tests.”
(see www.stat.fsu.edu/pub/diehard)

• Examined blind,healer,swapper, fixing to tail and pushpull
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Local evaluations (2/2)

Results: All tests could be passed (!)

One exception: construction of binary matrices produced too many matrices
with a high rank. This failure is caused by our tendency to maximize diversity.

“Fix”: by considering only every 8th sample in the generated series, all tests
are passed.

Conclusion: it is difficult to observe nonrandom local behavior.
The functional properties of peer sampling are barely affected by
the choice of implementation.

Applications will often not see the difference
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Global randomness

Issue: Deciding on global randomness is a bit tricky⇒ focus on
structural properties by comparing to random graph (= partial view
consists of c uniform randomly chosen peers).

Indegree distribution: has a serious effect on load balancing: hot spots,
bottlenecks, but also on the spreading of information.

Fault tolerance: to what extent can the service withstand catastrophic
failures and high churn?

Note: concentrate on N = 10,000 and c = 30. Results are based
on simulations and emulations.
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Convergence behavior

Consider three starting situations:

Growing: Start with one node X . Before starting a next cycle, add 500 nodes.
Each new node knows only about X .

Lattice: Organize all nodes in a ring. Add descriptors of nearest nodes in the
ring.

Random: Every view is filled with a uniform random sample of all nodes.

Observation: Pure pushing converges poorly and often leads to
partitioned overlays in growing scenario.
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Maximal indegree growing scenario
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Note: From now on consider only pushpull protocols
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Converged indegree distribution

 0

 2

 4

 6

 8

 10

 0  20  40  60  80  100  120  140  160

pr
op

or
tio

n 
of

 n
od

es
 (

%
)

indegree

[rand] tail, swapper
[rand] tail, blind

[rand] tail, healer
random graph

31 of 41

32 of 41

Fluctuation of degree distribution (1/2)

Observation: it turns out that the in-degree for each node
changes over time. The question is how quickly.

Let d1, . . . ,dK denote in-degree for a fixed node for K consecutive
cycles, and d̄ the average in-degree. Let

rk =
∑

K−k
j=1 (d j− d̄)(d j+k− d̄)

∑
K
j=1(d j− d̄)2

be the correlation between pairs of in-degree separated by k
cycles.
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Fluctuation of degree distribution (2/2)
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Clustering coefficient (1/2)

Note: Consider the undirected graph by dropping the direction.

Clustering coefficient indicates to what extent the neighbors of
a node X are each other’s neighbors. Let ΓX denote the graph
induced by the neighbors of node X .

γ(X) =
|E(ΓX)|(|V (ΓX)|

2

)
For a graph: take the average over all nodes.
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Clustering coefficient (2/2)
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Catastrophic failure
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Scenario: After 300 cycles, remove large fraction of nodes.
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Dead links (1/2)
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Dead links (2/2)
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Handling churn: Gnutella traces
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Conclusions

• Push-pull gossip protocols perform better than only push or
pull

• Discarding old references is good for fault tolerance (but may
also be “too” good)

• Swapping references is good for maintaining well-balanced
graphs (in-degree ≈ out-degree)

• Differences between protocols mainly affect the nonfunctional
properties of applications
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