String indexing in the Word RAM model, part 3

Paweł Gawrychowski

University of Wrocław

Lempel-Ziv based compression methods
Text $t[1 . . N]$ is partitioned into disjoint blocks $b_{1} b_{2} \ldots b_{n}$. Each block is defined in terms of the blocks on its left.

What we exactly mean by "defined" depends on the exact version. The most common are the following two:

LZ77, LZ the next block b_{i} is a subword of the already processed prefix concatenated with exactly one new character,

LZ78, LZW the next block b_{i} is a block on the left concatenated with exactly one new character.

Lempel-Ziv based compression methods
Text $t[1 . . N]$ is partitioned into disjoint blocks $b_{1} b_{2} \ldots b_{n}$. Each block is defined in terms of the blocks on its left.

What we exactly mean by "defined" depends on the exact version. The most common are the following two:
$L Z 77, L Z$ the next block b_{i} is a subword of the already processed
prefix concatenated with exactly one new character,

LZ78, LZW the next block b_{i} is a block on the left concatenated with exactly one new character.

Lempel-Ziv based compression methods

Text $t[1 . . N]$ is partitioned into disjoint blocks $b_{1} b_{2} \ldots b_{n}$. Each block is defined in terms of the blocks on its left.

What we exactly mean by "defined" depends on the exact version. The most common are the following two:

LZ77, LZ the next block b_{i} is a subword of the already processed prefix concatenated with exactly one new character, zip,gzip,PNG
LZ78, LZW the next block b_{i} is a block on the left concatenated with exactly one new character.

Lempel-Ziv based compression methods

Text $t[1 . . N]$ is partitioned into disjoint blocks $b_{1} b_{2} \ldots b_{n}$. Each block is defined in terms of the blocks on its left.

What we exactly mean by "defined" depends on the exact version. The most common are the following two:

LZ77, LZ the next block b_{i} is a subword of the already processed prefix concatenated with exactly one new character, zip,gzip,PNG
LZ78, LZW the next block b_{i} is a block on the left concatenated with exactly one new character. compress, GIF, TIFF, PDF

An example of LZW compression:

ababbababababababababaabbbaa

Even though $n \in \Omega(\sqrt{N})$, the compression/decompression are fast and simple, so the method is useful.

An example of LZW compression:

Even though $n \in \Omega(\sqrt{N})$, the compression/decompression are fast and simple, so the method is useful.

An example of LZW compression:

Even though $n \in \Omega(\sqrt{N})$, the compression/decompression are fast and simple, so the method is useful.

An example of LZ compression:

ababbababaaabbababaabaabbbaa

It is easy to construct an example, where $n=\mathcal{O}(\log N)$.
Well, most probably such example will not occur in practice, but anyway such good compression method is achieved for the Fibonacci words, which are often used as a "benchmark" for text algorithms.

An example of LZ compression:

It is easy to construct an example, where $n=\mathcal{O}(\log N)$.
Well, most probably such example will not occur in practice, but
anyway such good compression method is achieved for the Fibonacci words, which are often used as a "benchmark" for text algorithms.

An example of LZ compression:

It is easy to construct an example, where $n=\mathcal{O}(\log N)$.
Well, most probably such example will not occur in practice, but
anyway such good compression method is achieved for the Fibonacci words, which are often used as a "benchmark" for text algorithms.

An example of LZ compression:

It is easy to construct an example, where $n=\mathcal{O}(\log N)$.
Well, most probably such example will not occur in practice, but anyway such good compression method is achieved for the Fibonacci words, which are often used as a "benchmark" for text algorithms.

There is also the self-referential variant, where the new block can refer

An example of LZ compression:

It is easy to construct an example, where $n=\mathcal{O}(\log N)$.
Well, most probably such example will not occur in practice, but anyway such good compression method is achieved for the Fibonacci words, which are often used as a "benchmark" for text algorithms.

There is also the self-referential variant, where the new block can refer to itself.

The blocks are described by pairs (in LZW) or triples (in LZ):

...ababbababaaabbababaabaabbbaaa...

