
Gossiping in Distributed Systems
Foundations

Maarten van Steen

2 of 41

Introduction

Observation: We continue to face hard scalability problems in
distributed systems:

• Systems continue to grow in size:

– There are many participating nodes
– Membership changes: there is no equilibrium

• Systems continue to expand geographically:

– Nodes lie farther apart, leading to an increase in latency
– Diameter (expressed in time) increases
– Nodes fall under different administrative domains

Needed: General-purpose, decentralized solutions

2 of 41

3 of 41

Gossiping as a partial solution

Principle: spread (meta-)information to allow for local-only
decision making:

• Nodes exchange data with neighbors:

– data is efficiently disseminated
– set of neighbors need not be fixed

• Nodes rely only on incomplete information

• Exchanged data can be anything: from actual data to
references to nodes to programs

• There is no centralized control or management

3 of 41

4 of 41

Gossip-based applications

• Raw information dissemination

• Data aggregation

• Topology construction for overlay networks

• Semantic clustering of nodes

• Realizing storage facilities in ad hoc networks

Note: Gossiping is not a universal solution

4 of 41

5 of 41

Some observations

• There’s a lot of emergent behavior (i.e., behavior we don’t
understand).

• Theory is (partially) lacking: models are often difficult to
validate.

• There are many practical issues still to solve:

– Adaptiveness (too many design-time parameters)
– Security (attacking a gossip-based system is easy)
– Competitive alternative single-point solutions

5 of 41

6 of 41

Lectures: overview

• Lecture 1: Foundations

– Basics
– Peer selection
– Theory versus practice

• Lecture 2: Applications

– Data aggregation
– Structure management:
∗ topology management
∗ file searching

– Storage in wireless networks

6 of 41

7 of 41

Gossiping: principle operation

Anti-entropy: Each replica regularly chooses another replica at
random, and exchanges state differences, leading to identical
states at both afterwards.

Gossiping: A replica which has just been updated (i.e., has
been contaminated), tells a number of other replicas about its
update (contaminating them as well).

7 of 41

8 of 41

System Model

• Consider N nodes, each storing a number of objects

• Each object O has a primary node at which updates for O are
always initiated.

• An update of object O at node S is always timestamped; the
value of O at S is denoted val(O,S)

• T (O,S) is the timestamp of the value of object O at node S

8 of 41

9 of 41

Anti-Entropy

Basic issue: When a node S contacts another node S∗ to
exchange state information, three different strategies can be
followed:

Push: T (O,S∗) < T (O,S)⇒ val(O,S∗)← val(O,S)
Pull: T (O,S∗) > T (O,S)⇒ val(O,S)← val(O,S∗)
Push-Pull: S and S∗ exchange their updates

Observation: if each node periodically randomly chooses another
node for exchanging updates, an update is propagated in
O(log(N)) cycles.

9 of 41

10 of 41

Anti-Entropy: Analysis

Consider a single source, propagating its update. Let pi be the
probability that a node has not received the update after the i-th
cycle.

• With pull, pi+1 = (pi)2: the node was not updated during the i-th cycle and
should contact another ignorant node during the next cycle.

• With push, pi+1 = pi(1− 1
N)N(1−pi) ≈ pie−1 (for small pi and large N): the node

was ignorant during the i-th cycle and no updated node chooses to contact
it during the next cycle.

10 of 41

11 of 41

Anti-entropy: some figures

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

Cycle

"pull100.csv"
"push100.csv"

"pull20.csv"
"push20.csv"

11 of 41

12 of 41

Pure gossiping: basic model

1. A node P with an update (P is infected) contacts other node Q.

2. If Q already knows the update (Q is not susceptible), P stops
with probability 1/k (P is effectively removed).

3. Otherwise, P contacts another (randomly selected) node.

12 of 41

13 of 41

Gossiping: basic math

Notation: s is fraction of nodes not yet updated, i is fraction of
active (updated) nodes, r is fraction of passive (updated) nodes:
s+ i+ r = 1. From epidemics:

