
String indexing in the Word RAM model, part 2

Paweł Gawrychowski

University of Wrocław

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 1 / 39



We now know how to store the lcp array and the RMQ structure in
4n + o(n) bits. But we still need to store SA, so we need n log n bits
(we might also need to store SA−1, which is another n log n bits). Let’s
see how to decrease this bound!

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 2 / 39



Compressed suffix arrays

A text of length n over Σ can be stored in n log |Σ| bits. Now if Σ is small
(think binary), n log n bits taken by the suffix array is way too much.

Compressed suffix arrays
Represent SA in o(n log n) bits of spaces, so that we can efficiently
implement lookup(i) which returns SA[i]. (We don’t care about
extracting SA−1.)

Grossi and Vitter 2000
For any constant ε > 0, SA can be represented using just
(1 + 1

ε )n log |Σ|+ o(n log |Σ|) bits, so that lookup(i) takes O(logε n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 3 / 39



Compressed suffix arrays

A text of length n over Σ can be stored in n log |Σ| bits. Now if Σ is small
(think binary), n log n bits taken by the suffix array is way too much.

Compressed suffix arrays
Represent SA in o(n log n) bits of spaces, so that we can efficiently
implement lookup(i) which returns SA[i]. (We don’t care about
extracting SA−1.)

Grossi and Vitter 2000
For any constant ε > 0, SA can be represented using just
(1 + 1

ε )n log |Σ|+ o(n log |Σ|) bits, so that lookup(i) takes O(logε n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 3 / 39



Compressed suffix arrays

A text of length n over Σ can be stored in n log |Σ| bits. Now if Σ is small
(think binary), n log n bits taken by the suffix array is way too much.

Compressed suffix arrays
Represent SA in o(n log n) bits of spaces, so that we can efficiently
implement lookup(i) which returns SA[i]. (We don’t care about
extracting SA−1.)

Grossi and Vitter 2000
For any constant ε > 0, SA can be represented using just
(1 + 1

ε )n log |Σ|+ o(n log |Σ|) bits, so that lookup(i) takes O(logε n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 3 / 39



Can we do even better?
The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)

H0(T ) =
∑
c∈Σ

nc

n
log

n
nc

where nc is the number of occurrences of character c in T .

k -th order empirical entropy

Hk (T ) =
1
n

∑
s∈Σk

|Ts|H0(Ts)

where Ts is the concatenation of all characters in T following an
occurrence of s.

It is known that Lempel-Ziv compression methods approach the k -th
order empirical entropy.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 4 / 39



Can we do even better?
The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)

H0(T ) =
∑
c∈Σ

nc

n
log

n
nc

where nc is the number of occurrences of character c in T .

k -th order empirical entropy

Hk (T ) =
1
n

∑
s∈Σk

|Ts|H0(Ts)

where Ts is the concatenation of all characters in T following an
occurrence of s.

It is known that Lempel-Ziv compression methods approach the k -th
order empirical entropy.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 4 / 39



Can we do even better?
The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)

H0(T ) =
∑
c∈Σ

nc

n
log

n
nc

where nc is the number of occurrences of character c in T .

k -th order empirical entropy

Hk (T ) =
1
n

∑
s∈Σk

|Ts|H0(Ts)

where Ts is the concatenation of all characters in T following an
occurrence of s.

It is known that Lempel-Ziv compression methods approach the k -th
order empirical entropy.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 4 / 39



Can we do even better?
The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)

H0(T ) =
∑
c∈Σ

nc

n
log

n
nc

where nc is the number of occurrences of character c in T .

k -th order empirical entropy

Hk (T ) =
1
n

∑
s∈Σk

|Ts|H0(Ts)

where Ts is the concatenation of all characters in T following an
occurrence of s.

It is known that Lempel-Ziv compression methods approach the k -th
order empirical entropy.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 4 / 39



Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 5 / 39



Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 5 / 39



Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 5 / 39



Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 5 / 39



Grossi and Vitter

We will assume |Σ| = 2.

SA can be represented in 1
2n log log n + 6n +O( n

log log n ) bits, so that
lookup(i) takes O(log log n) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 6 / 39



SA0 is the suffix array for the original string w = w0. We create a new
string w1 by chopping w0 into blocks of two characters:

w [2]w [3],w [4]w [5], . . .

and treating each such block as a single letter. In other words, we keep
only suffixes starting at even positions. SA1 is the suffix array
constructed for w1.

Is there any relation between SA0 and SA1?

In other words, assume that we can perform lookup(i) on SA1. Can we
implement lookup(i) on SA0 if we add just a little bit of additional data?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 7 / 39



SA0 is the suffix array for the original string w = w0. We create a new
string w1 by chopping w0 into blocks of two characters:

w [2]w [3],w [4]w [5], . . .

and treating each such block as a single letter. In other words, we keep
only suffixes starting at even positions. SA1 is the suffix array
constructed for w1.

Is there any relation between SA0 and SA1?

In other words, assume that we can perform lookup(i) on SA1. Can we
implement lookup(i) on SA0 if we add just a little bit of additional data?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 7 / 39



SA0 is the suffix array for the original string w = w0. We create a new
string w1 by chopping w0 into blocks of two characters:

w [2]w [3],w [4]w [5], . . .

and treating each such block as a single letter. In other words, we keep
only suffixes starting at even positions. SA1 is the suffix array
constructed for w1.

Is there any relation between SA0 and SA1?

In other words, assume that we can perform lookup(i) on SA1. Can we
implement lookup(i) on SA0 if we add just a little bit of additional data?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 7 / 39



in Section 2.1, giving some intuition on the compression in Section 2.2. We summarize the results
thus obtained in Section 2.3.