$\ldots, a, b,(1,2, b),(1,4, a),(1,1, a),(4,8, b),(11,4, b),(10,2, a), \ldots$

The blocks are described by pairs (in LZW) or triples (in LZ):

$$
\ldots, a, b,(1,2, b),(1,4, a),(1,1, a),(4,8, b),(11,4, b),(10,2, a), \ldots
$$

$$
p=\mathrm{aaab}
$$

The blocks are described by pairs (in LZW) or triples (in LZ):
$\ldots, \mathrm{a}, \mathrm{b},(1,2, \mathrm{~b}),(1,4, \mathrm{a}),(1,1, \mathrm{a}),(4,8, \mathrm{~b}),(11,4, \mathrm{~b}),(10,2, \mathrm{a}), \ldots$
$p=\mathrm{aaab}$

Motivation

We want to store repetitive texts (say, genomic databases) in compressed form, but such that we can search them quickly.

In other words, given a text, build a small structure which allows fast pattern matching.

Pattern matching?
Given $p[1 . . m]$ we want to find where it occurs exactly in text $t[1 . . n]$. We might want the first occurrence, or all of them, or just a few...

Such structure is called an index. If it also allows retrieving the original text, it is called a self-index.

Motivation

We want to store repetitive texts (say, genomic databases) in compressed form, but such that we can search them quickly. In other words, given a text, build a small structure which allows fast pattern matching.

Pattern matching?
Given $p[1 . . m]$ we want to find where it occurs exactly in text $t[1 . . n]$. We might want the first occurrence, or all of them, or just a few...

Such structure is called an index. If it also allows retrieving the original text, it is called a self-index.

Motivation

We want to store repetitive texts (say, genomic databases) in compressed form, but such that we can search them quickly.

In other words, given a text, build a small structure which allows fast pattern matching.

Pattern matching?

Given $p[1 . . m]$ we want to find where it occurs exactly in text $t[1 . . n]$. Such structure is called an index. If it also allows retrieving the original text, it is called a self-index.

Motivation

We want to store repetitive texts (say, genomic databases) in compressed form, but such that we can search them quickly.

In other words, given a text, build a small structure which allows fast pattern matching.

Pattern matching?

Given $p[1 . . m]$ we want to find where it occurs exactly in text $t[1 . . n]$. We might want the first occurrence, or all of them, or just a few...

Such structure is called an index. If it also allows retrieving the original text, it is called a self-index.

Motivation

We want to store repetitive texts (say, genomic databases) in compressed form, but such that we can search them quickly.

In other words, given a text, build a small structure which allows fast pattern matching.

Pattern matching?

Given $p[1 . . m]$ we want to find where it occurs exactly in text $t[1 . . n]$. We might want the first occurrence, or all of them, or just a few...

Such structure is called an index. If it also allows retrieving the original text, it is called a self-index.

Problem, more precisely

We are asked to build a self-index for a string $t[1 . . n]$ whose LZ77 parse consists of z phrases.

Problem, more precisely

We are asked to build a self-index for a string $t[1 . . n]$ whose LZ77 parse consists of z phrases.

Why LZ77?

The number of those phrases is believed to be the right measure of how repetitive the text is.

We want to use space proportional to z, not n.

Problem, more precisely

We are asked to build a self-index for a string $t[1 . . n]$ whose LZ77 parse consists of z phrases.

Why LZ77?

The number of those phrases is believed to be the right measure of how repetitive the text is.

We want to use space proportional to z, not n.

Solution?

Straight-line program, or grammar representation
Simply a context-free grammar with exactly one production per nonterminal.

```
Ryytter 2003, Charikar et al. 2005
A LZ77 parse consisting of z phrases can be converted to a grammar
consisting of g=\mathcal{O}(z\operatorname{log}n) words. The grammar is AVL-balanced
(Rytter) or weight-balanced (Charikar et al.).
```

Weight-balanced means that for each production $A \rightarrow B C$ we have that $|B| \approx|C|$.

Extracting an arbitrary substring of length ℓ from a balanced SLP takes $\mathcal{O}(\log n+\ell)$ time by just traversing.

Solution?

Straight-line program, or grammar representation

Simply a context-free grammar with exactly one production per nonterminal.