(1) ds/dt = −si
(2) di/dt = si− 1

k(1− s)i

(3) di/ds = −k+1
k + 1

ks

(4) i(s) = −k+1
k s+ 1

k lns+C

13 of 41

14 of 41

Gossiping: basic math

With i(1) = 0, we obtain C = k+1
k , and thus

i(s) =
k +1

k
(1− s)+

1
k

lns

left to right
k = 10,9, . . . ,1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05 0.0001 0.001 0.01 0.1 1

14 of 41

15 of 41

Gossiping: the unaffected

i(s) = 0 implies no more activity⇒ s = e−(k+1)(1−s)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9

Consider 10,000 nodes
k s Ns

1 0.203188 2032
2 0.059520 595
3 0.019827 198
4 0.006977 70
5 0.002516 25
6 0.000918 9
7 0.000336 3

Observation: all nodes need to be updated⇒ pure gossiping is
not enough.

15 of 41

16 of 41

Getting a random peer

Important: Gossip-based systems rely on the following
important assumption:

A node P can select another peer Q drawn uniform at
random from the current set of nodes.

Observation: This seems to imply that every node as an
accurate view on the complete membership!

16 of 41

17 of 41

Getting a random peer

Question: What does it take to build a decent peer-sampling
service?

• Nodes are provided a peer drawn uniform at random from the complete set
of nodes

• Sampling is accurate, reflecting current set of nodes

• Draws by different nodes are independent

• The service should be scalable

Key issue: The service can be built entirely with epidemic-based
techniques.

17 of 41

18 of 41

Framework - overview

Active thread Passive thread
selectPeer(&Q);
selectToSend(&bufs);
sendTo(Q, bufs);

receiveFrom(Q, &bufr);
selectToKeep(p view, bufr);

receiveFromAny(&P, &bufr);
selectToSend(&bufs);
sendTo(P, bufs);
selectToKeep(p view, bufr);

selectPeer Randomly select a neighbor
selectToSend Select some entries from local list
selectToKeep Add received entries to local list. Remove repeated

items.

Simple? Not quite when getting into some details...

18 of 41

19 of 41

Framework - for real

• N nodes, each having an address

• Every node has a partial view: a local list of c node descriptors

• Node descriptor = 〈 address, age 〉 pair

• Operations on partial view:

selectPeer() return an item
permute() randomly shuffle items
increaseAge() forall items add 1 to age
append(...) append a number of items
removeDuplicates() remove duplicates (on same address), keep youngest
removeOldItems(n) remove n descriptors with highest age
removeHead(n) remove n first descriptors
removeRandom(n) remove n random descriptors

19 of 41

20 of 41

Active thread (one per node)

do forever
wait(T time units) // T is called the cycle length
p← view.selectPeer() // Sample a live peer from the current view
if push then // Take initiative in exchanging partial views

buffer← (〈 MyAddress,0 〉) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

else // empty view to trigger response
send (null) to p

if pull then // Pick up the response from your peer
receive bufferp from p
view.select(c,H,S,bufferp) // Core of framework – to be explained

view.increaseAge()

20 of 41

21 of 41

Passive thread (one per node)

do forever
receive bufferp from p // Wait for any initiated exchange
if pull then // Executed if you’re supposed to react to initiatives

buffer← (〈 MyAddress,0 〉) // Construct a temporary list
view.permute() // Shuffle the items in the view
move oldest H items to end of view // Necessary to get rid of dead links
buffer.append(view.head(c/2)) // Copy first half of all items to temp. list
send buffer to p

view.select(c,H,S,bufferp) // Core of framework – to be explained
view.increaseAge()