2.1 Decomposition scheme

Our decomposition scheme is by a simple recursion mechanism. Let SA be the suffix array for
binary string T . In the base case, we denote SA by SA0, and let n0 = n be the number of its
entries. For simplicity in exposition, we assume that n is a power of 2.

In the inductive phase k ≥ 0, we start with suffix array SAk, which is available by induction. It
has nk = n/2k entries and stores a permutation of {1, 2, . . . , nk}. (Intuitively, this permutation is
that resulting from sorting the suffixes of T whose suffix pointers are multiple of 2k.) We run four
main steps to transform SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits, such that Bk[i] = 1 if SAk[i] is even and Bk[i] = 0 if
SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is the companion of a
certain 1 if the odd entry in SA associated with the 0 is 1 less than the even entry in SA associated
with the 1.) We can denote this correspondence by a partial function Ψk, where Ψk(i) = j if and
only if SAk[i] is odd and SAk[j] = SAk[i] + 1. When defined, Ψk(i) = j implies that Bk[i] = 0 and
Bk[j] = 1. It is convenient to make Ψk a total function by setting Ψk(i) = i when SAk[i] is even
(i.e., when Bk[i] = 1). In summary, for 1 ≤ i ≤ nk, we have

Ψk(i) =

{

j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1s for each prefix of Bk. We use function rankk for this purpose;
that is, rankk(j) counts how many 1s there are in the first j bits of Bk.

Step 4. Pack together the even values from SAk and divide each of them by 2. The resulting
values form a permutation of {1, 2, . . . , nk+1}, where nk+1 = nk/2 = n/2k+1. Store them into a
new suffix array SAk+1 of nk+1 entries, and remove the old suffix array SAk.

The following example illustrates the effect of a single application of Steps 1–4. Here, Ψ0(25) =
16 as SA0[25] = 29 and SA0[16] = 30. The new suffix array SA1 explicitly stores the suffix pointers
(divided by 2) for the suffixes that start at even positions in the original text T . For example,
SA1[3] = 5 means that the third lexicographically smallest suffix that starts at an even position
in T is the one starting at position 2 × 5 = 10, namely, abbabaa. . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
Ψ0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11

The next lemma shows that these steps preserve the information originally kept in suffix ar-
ray SAk:

10

1 If SA0[i] is even, then we return 2 · SA1[i ′], where i ′ is the number
of even suffixes in SA0[1..i].

2 If SA0[i] is odd, then we return 2 · SA1[i ′]− 1, where i ′ is the
number of even suffixes in SA0[1..j], where SA0[i] = SA0[j]− 1.

Ψ0(i) =

{
i if SA0[i] is even
j if SA0[i] + 1 = SA0[j] is odd

In both cases, augmenting B0 with a rank structure reduces the
problem to storing Ψ0 in small space.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 8 / 39



in Section 2.1, giving some intuition on the compression in Section 2.2. We summarize the results
thus obtained in Section 2.3.

2.1 Decomposition scheme

Our decomposition scheme is by a simple recursion mechanism. Let SA be the suffix array for
binary string T . In the base case, we denote SA by SA0, and let n0 = n be the number of its
entries. For simplicity in exposition, we assume that n is a power of 2.

In the inductive phase k ≥ 0, we start with suffix array SAk, which is available by induction. It
has nk = n/2k entries and stores a permutation of {1, 2, . . . , nk}. (Intuitively, this permutation is
that resulting from sorting the suffixes of T whose suffix pointers are multiple of 2k.) We run four
main steps to transform SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits, such that Bk[i] = 1 if SAk[i] is even and Bk[i] = 0 if
SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is the companion of a
certain 1 if the odd entry in SA associated with the 0 is 1 less than the even entry in SA associated
with the 1.) We can denote this correspondence by a partial function Ψk, where Ψk(i) = j if and
only if SAk[i] is odd and SAk[j] = SAk[i] + 1. When defined, Ψk(i) = j implies that Bk[i] = 0 and
Bk[j] = 1. It is convenient to make Ψk a total function by setting Ψk(i) = i when SAk[i] is even
(i.e., when Bk[i] = 1). In summary, for 1 ≤ i ≤ nk, we have

Ψk(i) =

{

j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1s for each prefix of Bk. We use function rankk for this purpose;
that is, rankk(j) counts how many 1s there are in the first j bits of Bk.

Step 4. Pack together the even values from SAk and divide each of them by 2. The resulting
values form a permutation of {1, 2, . . . , nk+1}, where nk+1 = nk/2 = n/2k+1. Store them into a
new suffix array SAk+1 of nk+1 entries, and remove the old suffix array SAk.

The following example illustrates the effect of a single application of Steps 1–4. Here, Ψ0(25) =
16 as SA0[25] = 29 and SA0[16] = 30. The new suffix array SA1 explicitly stores the suffix pointers
(divided by 2) for the suffixes that start at even positions in the original text T . For example,
SA1[3] = 5 means that the third lexicographically smallest suffix that starts at an even position
in T is the one starting at position 2 × 5 = 10, namely, abbabaa. . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
Ψ0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11

The next lemma shows that these steps preserve the information originally kept in suffix ar-
ray SAk:

10

1 If SA0[i] is even, then we return 2 · SA1[i ′], where i ′ is the number
of even suffixes in SA0[1..i].

2 If SA0[i] is odd, then we return 2 · SA1[i ′]− 1, where i ′ is the
number of even suffixes in SA0[1..j], where SA0[i] = SA0[j]− 1.

Ψ0(i) =

{
i if SA0[i] is even
j if SA0[i] + 1 = SA0[j] is odd

In both cases, augmenting B0 with a rank structure reduces the
problem to storing Ψ0 in small space.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 8 / 39



in Section 2.1, giving some intuition on the compression in Section 2.2. We summarize the results
thus obtained in Section 2.3.