Rytter 2003, Charikar et al. 2005

A LZ77 parse consisting of z phrases can be converted to a grammar consisting of $g=\mathcal{O}(z \log n)$ words. The grammar is AVL-balanced (Rytter) or weight-balanced (Charikar et al.).

Weight-balanced means that for each production $A \rightarrow B C$ we have that $|B| \approx|C|$.

Extracting an arbitrary substring of length ℓ from a balanced SLP takes $\mathcal{O}(\log n+\ell)$ time by just traversing.

Solution?

Straight-line program, or grammar representation

Simply a context-free grammar with exactly one production per nonterminal.

Rytter 2003, Charikar et al. 2005

A LZ77 parse consisting of z phrases can be converted to a grammar consisting of $g=\mathcal{O}(z \log n)$ words. The grammar is AVL-balanced (Rytter) or weight-balanced (Charikar et al.).

Weight-balanced means that for each production $A \rightarrow B C$ we have that $|B| \approx|C|$.

Extracting an arbitrary substring of length ℓ from a balanced SLP takes $\mathcal{O}(\log n+\ell)$ time by just traversing.

Framework (of Navarro)

A LZ77 Self-Index

$$
\begin{aligned}
& \begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2
\end{array}
\end{aligned}
$$

Idea

Qbservation (by Kärkkäinen and Ukkonen?) If the pattern occurs in the text, there is at least one primary occurrence.
 Assuming we have all primary occurrences, all secondary occurrences can be found via 2-sided 2D range reporting.

Idea

> Observation (by Kärkkäinen and Ukkonen?)
> If the pattern occurs in the text, there is at least one primary occurrence.

> Assuming we have all primary occurrences, all secondary occurrences can be found via 2-sided 2D range reporting.

Idea

Secondary occurrence

An occurrence is secondary iff it is completely contained in some phrase.

Qbservation (by Kärkkäinen and Ukkonen?)
If the pattern occurs in the text, there is at least one primary

Assuming we have all primary occurrences, all secondary occurrences can be found via 2-sided 2 D range reporting.

Idea

Primary occurrence

An occurrence is primary iff it crosses some boundary.

Qbservation (by Kärkkäinen and Ukkonen?)
If the pattern occurs in the text, there is at least one primary
occurrence.
Assuming we have all primary occurrences, all secondary occurrences can be found via 2 -sided 2 D range reporting.

Idea

Primary occurrence

An occurrence is primary iff it crosses some boundary.
Observation (by Kärkkäinen and Ukkonen?)
If the pattern occurs in the text, there is at least one primary occurrence.

Assuming we have all primary occurrences, all secondary occurrences can be found via 2-sided 2D range reporting.

Idea

Primary occurrence

An occurrence is primary iff it crosses some boundary.
Observation (by Kärkkäinen and Ukkonen?)
If the pattern occurs in the text, there is at least one primary occurrence.

Assuming we have all primary occurrences, all secondary occurrences can be found via 2 -sided 2 D range reporting.

Idea, continued

To find all primary occurrences of $p[1 . . m]$, for each $1 \leq i \leq m$, we

Idea, continued

To find all primary occurrences of $p[1 . . m]$, for each $1 \leq i \leq m$, we
(1) search for $p[i+1 . . m]$ in the compacted trie of the suffixes starting at phrase boundaries,

Idea, continued

To find all primary occurrences of $p[1 . . m]$, for each $1 \leq i \leq m$, we
(1) search for $p[i+1 . . m]$ in the compacted trie of the suffixes starting at phrase boundaries,
(2) search for $(p[1 . . i])^{R}$ in the compacted trie of the reversed phrases,
(3) check the results via random access,
(4) use range reporting to find all boundaries preceded by $p[1 . . i]$ and followed by $p[i+1$.. $m]$.

Idea, continued

To find all primary occurrences of $p[1 . . m]$, for each $1 \leq i \leq m$, we
(1) search for $p[i+1 . . m]$ in the compacted trie of the suffixes starting at phrase boundaries,
(2) search for $(p[1 . . i])^{R}$ in the compacted trie of the reversed phrases,
(3) check the results via random access,
(9) use range reporting to find all boundaries preceded by p[1..i] and followed by $p[i+1$.. $m]$.

