(1) 1. Show how to store a set $S \subseteq[m]$ in $B+\mathcal{O}(m \log \log m / \log m)$ bits of space, where $B=\log \binom{m}{n}$, so that membership and rank queries take constant time. Hint: split the universe into blocks of length b, where $m=b \cdot s$. Then, denoting the size of the intersection of S and the i-th block by x_{i}, observe (and use) that $\sum_{i} B_{i}<B+s$, where $B_{i}=\log \binom{b}{x_{i}}$.
(1) 2. Consider a balanced sequence of brackets, e.g. ()(()()) of length n. Show how to store them in $n+o(n)$ bits of space (in a systematic structure) to implement findclose(\mathfrak{i})/findopen(\mathfrak{i}) query, which return the corresponding closing/opening bracket.
$(1+1)$ 3. We want to store n natural numbers $x_{1}, x_{2}, \ldots, x_{n}$. Show how to save them in $\sum_{i} 2+2\left\lfloor\log _{2} x_{i}\right\rfloor$ bits, so that given an index i, we can return x_{i} in $\mathcal{O}(1)$ time. Try to further optimise the total number of bits used by your solution and show (some) lower bound.
(1) 4. Given an ordered collection of n items, the i-th item having weight w_{i} and $\sum_{i} w_{i}=W$, show how to arrange them in a BST such that the depth of the i-th item is $\mathcal{O}\left(1+\log \left(W / w_{i}\right)\right.$.