2.1 Decomposition scheme

Our decomposition scheme is by a simple recursion mechanism. Let SA be the suffix array for
binary string T . In the base case, we denote SA by SA0, and let n0 = n be the number of its
entries. For simplicity in exposition, we assume that n is a power of 2.

In the inductive phase k ≥ 0, we start with suffix array SAk, which is available by induction. It
has nk = n/2k entries and stores a permutation of {1, 2, . . . , nk}. (Intuitively, this permutation is
that resulting from sorting the suffixes of T whose suffix pointers are multiple of 2k.) We run four
main steps to transform SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits, such that Bk[i] = 1 if SAk[i] is even and Bk[i] = 0 if
SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is the companion of a
certain 1 if the odd entry in SA associated with the 0 is 1 less than the even entry in SA associated
with the 1.) We can denote this correspondence by a partial function Ψk, where Ψk(i) = j if and
only if SAk[i] is odd and SAk[j] = SAk[i] + 1. When defined, Ψk(i) = j implies that Bk[i] = 0 and
Bk[j] = 1. It is convenient to make Ψk a total function by setting Ψk(i) = i when SAk[i] is even
(i.e., when Bk[i] = 1). In summary, for 1 ≤ i ≤ nk, we have

Ψk(i) =

{

j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1s for each prefix of Bk. We use function rankk for this purpose;
that is, rankk(j) counts how many 1s there are in the first j bits of Bk.

Step 4. Pack together the even values from SAk and divide each of them by 2. The resulting
values form a permutation of {1, 2, . . . , nk+1}, where nk+1 = nk/2 = n/2k+1. Store them into a
new suffix array SAk+1 of nk+1 entries, and remove the old suffix array SAk.

The following example illustrates the effect of a single application of Steps 1–4. Here, Ψ0(25) =
16 as SA0[25] = 29 and SA0[16] = 30. The new suffix array SA1 explicitly stores the suffix pointers
(divided by 2) for the suffixes that start at even positions in the original text T . For example,
SA1[3] = 5 means that the third lexicographically smallest suffix that starts at an even position
in T is the one starting at position 2 × 5 = 10, namely, abbabaa. . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
Ψ0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11

The next lemma shows that these steps preserve the information originally kept in suffix ar-
ray SAk:

10

1 If SA0[i] is even, then we return 2 · SA1[i ′], where i ′ is the number
of even suffixes in SA0[1..i].

2 If SA0[i] is odd, then we return 2 · SA1[i ′]− 1, where i ′ is the
number of even suffixes in SA0[1..j], where SA0[i] = SA0[j]− 1.

Ψ0(i) =

{
i if SA0[i] is even
j if SA0[i] + 1 = SA0[j] is odd

In both cases, augmenting B0 with a rank structure reduces the
problem to storing Ψ0 in small space.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 8 / 39



in Section 2.1, giving some intuition on the compression in Section 2.2. We summarize the results
thus obtained in Section 2.3.

2.1 Decomposition scheme

Our decomposition scheme is by a simple recursion mechanism. Let SA be the suffix array for
binary string T . In the base case, we denote SA by SA0, and let n0 = n be the number of its
entries. For simplicity in exposition, we assume that n is a power of 2.

In the inductive phase k ≥ 0, we start with suffix array SAk, which is available by induction. It
has nk = n/2k entries and stores a permutation of {1, 2, . . . , nk}. (Intuitively, this permutation is
that resulting from sorting the suffixes of T whose suffix pointers are multiple of 2k.) We run four
main steps to transform SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits, such that Bk[i] = 1 if SAk[i] is even and Bk[i] = 0 if
SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is the companion of a
certain 1 if the odd entry in SA associated with the 0 is 1 less than the even entry in SA associated
with the 1.) We can denote this correspondence by a partial function Ψk, where Ψk(i) = j if and
only if SAk[i] is odd and SAk[j] = SAk[i] + 1. When defined, Ψk(i) = j implies that Bk[i] = 0 and
Bk[j] = 1. It is convenient to make Ψk a total function by setting Ψk(i) = i when SAk[i] is even
(i.e., when Bk[i] = 1). In summary, for 1 ≤ i ≤ nk, we have

Ψk(i) =

{

j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1s for each prefix of Bk. We use function rankk for this purpose;
that is, rankk(j) counts how many 1s there are in the first j bits of Bk.

Step 4. Pack together the even values from SAk and divide each of them by 2. The resulting
values form a permutation of {1, 2, . . . , nk+1}, where nk+1 = nk/2 = n/2k+1. Store them into a
new suffix array SAk+1 of nk+1 entries, and remove the old suffix array SAk.

The following example illustrates the effect of a single application of Steps 1–4. Here, Ψ0(25) =
16 as SA0[25] = 29 and SA0[16] = 30. The new suffix array SA1 explicitly stores the suffix pointers
(divided by 2) for the suffixes that start at even positions in the original text T . For example,
SA1[3] = 5 means that the third lexicographically smallest suffix that starts at an even position
in T is the one starting at position 2 × 5 = 10, namely, abbabaa. . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
Ψ0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11

The next lemma shows that these steps preserve the information originally kept in suffix ar-
ray SAk:

10

1 If SA0[i] is even, then we return 2 · SA1[i ′], where i ′ is the number
of even suffixes in SA0[1..i].

2 If SA0[i] is odd, then we return 2 · SA1[i ′]− 1, where i ′ is the
number of even suffixes in SA0[1..j], where SA0[i] = SA0[j]− 1.

