- Show how to store a set S ⊆ [m] in B + O(m log log m/ log m) bits of space, where B = log (^m_n), so that membership and rank queries take constant time. Hint: split the universe into blocks of length b, where m = b ⋅ s. Then, denoting the size of the intersection of S and the i-th block by x_i, observe (and use) that ∑_i B_i < B + s, where B_i = log (^b_{xi}).
- (1) 2. Consider a balanced sequence of brackets, e.g. ()(()()) of length n. Show how to store them in n+o(n) bits of space (in a systematic structure) to implement findclose(i))/findopen(i) query, which return the corresponding closing/opening bracket.
- (1+1) 3. We want to store n natural numbers x₁, x₂,..., x_n. Show how to save them in ∑_i 2+2 ⌊log₂ x_i⌋ bits, so that given an index i, we can return x_i in O(1) time. Try to further optimise the total number of bits used by your solution and show (some) lower bound.
 - Given an ordered collection of n items, the i-th item having weight w_i and ∑_i w_i = W, show how to arrange them in a BST such that the depth of the i-th item is O(1 + log(W/w_i).