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Lempel-Ziv based compression methods
Text t [1..N] is partitioned into disjoint blocks b1b2 . . . bn. Each block is
defined in terms of the blocks on its left.

What we exactly mean by “defined” depends on the exact version. The
most common are the following two:

LZ77, LZ the next block bi is a subword of the already processed
prefix concatenated with exactly one new character,
zip,gzip,PNG

LZ78, LZW the next block bi is a block on the left concatenated with
exactly one new character. compress,GIF,TIFF,PDF

Paweł Gawrychowski (University of Wrocław)String indexing 3 2 / 25



Lempel-Ziv based compression methods
Text t [1..N] is partitioned into disjoint blocks b1b2 . . . bn. Each block is
defined in terms of the blocks on its left.

What we exactly mean by “defined” depends on the exact version. The
most common are the following two:

LZ77, LZ the next block bi is a subword of the already processed
prefix concatenated with exactly one new character,
zip,gzip,PNG

LZ78, LZW the next block bi is a block on the left concatenated with
exactly one new character. compress,GIF,TIFF,PDF

Paweł Gawrychowski (University of Wrocław)String indexing 3 2 / 25



Lempel-Ziv based compression methods
Text t [1..N] is partitioned into disjoint blocks b1b2 . . . bn. Each block is
defined in terms of the blocks on its left.

What we exactly mean by “defined” depends on the exact version. The
most common are the following two:

LZ77, LZ the next block bi is a subword of the already processed
prefix concatenated with exactly one new character,
zip,gzip,PNG

LZ78, LZW the next block bi is a block on the left concatenated with
exactly one new character. compress,GIF,TIFF,PDF

Paweł Gawrychowski (University of Wrocław)String indexing 3 2 / 25



Lempel-Ziv based compression methods
Text t [1..N] is partitioned into disjoint blocks b1b2 . . . bn. Each block is
defined in terms of the blocks on its left.

What we exactly mean by “defined” depends on the exact version. The
most common are the following two:

LZ77, LZ the next block bi is a subword of the already processed
prefix concatenated with exactly one new character,
zip,gzip,PNG

LZ78, LZW the next block bi is a block on the left concatenated with
exactly one new character. compress,GIF,TIFF,PDF

Paweł Gawrychowski (University of Wrocław)String indexing 3 2 / 25



An example of LZW compression:

ababbababababababababaabbbaa

Even though n ∈ Ω(
√

N), the compression/decompression are fast and
simple, so the method is useful.
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An example of LZ compression:

ababbababaaabbababaabaabbbaa

It is easy to construct an example, where n = O(log N).

Well, most probably such example will not occur in practice, but
anyway such good compression method is achieved for the Fibonacci
words, which are often used as a “benchmark” for text algorithms.

There is also the self-referential variant, where the new block can refer
to itself.

Paweł Gawrychowski (University of Wrocław)String indexing 3 4 / 25



An example of LZ compression:

ababbababaaabbababaabaabbbaa

It is easy to construct an example, where n = O(log N).

Well, most probably such example will not occur in practice, but
anyway such good compression method is achieved for the Fibonacci
words, which are often used as a “benchmark” for text algorithms.

There is also the self-referential variant, where the new block can refer
to itself.

Paweł Gawrychowski (University of Wrocław)String indexing 3 4 / 25



An example of LZ compression:

ababbababaaabbababaabaabbbaa

It is easy to construct an example, where n = O(log N).

Well, most probably such example will not occur in practice, but
anyway such good compression method is achieved for the Fibonacci
words, which are often used as a “benchmark” for text algorithms.

There is also the self-referential variant, where the new block can refer
to itself.

Paweł Gawrychowski (University of Wrocław)String indexing 3 4 / 25



An example of LZ compression:

ababbababaaabbababaabaabbbaa

It is easy to construct an example, where n = O(log N).

Well, most probably such example will not occur in practice, but
anyway such good compression method is achieved for the Fibonacci
words, which are often used as a “benchmark” for text algorithms.

There is also the self-referential variant, where the new block can refer
to itself.

Paweł Gawrychowski (University of Wrocław)String indexing 3 4 / 25



An example of LZ compression:

ababbababaaabbababaabaabbbaa

It is easy to construct an example, where n = O(log N).

Well, most probably such example will not occur in practice, but
anyway such good compression method is achieved for the Fibonacci
words, which are often used as a “benchmark” for text algorithms.

There is also the self-referential variant, where the new block can refer
to itself.

Paweł Gawrychowski (University of Wrocław)String indexing 3 4 / 25



The blocks are described by pairs (in LZW) or triples (in LZ):

...ababbababaaabbababaabaabbbaaa...

...,a,b,(1,2,b),(1,4,a),(1,1,a),(4,8,b),(11,4,b),(10,2,a),...

p=aaab
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Motivation

We want to store repetitive texts (say, genomic databases) in
compressed form, but such that we can search them quickly.

In other words, given a text, build a small structure which allows fast
pattern matching.

Pattern matching?
Given p[1..m] we want to find where it occurs exactly in text t [1..n].
We might want the first occurrence, or all of them, or just a few...

Such structure is called an index. If it also allows retrieving the original
text, it is called a self-index.
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Problem, more precisely

We are asked to build a self-index for a string t [1..n] whose LZ77 parse
consists of z phrases.

Why LZ77?
The number of those phrases is believed to be the right measure of
how repetitive the text is.

We want to use space proportional to z, not n.
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Solution?

Straight-line program, or grammar representation
Simply a context-free grammar with exactly one production per
nonterminal.

Rytter 2003, Charikar et al. 2005
A LZ77 parse consisting of z phrases can be converted to a grammar
consisting of g = O(z log n) words. The grammar is AVL-balanced
(Rytter) or weight-balanced (Charikar et al.).