Ψ0(i) =

{
i if SA0[i] is even
j if SA0[i] + 1 = SA0[j] is odd

In both cases, augmenting B0 with a rank structure reduces the
problem to storing Ψ0 in small space.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 8 / 39



in Section 2.1, giving some intuition on the compression in Section 2.2. We summarize the results
thus obtained in Section 2.3.

2.1 Decomposition scheme

Our decomposition scheme is by a simple recursion mechanism. Let SA be the suffix array for
binary string T . In the base case, we denote SA by SA0, and let n0 = n be the number of its
entries. For simplicity in exposition, we assume that n is a power of 2.

In the inductive phase k ≥ 0, we start with suffix array SAk, which is available by induction. It
has nk = n/2k entries and stores a permutation of {1, 2, . . . , nk}. (Intuitively, this permutation is
that resulting from sorting the suffixes of T whose suffix pointers are multiple of 2k.) We run four
main steps to transform SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits, such that Bk[i] = 1 if SAk[i] is even and Bk[i] = 0 if
SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is the companion of a
certain 1 if the odd entry in SA associated with the 0 is 1 less than the even entry in SA associated
with the 1.) We can denote this correspondence by a partial function Ψk, where Ψk(i) = j if and
only if SAk[i] is odd and SAk[j] = SAk[i] + 1. When defined, Ψk(i) = j implies that Bk[i] = 0 and
Bk[j] = 1. It is convenient to make Ψk a total function by setting Ψk(i) = i when SAk[i] is even
(i.e., when Bk[i] = 1). In summary, for 1 ≤ i ≤ nk, we have

Ψk(i) =

{

j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1s for each prefix of Bk. We use function rankk for this purpose;
that is, rankk(j) counts how many 1s there are in the first j bits of Bk.

Step 4. Pack together the even values from SAk and divide each of them by 2. The resulting
values form a permutation of {1, 2, . . . , nk+1}, where nk+1 = nk/2 = n/2k+1. Store them into a
new suffix array SAk+1 of nk+1 entries, and remove the old suffix array SAk.

The following example illustrates the effect of a single application of Steps 1–4. Here, Ψ0(25) =
16 as SA0[25] = 29 and SA0[16] = 30. The new suffix array SA1 explicitly stores the suffix pointers
(divided by 2) for the suffixes that start at even positions in the original text T . For example,
SA1[3] = 5 means that the third lexicographically smallest suffix that starts at an even position
in T is the one starting at position 2 × 5 = 10, namely, abbabaa. . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
Ψ0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11

The next lemma shows that these steps preserve the information originally kept in suffix ar-
ray SAk:

10

1 If SA0[i] is even, then we return 2 · SA1[i ′], where i ′ is the number
of even suffixes in SA0[1..i].

2 If SA0[i] is odd, then we return 2 · SA1[i ′]− 1, where i ′ is the
number of even suffixes in SA0[1..j], where SA0[i] = SA0[j]− 1.

Ψ0(i) =

{
i if SA0[i] is even
j if SA0[i] + 1 = SA0[j] is odd

In both cases, augmenting B0 with a rank structure reduces the
problem to storing Ψ0 in small space.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 8 / 39



Storing Ψ0

Ψ0[i] is the position of the even successor of SA0[i] in the suffix array.

We need to compress all Ψ0[i] corresponding to odd suffixes. But the
values don’t seem to have any special structure...

Or do they? Let’s look at Ψ0[i] such that B0[i] = 0 and T [SA[i]] = a.
The indices are:

1,3,4,5,6,9,11,12

and the values are:

2,14,15,18,23,28,30,31

So, all Ψ0[i] such that B0[i] = 0 can be decomposed into two
increasing lists. If the alphabet is larger, we just have more lists!

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 9 / 39



Storing Ψ0

Ψ0[i] is the position of the even successor of SA0[i] in the suffix array.

We need to compress all Ψ0[i] corresponding to odd suffixes. But the
values don’t seem to have any special structure...

Or do they? Let’s look at Ψ0[i] such that B0[i] = 0 and T [SA[i]] = a.
The indices are:

1,3,4,5,6,9,11,12

and the values are:

2,14,15,18,23,28,30,31

So, all Ψ0[i] such that B0[i] = 0 can be decomposed into two
increasing lists. If the alphabet is larger, we just have more lists!

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 9 / 39



Storing Ψ0

Ψ0[i] is the position of the even successor of SA0[i] in the suffix array.

We need to compress all Ψ0[i] corresponding to odd suffixes. But the
values don’t seem to have any special structure...

Or do they? Let’s look at Ψ0[i] such that B0[i] = 0 and T [SA[i]] = a.
The indices are:

1,3,4,5,6,9,11,12

and the values are:

2,14,15,18,23,28,30,31

So, all Ψ0[i] such that B0[i] = 0 can be decomposed into two
increasing lists. If the alphabet is larger, we just have more lists!

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 9 / 39



Storing Ψ0

We generate a list of pairs (T [SA0[i]],Ψ0[i]) for all i such that B0[i] = 0.

To store all Ψ0[i] in small space, it is enough to show how to store an
increasing list of numbers. This sounds easier, as storing an
increasing list is easier than storing an arbitrary list!

Recursion
We will recurse on SA0, SA1, SA2, SA3, .... In SAk , our alphabet is of
size 22k

, because we are operating on blocks of 2k characters from the
original text. So storing Ψk reduces to storing an increasing list of nk

2
numbers consisting of 2k + log nk bits, where nk = n

2k .

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 10 / 39



Storing Ψ0

We generate a list of pairs (T [SA0[i]],Ψ0[i]) for all i such that B0[i] = 0.

To store all Ψ0[i] in small space, it is enough to show how to store an
increasing list of numbers. This sounds easier, as storing an
increasing list is easier than storing an arbitrary list!

