All-Pairs shortest paths via fast matrix multiplication

Practice exercises

- 0. Show that $(A^k)_{ij} = 1$ iff there is a path of length k form i to j.
- 1. Obtain $O(n^{\omega})$ -time algorithms for finding, in a directed graph: (a) a triangle; (b) a simple quadrangle; (c) a simple cycle of length k, where $k \ge 3$ is a constant. (Hints: In an acyclic graph all paths are simple. In (c), the running time may be exponential in k. Randomization makes the solution much easier.)
- 2. Let G = (V, E) be an unweighted *undirected* graph. Let $G^2 = (V, E^2)$ be the square of G, i.e., $(u, v) \in E^2$ if and only if $(u, v) \in E$ or there exists $w \in V$ such that $(u, w), (w, v) \in E$. For two vertices $u, v \in V$, let $\delta(u, v)$ and $\delta^2(u, v)$, respectively, be the distances between u and v in G and G^2 . Prove the following claims on which the correctness of Seidel's algorithm is based:
 - (a) $\delta^2(u,v) = \lceil \frac{\delta(u,v)}{2} \rceil$, for every $u, v \in V$.
 - (b) If $\delta(u, v) = 2\delta^2(u, v)$, the for every neighbor w of v in G we have $\delta^2(u, w) \ge \delta^2(u, v)$.
 - (c) If $\delta(u, v) = 2\delta^2(u, v) 1$, the for every neighbor w of v in G we have $\delta^2(u, w) \le \delta^2(u, v)$, with a strict inequality for at least one neighbor.

What goes wrong when the graph is *directed*?

- 3. (*) Obtain a version of Seidel's algorithm that uses only *Boolean* matrix multiplication. (Hint: Consider distances also modulo 3.)
- 4. (a) Obtain a deterministic $O(n^{\omega})$ time algorithm for finding *witnesses* for all positions in a Boolean matrix multiplication that have *unique* witnesses.
 - (b) Let $1 \le d \le n$ be an integer. Obtain a *randomized* algorithms for finding witnesses for all positions that have between d and 2d witnesses. (Hint: use sampling.)
 - (c) Obtain an $O(n^{\omega} \log n)$ time algorithm for finding witnesses for all positions.
- 5. Obtain an $O(n^{\omega} \log n)$ -time algorithm for computing the *diameter* of an unweighted directed graph on n vertices.
- 6. Let G = (V, E) be a weighted directed graph and let s be a number. We say that a subset $B \subseteq V$ is an s-bridging set if and only if for every two vertices $u, v \in V$, if every shortest path from u to v uses at least s edges there exists $w \in B$ such that $\delta(u, v) = \delta(u, w) + \delta(w, v)$.
 - (a) Show that if B is a random subset of V of size $9n \ln n/s$, then B is an s-bridging set, with high probability.
 - (b) Suppose that in the *i*-th iteration of the APSP algorithm of Zwick for weighted directed graphs, instead of using a random subset of size $9n \ln n/s$, where $s = (3/2)^{i+1}$, we use an s/3-bridging set. Show that the modified algorithm works correctly on unweighted graphs, but may fail on weighted graphs.
 - (c) Suitably modify the notion of bridging sets so that it could also be used for weighted graphs.