21 of 41

22 of 41

View selection

Parameters:

c: length of partial view
H: number of items moved to end of list (healing)
S: number of items that are swapped with a peer
bufferp: received list from peer

method view.select(c, H, S, bufferp)
view.append(bufferp) // expand the current view
view.removeDuplicates() // Remove by duplicate address, keeping youngest
view.removeOldItems(min(H,view.size-c)) // Drop oldest, but keep c items
view.removeHead(min(S,view.size-c)) // Drop the ones you sent to peer
view.removeAtRandom(view.size-c) // Keep c items (if still necessary)

22 of 41

23 of 41

Design space – peer selection

selectPeer() returns a live peer from the current view. Essentially,
there are three possibilities:

head: pick the address of the youngest descriptor (i.e., with low age) – bad
choice, since this is the neighbor the node most recently communicated
with⇒ offers little opportunities for selecting unknown nodes (confirmed by
experiments)

rand: pick the address of a randomly selected descriptor

tail: pick the address of the oldest descriptor (i.e., with high age)

23 of 41

24 of 41

Design space – view propagation

push: Node sends descriptors to selected peer

pull: Node only pulls in descriptors from selected peer

pushpull: Node and selected peer exchange descriptors

Note: pulling alone is pretty bad: a node has no opportunity to
insert information on itself. Loss of all incoming connections will
throw a node out of the network (may actually happen).

24 of 41

25 of 41

Design space – view selection

Note: Critical parameters are H and S in method
select(c, H, S, buffer). Assume c is even.

• [H > c/2]≡ [H = c/2], as minimum view size is always c
• Likewise, [S > c/2−H]≡ [S = c/2−H]
• Do random removal (last step) only if S < c/2−H
• Conclusion: consider only 0≤ H ≤ c/2 and 0≤ S≤ c/2−H

blind: remove(H = 0,S = 0) — select blindly a random subset

healer: remove(H = c/2,S = 0) — select freshest items

swapper: remove(H = 0,S = c/2) — min. loss of descriptors

25 of 41

26 of 41

Local evaluations (1/2)

Method: Organize a network of N = 2n +1 nodes and let node N
sample the network, each time providing an n-bit sample.

• With n = 10, node N generates 4 samples per cycle, and constructs a 32-bit
integer.

• The 32-bit integers together form a stream of numbers, which should be
random if peer sampling is random.

• Series is tested by the “diehard battery of randomness tests.”
(see www.stat.fsu.edu/pub/diehard)

• Examined blind,healer,swapper, fixing to tail and pushpull

26 of 41

27 of 41

Local evaluations (2/2)

Results: All tests could be passed (!)

One exception: construction of binary matrices produced too many matrices
with a high rank. This failure is caused by our tendency to maximize diversity.

“Fix”: by considering only every 8th sample in the generated series, all tests
are passed.

Conclusion: it is difficult to observe nonrandom local behavior.
The functional properties of peer sampling are barely affected by
the choice of implementation.

Applications will often not see the difference

27 of 41

28 of 41

Global randomness

Issue: Deciding on global randomness is a bit tricky⇒ focus on
structural properties by comparing to random graph (= partial view
consists of c uniform randomly chosen peers).

Indegree distribution: has a serious effect on load balancing: hot spots,
bottlenecks, but also on the spreading of information.

Fault tolerance: to what extent can the service withstand catastrophic
failures and high churn?

Note: concentrate on N = 10,000 and c = 30. Results are based
on simulations and emulations.

28 of 41

29 of 41

Convergence behavior

Consider three starting situations:

Growing: Start with one node X . Before starting a next cycle, add 500 nodes.
Each new node knows only about X .

Lattice: Organize all nodes in a ring. Add descriptors of nearest nodes in the
ring.

Random: Every view is filled with a uniform random sample of all nodes.

Observation: Pure pushing converges poorly and often leads to
partitioned overlays in growing scenario.