Recursion
We will recurse on SA0, SA1, SA2, SA3, .... In SAk , our alphabet is of
size 22k

, because we are operating on blocks of 2k characters from the
original text. So storing Ψk reduces to storing an increasing list of nk

2
numbers consisting of 2k + log nk bits, where nk = n

2k .

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 10 / 39



Lemma
A list of nk

2 numbers consisting of 2k + log nk bits can be stored in
1
2n + 3

2nk +O( nk
log log nk

) bits of space.

We split every number into a prefix of length log nk and the rest:
1 The suffixes are stored naively, taking 2k bits each, so 2k nk

2 = n
2 in

total.
2 The prefixes are nondecreasing, so we store their differences.

The differences are encoded in unary (as in the lcp
representation), taking nk + 1

2nk = 3
2nk bits in total.

We augment the representation of the prefixes with a rank/select
structure, so that we can extract any prefix in O(1) time. This adds
O( nk

log log nk
) bits.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 11 / 39



Lemma
A list of nk

2 numbers consisting of 2k + log nk bits can be stored in
1
2n + 3

2nk +O( nk
log log nk

) bits of space.

We split every number into a prefix of length log nk and the rest:
1 The suffixes are stored naively, taking 2k bits each, so 2k nk

2 = n
2 in

total.
2 The prefixes are nondecreasing, so we store their differences.

The differences are encoded in unary (as in the lcp
representation), taking nk + 1

2nk = 3
2nk bits in total.

We augment the representation of the prefixes with a rank/select
structure, so that we can extract any prefix in O(1) time. This adds
O( nk

log log nk
) bits.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 11 / 39



Lemma
A list of nk

2 numbers consisting of 2k + log nk bits can be stored in
1
2n + 3

2nk +O( nk
log log nk

) bits of space.

We split every number into a prefix of length log nk and the rest:
1 The suffixes are stored naively, taking 2k bits each, so 2k nk

2 = n
2 in

total.
2 The prefixes are nondecreasing, so we store their differences.

The differences are encoded in unary (as in the lcp
representation), taking nk + 1

2nk = 3
2nk bits in total.

We augment the representation of the prefixes with a rank/select
structure, so that we can extract any prefix in O(1) time. This adds
O( nk

log log nk
) bits.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 11 / 39



Lemma
A list of nk

2 numbers consisting of 2k + log nk bits can be stored in
1
2n + 3

2nk +O( nk
log log nk

) bits of space.

We split every number into a prefix of length log nk and the rest:
1 The suffixes are stored naively, taking 2k bits each, so 2k nk

2 = n
2 in

total.
2 The prefixes are nondecreasing, so we store their differences.

The differences are encoded in unary (as in the lcp
representation), taking nk + 1

2nk = 3
2nk bits in total.

We augment the representation of the prefixes with a rank/select
structure, so that we can extract any prefix in O(1) time. This adds
O( nk

log log nk
) bits.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 11 / 39



Final space bound

We use such encoding at every level. When nk ≤ n
log n we terminate

and switch to the naive representation, so there are log log n levels.

Then the total space (in bits) for storing all Ψk is:

n
log n

log n +

log log n∑
i=0

1
2

n +
3
2

nk +O(
nk

log log nk
)

and the query time is O(log log n).

Together with all Bk , this gives us a bound of

1
2

n log log n + 6n +O(
n

log log n
).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 12 / 39



Final space bound

We use such encoding at every level. When nk ≤ n
log n we terminate

and switch to the naive representation, so there are log log n levels.

Then the total space (in bits) for storing all Ψk is:

n
log n

log n +

log log n∑
i=0

1
2

n +
3
2

nk +O(
nk

log log nk
)

and the query time is O(log log n).

Together with all Bk , this gives us a bound of

1
2

n log log n + 6n +O(
n

log log n
).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 12 / 39



Final space bound

We use such encoding at every level. When nk ≤ n
log n we terminate

and switch to the naive representation, so there are log log n levels.

Then the total space (in bits) for storing all Ψk is:

n
log n

log n +

log log n∑
i=0

1
2

n +
3
2

nk +O(
nk

log log nk
)

and the query time is O(log log n).

Together with all Bk , this gives us a bound of

1
2

n log log n + 6n +O(
n

log log n
).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 12 / 39



Final space bound

We use such encoding at every level. When nk ≤ n
log n we terminate

and switch to the naive representation, so there are log log n levels.

Then the total space (in bits) for storing all Ψk is:

n
log n

log n +

log log n∑
i=0

1
2

n +
3
2

nk +O(
nk

log log nk
)

and the query time is O(log log n).

Together with all Bk , this gives us a bound of

1
2

n log log n + 6n +O(
n

log log n
).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 12 / 39



Grossi and Vitter

We will again assume |Σ| = 2.

For any constant ε > 0, SA can be represented using just
(1 + 1

ε )n + o(n) bits, so that lookup(i) takes O(logε n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 13 / 39



We will build on the previous solution. Instead of storing log log n levels,
we will (for ε = 1/2) store levels 0, `′ = 1/2 log log n and ` = log log n.

Thus, we consider SA0, SA`′ and SA`. We need a mechanism to
determine if a given index in SA0 corresponds to an index in SA`′ (and
similarly for SA`′ and SA`).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 14 / 39



We will build on the previous solution. Instead of storing log log n levels,
we will (for ε = 1/2) store levels 0, `′ = 1/2 log log n and ` = log log n.

Thus, we consider SA0, SA`′ and SA`. We need a mechanism to
determine if a given index in SA0 corresponds to an index in SA`′ (and
similarly for SA`′ and SA`).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 14 / 39



Static dictionary

Given a set S ⊆ [U], we want to construct a structure for membership
queries of the form “does x ∈ S?”. Ideally, the structure should also
provide rank queries. We need constant query time!