Idea, continued

To find all primary occurrences of $p[1 . . m]$, for each $1 \leq i \leq m$, we
(1) search for $p[i+1 . . m]$ in the compacted trie of the suffixes starting at phrase boundaries,
(2) search for $(p[1 . . i])^{R}$ in the compacted trie of the reversed phrases,
(3) check the results via random access,
(4) use range reporting to find all boundaries preceded by $p[1 . . i]$ and followed by $p[i+1$.. $m]$.

Bookmarking

Because we know that we will extract characters from the phrase boundaries, we can replace $\mathcal{O}(\log n+\ell)$ with the following bound:

Bookmarking

Because we know that we will extract characters from the phrase boundaries, we can replace $\mathcal{O}(\log n+\ell)$ with the following bound:

Lemma

Given a balanced SLP for S with g rules and integers b and L, we can store $2 \log g+\mathcal{O}(\log L)$ bits such that later, given $\ell \leq L$, we can extract $t[b-\ell . . b+\ell]$ in $\mathcal{O}(\log L+\ell)$ time.

Bookmarking

Because we know that we will extract characters from the phrase boundaries, we can replace $\mathcal{O}(\log n+\ell)$ with the following bound:

Lemma

Given a balanced SLP for S with g rules and integers b and L, we can store $2 \log g+\mathcal{O}(\log L)$ bits such that later, given $\ell \leq L$, we can extract $t[b-\ell . . b+\ell]$ in $\mathcal{O}(\log L+\ell)$ time.

Corollary

Given b, we can store $\mathcal{O}\left(\log ^{*} z\right)$ words such that, given any ℓ, we can extract $t[b-\ell . . b+\ell]$ in $\mathcal{O}(\ell)$ time.

Space bounds (in words)

Patricia trees
bookmarks
4-sided 2D range reporting
2 -sided 2 D range reporting

$$
\begin{array}{r}
\mathcal{O}(z) \\
\mathcal{O}\left(z \log ^{*} z\right) \\
\mathcal{O}(z \log \log z) \\
\mathcal{O}(z) \\
\hline \mathcal{O}(z \log \log z)
\end{array}
$$

Time bounds

searching in compacted tries $\mathcal{O}\left(m^{2}\right)$
(with perfect hashing if necessary)
extracting from bookmarks
4-sided 2D range reporting
$\mathcal{O}(m \log \log n)$
2 -sided 2 D range reporting
$\mathcal{O}\left(m^{2}+(m+o c c) \log \log n\right)$

A simple trick to remove the $m \log \log n$:
For each node of the compacted trie (of the prefixes), store a 1D range reporting structure with the pre-orders in the other compacted trie:

If $m \leq \log \log n$ then use the 1D range reporting structure, otherwise m^{2} subsumes the $m \log \log n$ anyway.

A simple trick to remove the $m \log \log n$:
For each node of the compacted trie (of the prefixes), store a 1D range reporting structure with the pre-orders in the other compacted trie:

Alstrup, Brodal, Rauhe STOC 2001

1D range reporting on z points can be solved in $\mathcal{O}(z)$ space and optimal $\mathcal{O}(1+o c c)$ query time.

If $m \leq \log \log n$ then use the 1D range reporting structure, otherwise m^{2} subsumes the $m \log \log n$ anyway.

Final result

Theorem

Given a balanced SLP for a string t[1..n] whose LZ77 parse consists of z phrases, we can add $\mathcal{O}(z \log \log z)$ words such that, given a pattern $p[1 . . m]$, we can find all occ occurrences of p in $\mathcal{O}\left(m^{2}+o c c \log \log n\right)$ time.

Final result

Theorem

Given a balanced SLP for a string t[1..n] whose LZ77 parse consists of z phrases, we can add $\mathcal{O}(z \log \log z)$ words such that, given a pattern $p[1 . . m]$, we can find all occ occurrences of p in $\mathcal{O}\left(m^{2}+o c c \log \log n\right)$ time.

Can we decrease m^{2} ?