29 of 41

30 of 41

Maximal indegree growing scenario

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 50 100 150 200 250 300

m
ax

im
al

 in
de

gr
ee

cycles

push protocols

pushpull protocols

Note: From now on consider only pushpull protocols

30 of 41

31 of 41

Converged indegree distribution

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160

pr
op

or
tio

n
of

 n
od

es
 (

%
)

indegree

[rand] tail, swapper
[rand] tail, blind

[rand] tail, healer
random graph

31 of 41

32 of 41

Fluctuation of degree distribution (1/2)

Observation: it turns out that the in-degree for each node
changes over time. The question is how quickly.

Let d1, . . . ,dK denote in-degree for a fixed node for K consecutive
cycles, and d̄ the average in-degree. Let

rk =
∑

K−k
j=1 (d j− d̄)(d j+k− d̄)

∑
K
j=1(d j− d̄)2

be the correlation between pairs of in-degree separated by k
cycles.

32 of 41

33 of 41

Fluctuation of degree distribution (2/2)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

au
to

co
rr

el
at

io
n

of
 n

od
e

de
gr

ee

time lag (cycles)

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

99% confidence band

33 of 41

34 of 41

Clustering coefficient (1/2)

Note: Consider the undirected graph by dropping the direction.

Clustering coefficient indicates to what extent the neighbors of
a node X are each other’s neighbors. Let ΓX denote the graph
induced by the neighbors of node X .

γ(X) =
|E(ΓX)|(|V (ΓX)|

2

)
For a graph: take the average over all nodes.

34 of 41

35 of 41

Clustering coefficient (2/2)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 2 4 6 8 10 12 14

cl
us

te
rin

g
co

ef
fic

ie
nt

H

rand, S=0
tail, S=0

rand, S=3
tail, S=3

rand, S=8
tail, S=8

rand, S=14
tail, S=14

random graph

35 of 41

36 of 41

Catastrophic failure

 0.01

 0.1

 1

 10

 100

 65 70 75 80 85 90 95av
er

ag
e

of

 n
od

es
 o

ut
si

de
 th

e
la

rg
es

t c
lu

st
er

removed nodes (%)

[rand] tail, blind
[rand] tail, healer
[rand] tail, swapper
random graph

Scenario: After 300 cycles, remove large fraction of nodes.

36 of 41

37 of 41

Dead links (1/2)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 10 100

pr
op

or
tio

n
of

 d
ea

d
lin

ks
 (

%
)

cycles

tail, blind
rand, blind

tail, swapper
rand, swapper

tail, healer
rand, healer

Scenario: After 300 cycles, remove 50% of nodes.

37 of 41

38 of 41

Dead links (2/2)

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14

nu
m

be
r

of
 c

yc
le

s
to

 r
em

ov
e

al
l d

ea
d

lin
ks

S

rand, H=1
tail, H=1

rand, H=3
tail, H=3

rand, H=8
tail, H=8

rand, H=14
tail, H=14

38 of 41

39 of 41

Handling churn: Gnutella traces

-6

-4

-2

 0

 2

 4

 6

R
E

M
O

V
A

LS

 J
O

IN
S

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2300 2400 2500 2600 2700

av
g.

 n
um

be
r

of
 d

ea
d

lin
ks

 p
er

 v
ie

w

cycles

H=0 (blind)
from top down: H=1, H=3, H=15 (healer)

39 of 41

40 of 41

Conclusions

• Push-pull gossip protocols perform better than only push or
pull

• Discarding old references is good for fault tolerance (but may
also be “too” good)

• Swapping references is good for maintaining well-balanced
graphs (in-degree ≈ out-degree)

• Differences between protocols mainly affect the nonfunctional
properties of applications

40 of 41

41 of 41

Reading material

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. “Epidemic Algorithms for Replicated Database Maintenance.”
In Proc. Sixth Symp. on Principles of Distributed Computing, pp. 1–12, Aug. 1987. ACM.

[2] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié. “Epidemic Information
Dissemination in Distributed Systems.” IEEE Computer, 37(5):60–67, May 2004.

[3] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
“Gossip-based Peer Sampling.” ACM Trans. Comp. Syst., 25(3), Aug. 2007.

41 of 41