Pagh 2002

Let B = log
(U

n

)
. Then, there is a static dictionary using

B +O(log log |U|) + o(n)

bits of space with constant query time. For U = n polylogn the
structure also provides rank queries (in constant time).

In fact, the dense case is enough here, we will see a simple
implementation on the problemset.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 15 / 39



Static dictionary

Given a set S ⊆ [U], we want to construct a structure for membership
queries of the form “does x ∈ S?”. Ideally, the structure should also
provide rank queries. We need constant query time!

Pagh 2002

Let B = log
(U

n

)
. Then, there is a static dictionary using

B +O(log log |U|) + o(n)

bits of space with constant query time. For U = n polylogn the
structure also provides rank queries (in constant time).

In fact, the dense case is enough here, we will see a simple
implementation on the problemset.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 15 / 39



Static dictionary

Given a set S ⊆ [U], we want to construct a structure for membership
queries of the form “does x ∈ S?”. Ideally, the structure should also
provide rank queries. We need constant query time!

Pagh 2002

Let B = log
(U

n

)
. Then, there is a static dictionary using

B +O(log log |U|) + o(n)

bits of space with constant query time. For U = n polylogn the
structure also provides rank queries (in constant time).

In fact, the dense case is enough here, we will see a simple
implementation on the problemset.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 15 / 39



We store indices of SA0 correspond to an index in SA`′ (and similarly
for SA`′ and SA`) in static dictionaries with rank queries. We denote
the respective structures by D0 and D`′ .

We also store the function Φk :

Φk (i) =

{
j if SAk [i] 6= nk and SAk [j] = SAk [i] + 1
1 otherwise

Ψk was “half” of Φk , the other “half” behaves similarly.

Note that now we don’t need the bitvector Bk .

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 16 / 39



We store indices of SA0 correspond to an index in SA`′ (and similarly
for SA`′ and SA`) in static dictionaries with rank queries. We denote
the respective structures by D0 and D`′ .

We also store the function Φk :

Φk (i) =

{
j if SAk [i] 6= nk and SAk [j] = SAk [i] + 1
1 otherwise

Ψk was “half” of Φk , the other “half” behaves similarly.

Note that now we don’t need the bitvector Bk .

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 16 / 39



We store indices of SA0 correspond to an index in SA`′ (and similarly
for SA`′ and SA`) in static dictionaries with rank queries. We denote
the respective structures by D0 and D`′ .

We also store the function Φk :

Φk (i) =

{
j if SAk [i] 6= nk and SAk [j] = SAk [i] + 1
1 otherwise

Ψk was “half” of Φk , the other “half” behaves similarly.

Note that now we don’t need the bitvector Bk .

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 16 / 39



How to store Ψk? Similarly to the list Lk , we can define a list L′k for the
other “half” of Ψk , and concatenate both lists.

Lemma
For k = 0, the concatenated lists can be stored in n +O(n/ log log n)
bits. For k > 0, they can be stored in n + n/2k−1 +O(n/2k log log n).

For k > 0, this is the same as earlier. For k = 0, we store a single
bitvector (treating # as a 0) with a select structure.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 17 / 39



How to store Ψk? Similarly to the list Lk , we can define a list L′k for the
other “half” of Ψk , and concatenate both lists.

Lemma
For k = 0, the concatenated lists can be stored in n +O(n/ log log n)
bits. For k > 0, they can be stored in n + n/2k−1 +O(n/2k log log n).

For k > 0, this is the same as earlier. For k = 0, we store a single
bitvector (treating # as a 0) with a select structure.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 17 / 39



Now assume that we can to access SA[i] = SA0[i]. We use Ψ0 to walk
along indices i ′, i ′′, . . . until we reach an index stored in D0. Let s be
the number of steps and r the rank of the found index in D0.

We switch to level `′ and proceed similarly. Let s′ be the number of
steps and r ′ the rank of the found index in D`′ .

We return SAl [r ′] + s′ · 2`′ + s · 20. The total number of steps is 2
√

log n.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 18 / 39



Now assume that we can to access SA[i] = SA0[i]. We use Ψ0 to walk
along indices i ′, i ′′, . . . until we reach an index stored in D0. Let s be
the number of steps and r the rank of the found index in D0.

We switch to level `′ and proceed similarly. Let s′ be the number of
steps and r ′ the rank of the found index in D`′ .

We return SAl [r ′] + s′ · 2`′ + s · 20. The total number of steps is 2
√

log n.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 18 / 39



Now assume that we can to access SA[i] = SA0[i]. We use Ψ0 to walk
along indices i ′, i ′′, . . . until we reach an index stored in D0. Let s be
the number of steps and r the rank of the found index in D0.

We switch to level `′ and proceed similarly. Let s′ be the number of
steps and r ′ the rank of the found index in D`′ .

We return SAl [r ′] + s′ · 2`′ + s · 20. The total number of steps is 2
√

log n.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 18 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



This easily generalises to ε−1 + 1 levels instead of 2, with the total
number of steps becoming O(logε n).

Now we analyse the total space in bits:

n log n
2` + n +O(n/ log log n) +

∑
k=iε`,i≥1 n(1 + 1

2k−1 +O( 1
2k log log n )

= (1 + ε−1)n +O(n/ log log n) +O(n/ logε n)

= (1 + ε−1)n +O(n/ log log n)

The largest dictionary takes only O(nε`ε`) + o(n) bits of space, so this
is subsumed by O(n/ log log n).

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 19 / 39



Time for a pattern matching query is O(m logε n + log n), disappointing.

This can be improved to e.g. O(m/ log n + logε n) in (O(1) + ε−1)n bits
of space using a hierarchy of compacted tries.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 20 / 39



Time for a pattern matching query is O(m logε n + log n), disappointing.