Theorem

We can store a string t[1..n] whose LZ77 parse consists of z phrases in $\mathcal{O}(z \log n)$ space, so that later, given a pattern $p[1 . . m]$, we can find all occ occurrences of p in $\sin \mathcal{O}(m \log m+o c c \log \log n)$ time.

A bit technical, but let's try!

Theorem

We can store a string t[1..n] whose LZ77 parse consists of z phrases in $\mathcal{O}(z \log n)$ space, so that later, given a pattern $p[1 . . m]$, we can find all occ occurrences of p in $\sin \mathcal{O}(m \log m+o c c \log \log n)$ time.

A bit technical, but let's try!

Karp-Rabin fingerprints

Checking if two strings are equal can be done by comparing their fingerprints:

Lemma
 For a prime p and $r \in\{1,2, \ldots, p-1\}$ chosen uniformly at random, the probability that $\phi_{r}(s)=\phi_{r}\left(s^{\prime}\right)$ even though $s \neq s^{\prime}$ is at most $\frac{s \mid}{p-1}$.

The cool property is that given the fingerprints of s and t we can compute the fingerprint of $s t$!

Karp-Rabin fingerprints

Checking if two strings are equal can be done by comparing their fingerprints:

Karp-Rabin-style fingerprints

$$
\phi(s)=\sum_{k=1}^{|s|} S[k] \sigma^{|s|-k} \bmod p
$$

\square
For a prime p and $r \in\{1,2, \ldots, p-1\}$ chosen uniformly at random, the probability that $\phi_{r}(s)=\phi_{r}\left(s^{\prime}\right)$ even though $s \neq s^{\prime}$ is at most $\frac{s \mid}{p-1}$.

The cool property is that given the fingerprints of s and t we can compute the fingerprint of $s t$!

Karp-Rabin fingerprints

Checking if two strings are equal can be done by comparing their fingerprints:

Karp-Rabin-style fingerprints

$$
\phi_{r}(s)=\sum_{k=1}^{|s|} s[k] r^{|s|-k} \bmod p
$$

The cool property is that given the fingerprints of s and t we can compute the fingerprint of $s t$!

Karp-Rabin fingerprints

Checking if two strings are equal can be done by comparing their fingerprints:

Karp-Rabin-style fingerprints

$$
\phi_{r}(s)=\sum_{k=1}^{|s|} s[k] r^{|s|-k} \bmod p
$$

Lemma
For a prime p and $r \in\{1,2, \ldots, p-1\}$ chosen uniformly at random, the probability that $\phi_{r}(s)=\phi_{r}\left(s^{\prime}\right)$ even though $s \neq s^{\prime}$ is at most $\frac{|s|}{p-1}$.

> The cool property is that given the fingerprints of s and t we can compute the fingerprint of $s t$!

Karp-Rabin fingerprints

Checking if two strings are equal can be done by comparing their fingerprints:

Karp-Rabin-style fingerprints

$$
\phi_{r}(s)=\sum_{k=1}^{|s|} s[k] r^{|s|-k} \bmod p
$$

Lemma
For a prime p and $r \in\{1,2, \ldots, p-1\}$ chosen uniformly at random, the probability that $\phi_{r}(s)=\phi_{r}\left(s^{\prime}\right)$ even though $s \neq s^{\prime}$ is at most $\frac{|s|}{p-1}$.

> The cool property is that given the fingerprints of s and t we can compute the fingerprint of $s t$!

Karp-Rabin fingerprints

Checking if two strings are equal can be done by comparing their fingerprints:

Karp-Rabin-style fingerprints

$$
\phi_{r}(s)=\sum_{k=1}^{|s|} s[k] r^{|s|-k} \bmod p
$$

Lemma
For a prime p and $r \in\{1,2, \ldots, p-1\}$ chosen uniformly at random, the probability that $\phi_{r}(s)=\phi_{r}\left(s^{\prime}\right)$ even though $s \neq s^{\prime}$ is at most $\frac{|s|}{p-1}$.

The cool property is that given the fingerprints of s and t we can compute the fingerprint of $s t$!

z-fast tries

We want to preprocess a compacted trie T on n nodes for navigating with a query string x. In this application, it is enough to find the unique (implicit or explicit) node of T that corresponds to the whole x, if such a node exists, and otherwise return any node. However, the procedure will in fact do a bit more.

