(1) 1. Given s and t, we want to compute the length of their longest common substring. Show how to solve this problem in linear time given a linear time algorithm for construction the suffix array and the lcp array. What about the longest string that appears at least twice in s but does not appear in t ?
(1) 2. Show how to compute the lcp array in $\mathcal{O}(n)$ time using the following property (that you should prove): for any suffix $w[i . . n], \operatorname{lcp}\left[S A^{-1}[i]\right]-1 \leq \operatorname{lcp}\left[S A^{-1}[i+1]\right]$, assuming $i<n$ and neither $S A^{-1}[i]$ nor $S A^{-1}[i+1]$ is the first element of the suffix array.
(0.5 or 1) 3. Given a permutation π, how to check in $\mathcal{O}(n)$ time if there exists a string w such that its suffix array $S A_{w}$ is the given permutation? Partial credit for a solution which only checks if there is such a binary string.
(2) 4. Our RMQ structure needs access to the original array. Design a (more complicated, but following the same general idea) structure that uses only $2 n+o(n)$ bits, and answers queries in constant time without accessing the original array. Partial credit for using $\mathcal{O}(n)$ bits.
(0.5) 5. Show that $2 n+o(n)$ is necessary in the above question.
(1) 6. Show how to implement select queries in constant time with only $\mathcal{O}(n \log \log n / \log n)$ additional bits of space. Hint: it's more of the same.