This can be improved to e.g. O(m/ log n + logε n) in (O(1) + ε−1)n bits
of space using a hierarchy of compacted tries.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 20 / 39



So, we have seen suffix arrays (and compressed suffix arrays). The
annoying thing about suffix arrays is that we pay some additional
penalty of log n (or even more) for every query. Is this necessary?

NO!
We can use suffix trees.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 21 / 39



So, we have seen suffix arrays (and compressed suffix arrays). The
annoying thing about suffix arrays is that we pay some additional
penalty of log n (or even more) for every query. Is this necessary?

NO!
We can use suffix trees.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 21 / 39



So, we have seen suffix arrays (and compressed suffix arrays). The
annoying thing about suffix arrays is that we pay some additional
penalty of log n (or even more) for every query. Is this necessary?

NO!
We can use suffix trees.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 21 / 39



Suffix tree ST (w [1..n])

We append a special terminating character $ to our word w [1..n]. Then
we arrange all suffixes of w [1..n]$ in a compacted trie.

Take a banana. The suffixes are $, a$, na$, ana$, nana$, anana$,
banana$.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 22 / 39



Suffix tree ST (w [1..n])

We append a special terminating character $ to our word w [1..n]. Then
we arrange all suffixes of w [1..n]$ in a compacted trie.

Take a banana. The suffixes are $, a$, na$, ana$, nana$, anana$,
banana$.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 22 / 39



Suffix tree ST (w [1..n])

We append a special terminating character $ to our word w [1..n]. Then
we arrange all suffixes of w [1..n]$ in a compacted trie.

Take a banana. The suffixes are $, a$, na$, ana$, nana$, anana$,
banana$.

a
$ n

a

$ n
a$

ba
n
a
n
a
$

na
n
a$

$

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 22 / 39



Why?
The resulting structure represents all subwords of w [1..n]. Each such
subword is an explicit or implicit node of the suffix tree.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 23 / 39



Why?
The resulting structure represents all subwords of w [1..n]. Each such
subword is an explicit or implicit node of the suffix tree.

a
$ n
a

$ n
a$

ba
n
a
n
a
$

na
n
a$

$

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 23 / 39



Why?
The resulting structure represents all subwords of w [1..n]. Each such
subword is an explicit or implicit node of the suffix tree.

a
$ n
a

$ n
a$

na
n
a$

$

b
a

n
a

n
a

$

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 23 / 39



So, a suffix tree allows us to index the input word.

Text indexing
Given a word w [1..n], construct a small structure allowing to answer
queries of the form “where does p[1..m] occur in w [1..n]?”.

We keep only the explicit nodes, there are n of them. The labels of the
edges are not kept explicitly, we just remember where do they occur in
w [1..n].

The total size of the structure is O(n) and a query can be answered in
O(m + occ) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 24 / 39



So, a suffix tree allows us to index the input word.

Text indexing
Given a word w [1..n], construct a small structure allowing to answer
queries of the form “where does p[1..m] occur in w [1..n]?”.

We keep only the explicit nodes, there are n of them. The labels of the
edges are not kept explicitly, we just remember where do they occur in
w [1..n].

The total size of the structure is O(n) and a query can be answered in
O(m + occ) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 24 / 39



So, a suffix tree allows us to index the input word.

Text indexing
Given a word w [1..n], construct a small structure allowing to answer
queries of the form “where does p[1..m] occur in w [1..n]?”.

We keep only the explicit nodes, there are n of them. The labels of the
edges are not kept explicitly, we just remember where do they occur in
w [1..n].

The total size of the structure is O(n) and a query can be answered in
O(m + occ) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 24 / 39



So, a suffix tree allows us to index the input word.

Text indexing
Given a word w [1..n], construct a small structure allowing to answer
queries of the form “where does p[1..m] occur in w [1..n]?”.

We keep only the explicit nodes, there are n of them. The labels of the
edges are not kept explicitly, we just remember where do they occur in
w [1..n].

The total size of the structure is O(n) and a query can be answered in
O(m + occ) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 24 / 39



We consider a fundamental data structure question: how to represent
a tree?

(Compacted) Trie
A trie is simply a tree with edges labeled by single characters. A
compacted trie is created by replacing maximal chains of unary
vertices with single edges labeled by (possibly long) words.

Navigation queries
Given a pattern p, we want to traverse the edges of a compacted trie
to find the node corresponding to p. If there is no such node, we would
like to compute its longest prefix for which the corresponding node
does exist.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 25 / 39



Consider p = wewpxcwrehyzrt and the following compacted trie.

qo
id
kb
as
dk

w
ew
pxc

er
w

trqw
nbog

to
vn
df
ed

hyu
gfecvbx

qt
kj
dk
ne
w
nb
og

povm
nxd

khjkdjd

cm
vn
fd
d

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 26 / 39



Consider p = wewpxcwrehyzrt and the following compacted trie.

qo
id
kb
as
dk

w
ew
pxc

er
w

trqw
nbog

to
vn
df
ed

hyu
gfecvbx

qt
kj
dk
ne
w
nb
og

povm
nxd

khjkdjd
cm

vn
fd
d

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 26 / 39



Consider p = wewpxcwrehyzrt and the following compacted trie.

qo
id
kb
as
dk

w
ew
pxc

er
w

trqw
nbog

to
vn
df
ed

hyu
gfecvbx

qt
kj
dk
ne
w
nb
og

povm
nxd

khjkdjd
cm

vn
fd
d

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 26 / 39



Consider p = wewpxcwrehyzrt and the following compacted trie.

qo
id
kb
as
dk

w
ew
pxc

er
w

trqw
nbog

to
vn
df
ed

hy

qt
kj
dk
ne
w
nb
og

povm
nxd

khjkdjd
cm

vn
fd
d

u
gfecvbx

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 26 / 39



Static case
Given a compacted trie, can we quickly construct a small structure
which allows us to execute navigation queries efficiently?