For every edge of T, we choose the implicit node on the edge whose string depth is the 2 -fattest number in the corresponding range, and make it explicit.

z-fast tries

We want to preprocess a compacted trie T on n nodes for navigating with a query string x. In this application, it is enough to find the unique (implicit or explicit) node of T that corresponds to the whole x, if such a node exists, and otherwise return any node. However, the procedure will in fact do a bit more.

2-fattest number

The 2-fattest number in a nonempty interval of positive integers is the number in the interval whose binary representation has the highest number of trailing zeros

For every edge of T, we choose the implicit node on the edge whose string depth is the 2 -fattest number in the corresponding range, and

z-fast tries

We want to preprocess a compacted trie T on n nodes for navigating with a query string x. In this application, it is enough to find the unique (implicit or explicit) node of T that corresponds to the whole x, if such a node exists, and otherwise return any node. However, the procedure will in fact do a bit more.

2-fattest number

The 2-fattest number in a nonempty interval of positive integers is the number in the interval whose binary representation has the highest number of trailing zeros

For every edge of T, we choose the implicit node on the edge whose string depth is the 2 -fattest number in the corresponding range, and make it explicit.

Search in a z-fast trie

This can be done in only $\mathcal{O}(\log |x|)$ iterations:

```
Algorithm 1 Querying the probabilistic z-fast trie
(represented by the function \(T\) ).
    input \(x \in u\)
    \(i \leftarrow\lceil\log w\rceil-1\)
    \(\ell, r \leftarrow 0, w\)
    while \(r-\ell>1\) do
        if \(\exists b\) such that \(2^{i} b \in(\ell \ldots r)\) then
                            \(\left\{2^{i} b\right.\) is the 2 -fattest number in \(\left.(\ell . . r)\right\}\)
                \(q \leftarrow\) prefix of \(x\) of length \(2^{i} b\)
                \(\langle g, s\rangle \leftarrow T(q)\)
                if \(g \leq|x|\) and \(s\) is the signature of the prefix of
                \(x\) of length \(g\) then
                \(\ell \leftarrow g \quad\{\mathrm{M}\)
                else
                    \(r \leftarrow 2^{i} b \quad\left\{\right.\) Move from \((\ell . . r)\) to \(\left.\left(\ell . .2^{i} b\right)\right\}\)
                end if
        end if
        \(i \leftarrow i-1\)
    end while
    return \(\ell\)
```

For a given suffix $p[i . . m]$, this allows us to find the unique (implicit or explicit) node of the compacted trie.

```
Fingerprinting
Given a balanced SLP of size g, we can store }\mathcal{O}(g)\mathrm{ words of extra
information such that we can compute the fingerprint of any substring
in \mathcal{O}(\operatorname{log}n) time.
Bookmarked fingerprinting
Given a balanced SLP of size \(g\) and an integer \(b\), we can store \(\mathcal{O}(\log \log n)\) words of extra information such that later, given \(\ell\), we can compute the fingerprint of any \(t[b . . b+\ell)\) in \(\mathcal{O}(\log \ell)\) time.
```

For a given suffix $p[i . . m]$, this allows us to find the unique (implicit or explicit) node of the compacted trie.

Fingerprinting

Given a balanced SLP of size g, we can store $\mathcal{O}(g)$ words of extra information such that we can compute the fingerprint of any substring in $\mathcal{O}(\log n)$ time.

For a given suffix $p[i . . m]$, this allows us to find the unique (implicit or explicit) node of the compacted trie.

Fingerprinting

Given a balanced SLP of size g, we can store $\mathcal{O}(g)$ words of extra information such that we can compute the fingerprint of any substring in $\mathcal{O}(\log n)$ time.

Bookmarked fingerprinting

Given a balanced SLP of size g and an integer b, we can store $\mathcal{O}(\log \log n)$ words of extra information such that later, given ℓ, we can compute the fingerprint of any $t[b . . b+\ell)$ in $\mathcal{O}(\log \ell)$ time.

We use bookmarked fingerprinting to check if the found node has the same fingerprint as $p[i . . m]$ (of course, this might be a false positive). Then, we proceed as before.