Weight-balanced means that for each production A→ BC we have that
|B| ≈ |C|.

Extracting an arbitrary substring of length ` from a balanced SLP takes
O(log n + `) time by just traversing.
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Framework (of Navarro)

Current Lempel-Ziv Indexes
A LZ77 Self-Index

Conclusions

A LZ77 Self-Index
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Idea

Observation (by Kärkkäinen and Ukkonen?)
If the pattern occurs in the text, there is at least one primary
occurrence.

Assuming we have all primary occurrences, all secondary occurrences
can be found via 2-sided 2D range reporting.
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Idea

Secondary occurrence
An occurrence is secondary iff it is completely contained in some
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Idea, continued

To find all primary occurrences of p[1..m], for each 1 ≤ i ≤ m, we
1 search for p[i + 1..m] in the compacted trie of the suffixes starting

at phrase boundaries,
2 search for (p[1..i])R in the compacted trie of the reversed phrases,
3 check the results via random access,
4 use range reporting to find all boundaries preceded by p[1..i] and

followed by p[i + 1..m].
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Bookmarking

Because we know that we will extract characters from the phrase
boundaries, we can replace O(log n + `) with the following bound:

Lemma
Given a balanced SLP for S with g rules and integers b and L, we can
store 2 log g +O(log L) bits such that later, given ` ≤ L, we can extract
t [b − `..b + `] in O(log L + `) time.

Corollary
Given b, we can store O(log∗ z) words such that, given any `, we can
extract t [b − `..b + `] in O(`) time.
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Space bounds (in words)

Patricia trees O(z)

bookmarks O(z log∗ z)

4-sided 2D range reporting O(z log log z)

2-sided 2D range reporting O(z)

O(z log log z)
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Time bounds

searching in compacted tries O(m2)
(with perfect hashing if necessary)

extracting from bookmarks O(m2)

4-sided 2D range reporting O(m log log n)

2-sided 2D range reporting O(occ log log n)

O(m2 + (m + occ) log log n)
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A simple trick to remove the m log log n:

For each node of the compacted trie (of the prefixes), store a 1D range
reporting structure with the pre-orders in the other compacted trie:

Alstrup, Brodal, Rauhe STOC 2001
1D range reporting on z points can be solved in O(z) space and
optimal O(1 + occ) query time.

If m ≤ log log n then use the 1D range reporting structure, otherwise
m2 subsumes the m log log n anyway.
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Final result

Theorem
Given a balanced SLP for a string t [1..n] whose LZ77 parse consists of
z phrases, we can add O(z log log z) words such that, given a pattern
p[1..m], we can find all occ occurrences of p in O(m2 + occ log log n)
time.

Can we decrease m2?
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Theorem
We can store a string t [1..n] whose LZ77 parse consists of z phrases
in O(z log n) space, so that later, given a pattern p[1..m], we can find
all occ occurrences of p in s in O(m log m + occ log log n) time.

A bit technical, but let’s try!
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Karp-Rabin fingerprints

Checking if two strings are equal can be done by comparing their
fingerprints:

Karp-Rabin-style fingerprints

φ(s) =

|s|∑

k=1

S[k ]σ|s|−k mod p

Lemma
For a prime p and r ∈ {1,2, . . . ,p − 1} chosen uniformly at random,
the probability that φr (s) = φr (s′) even though s 6= s′ is at most |s|p−1 .

The cool property is that given the fingerprints of s and t we can
compute the fingerprint of st !
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z-fast tries

We want to preprocess a compacted trie T on n nodes for navigating
with a query string x . In this application, it is enough to find the unique
(implicit or explicit) node of T that corresponds to the whole x , if such a
node exists, and otherwise return any node. However, the procedure
will in fact do a bit more.

2-fattest number
The 2-fattest number in a nonempty interval of positive integers is the
number in the interval whose binary representation has the highest
number of trailing zeros

For every edge of T , we choose the implicit node on the edge whose
string depth is the 2-fattest number in the corresponding range, and
make it explicit.
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Search in a z-fast trie
This can be done in only O(log |x |) iterations:
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For a given suffix p[i ..m], this allows us to find the unique (implicit or
explicit) node of the compacted trie.

Fingerprinting
Given a balanced SLP of size g, we can store O(g) words of extra
information such that we can compute the fingerprint of any substring
in O(log n) time.

Bookmarked fingerprinting
Given a balanced SLP of size g and an integer b, we can store
O(log log n) words of extra information such that later, given `, we can
compute the fingerprint of any t [b..b + `) in O(log `) time.
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We use bookmarked fingerprinting to check if the found node has the
same fingerprint as p[i ..m] (of course, this might be a false positive).
Then, we proceed as before.

We now have queries in O(m log m + (m + occ) log log n) time and
O(z log n) space. How to remove m log log n)?

1 If m ≥ log n, it is subsumed by m log m.
2 If m < log n, we store extra information at the top log n levels of the

compacted trie.
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The most interesting trick is derandomization.

Bille, Cording, Gørtz, Sach, Vildhøj, Vind WADS 2013
After O(n log n) time preprocessing, we can be sure that there are no
collisions among subtrings of length 2k .

Do you see how to use this?
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What’s next?

Let r be the number of runs in the BWT of the text.

Gagie, Navarro, Prezza JACM 2020
An index taking O(r log(n/r)) words and generating all occ
occurrences in O(m + occ) time.

Let δ = maxn
`=1 d`/`, where d` is the number of distinct length-`

substrings of the text.

Kempa and Kociumaka FOCS 2023

An index taking O(δ log n log σ
δ log n ) words and allowing suffix array and

inverse suffix array queries in O(log4+ε n) time.
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Questions?

Paweł Gawrychowski (University of Wrocław)String indexing 3 25 / 25