We now have queries in $\mathcal{O}(m \log m+(m+o c c) \log \log n)$ time and $\mathcal{O}(z \log n)$ space. How to remove $m \log \log n)$?
 a If $m \geq \log n$, it is subsumed by $m \log m$.
 (3) If $m<\log n$, we store extra information at the top $\log n$ levels of the compacted trie.

We use bookmarked fingerprinting to check if the found node has the same fingerprint as $p[i . . m]$ (of course, this might be a false positive). Then, we proceed as before.
We now have queries in $\mathcal{O}(m \log m+(m+o c c) \log \log n)$ time and $\mathcal{O}(z \log n)$ space.
(-) If $m \geq \log n$, it is subsumed by $m \log m$.
(2) If $m<\log n$, we store extra information at the top $\log n$ levels of the compacted trie.

We use bookmarked fingerprinting to check if the found node has the same fingerprint as $p[i . . m]$ (of course, this might be a false positive). Then, we proceed as before.
We now have queries in $\mathcal{O}(m \log m+(m+o c c) \log \log n)$ time and $\mathcal{O}(z \log n)$ space. How to remove $m \log \log n)$?
(-) If $m \geq \log n$, it is subsumed by $m \log m$.
(2) If $m<\log n$, we store extra information at the top $\log n$ levels of the compacted trie.

We use bookmarked fingerprinting to check if the found node has the same fingerprint as $p[i . . m]$ (of course, this might be a false positive). Then, we proceed as before.
We now have queries in $\mathcal{O}(m \log m+(m+o c c) \log \log n)$ time and $\mathcal{O}(z \log n)$ space. How to remove $m \log \log n)$?
(1) If $m \geq \log n$, it is subsumed by $m \log m$.

If $m<\log n$, we store extra information at the top $\log n$ levels of the
compacted trie.

We use bookmarked fingerprinting to check if the found node has the same fingerprint as $p[i . . m]$ (of course, this might be a false positive). Then, we proceed as before.
We now have queries in $\mathcal{O}(m \log m+(m+o c c) \log \log n)$ time and $\mathcal{O}(z \log n)$ space. How to remove $m \log \log n)$?
(1) If $m \geq \log n$, it is subsumed by $m \log m$.
(2) If $m<\log n$, we store extra information at the top $\log n$ levels of the compacted trie.

The most interesting trick is derandomization.

Bille, Cording, Gørtz, Sach, Vildhøj, Vind WADS 2013 After $\mathcal{O}(n \log n)$ time preprocessing, we can be sure that there are no collisions among subtrings of length 2^{k}

Do you see how to use this?

The most interesting trick is derandomization.
Bille, Cording, Gørtz, Sach, Vildhøj, Vind WADS 2013
After $\mathcal{O}(n \log n)$ time preprocessing, we can be sure that there are no collisions among subtrings of length 2^{k}.

Do you see how to use this?

What's next?

Let r be the number of runs in the BWT of the text.

Let $\delta=\max _{\ell=1}^{n} d_{\ell} / \ell$, where d_{ℓ} is the number of distinct length- ℓ substrings of the text.

Kempa and Kociumaka FOCS 2023

An index taking $\mathcal{O}\left(\delta \log \frac{n \log \sigma}{\delta \log n}\right)$ words and allowing suffix array and inverse suffix array queries in $\mathcal{O}\left(\log ^{4+\epsilon} n\right)$ time.

What's next?

Let r be the number of runs in the BWT of the text.
Gagie, Navarro, Prezza JACM 2020
An index taking $\mathcal{O}(r \log (n / r))$ words and generating all occ occurrences in $\mathcal{O}(m+o c c)$ time.

Let $\delta=\max _{\ell=1}^{n} d_{\ell} / \ell$, where d_{ℓ} is the number of distinct length- ℓ substrings of the text.

Kempa and Kociumaka FOCS 2023

An index taking $\mathcal{O}\left(\delta \log \frac{n \log \sigma}{\delta \log n}\right)$ words and allowing suffix array and inverse suffix array queries in $\mathcal{O}\left(\log ^{4+\epsilon} n\right)$ time.

Questions?