There are clearly three parameters: the number of nodes in the
compacted trie n, the size of the alphabet σ, and the length of the
pattern m. We aim to achieve good bounds in terms of those n, σ,m.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 27 / 39



Static case
Given a compacted trie, can we quickly construct a small structure
which allows us to execute navigation queries efficiently?

There are clearly three parameters: the number of nodes in the
compacted trie n, the size of the alphabet σ, and the length of the
pattern m. We aim to achieve good bounds in terms of those n, σ,m.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 27 / 39



So, what would be your first idea?

Hashing
For each node store a hash table mapping characters to the
corresponding outgoing edges.

Randomized!

Table
Or, for each node store a table of size σ mapping characters to the
corresponding outgoing edges.

Space usage is nσ!

BST
Or, for each node store a binary search tree mapping characters to the
corresponding outgoing edges.

Navigation query takes O(m log σ) time!

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 28 / 39



To make life interesting, the rules of the game are as follows:
1 the solution must be deterministic,
2 the space usage must be linear in n, irrespectively of σ,

Then it seems that navigation queries must necessarily take O(mf (σ))
time, for some function of σ, for instance f (σ) = log σ, or something
better if we use a more sophisticated predecessor structure. (Maybe)
Surprisingly, this is not true.

Suffix trays of Cole, Kopelowitz, and Lewenstein ICALP’06
There exists a deterministic linear-size structure supporting navigation
in O(m + log σ) time, which can be constructed in linear time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 29 / 39



To make life interesting, the rules of the game are as follows:
1 the solution must be deterministic,
2 the space usage must be linear in n, irrespectively of σ,

Then it seems that navigation queries must necessarily take O(mf (σ))
time, for some function of σ, for instance f (σ) = log σ, or something
better if we use a more sophisticated predecessor structure. (Maybe)
Surprisingly, this is not true.

Suffix trays of Cole, Kopelowitz, and Lewenstein ICALP’06
There exists a deterministic linear-size structure supporting navigation
in O(m + log σ) time, which can be constructed in linear time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 29 / 39



To make life interesting, the rules of the game are as follows:
1 the solution must be deterministic,
2 the space usage must be linear in n, irrespectively of σ,

Then it seems that navigation queries must necessarily take O(mf (σ))
time, for some function of σ, for instance f (σ) = log σ, or something
better if we use a more sophisticated predecessor structure. (Maybe)
Surprisingly, this is not true.

Suffix trays of Cole, Kopelowitz, and Lewenstein ICALP’06
There exists a deterministic linear-size structure supporting navigation
in O(m + log σ) time, which can be constructed in linear time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 29 / 39



To make life interesting, the rules of the game are as follows:
1 the solution must be deterministic,
2 the space usage must be linear in n, irrespectively of σ,

Then it seems that navigation queries must necessarily take O(mf (σ))
time, for some function of σ, for instance f (σ) = log σ, or something
better if we use a more sophisticated predecessor structure. (Maybe)
Surprisingly, this is not true.

Suffix trays of Cole, Kopelowitz, and Lewenstein ICALP’06
There exists a deterministic linear-size structure supporting navigation
in O(m + log σ) time, which can be constructed in linear time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 29 / 39



To make life interesting, the rules of the game are as follows:
1 the solution must be deterministic,
2 the space usage must be linear in n, irrespectively of σ,

Then it seems that navigation queries must necessarily take O(mf (σ))
time, for some function of σ, for instance f (σ) = log σ, or something
better if we use a more sophisticated predecessor structure. (Maybe)
Surprisingly, this is not true.

Suffix trays of Cole, Kopelowitz, and Lewenstein ICALP’06
There exists a deterministic linear-size structure supporting navigation
in O(m + log σ) time, which can be constructed in linear time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 29 / 39



The natural question is if the O(m + log σ) and O(log σ) bounds are the
best possible. The answer is... no, they are not.

Andersson and Thorup (even in the dynamic setting)
There exists a deterministic linear-size structure supporting navigation
in O(m +

√
log n

log log n ) time.

Are these bounds are the best possible?
Under some assumptions, yes. More specifically, they are the best
possible if σ is unbounded in terms of n, and we are interested in
stronger version of the navigation queries, which actually gives us the
predecessor of the string we are searching for.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 30 / 39



The natural question is if the O(m + log σ) and O(log σ) bounds are the
best possible. The answer is... no, they are not.

Andersson and Thorup (even in the dynamic setting)
There exists a deterministic linear-size structure supporting navigation
in O(m +

√
log n

log log n ) time.

Are these bounds are the best possible?
Under some assumptions, yes. More specifically, they are the best
possible if σ is unbounded in terms of n, and we are interested in
stronger version of the navigation queries, which actually gives us the
predecessor of the string we are searching for.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 30 / 39



The natural question is if the O(m + log σ) and O(log σ) bounds are the
best possible. The answer is... no, they are not.

Andersson and Thorup (even in the dynamic setting)
There exists a deterministic linear-size structure supporting navigation
in O(m +

√
log n

log log n ) time.

Are these bounds are the best possible?
Under some assumptions, yes. More specifically, they are the best
possible if σ is unbounded in terms of n, and we are interested in
stronger version of the navigation queries, which actually gives us the
predecessor of the string we are searching for.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 30 / 39



But it seems reasonable to consider the scenario where σ is
non-constant, yet (significantly) smaller than n. Hence we get the
following question: what are the best possible time bounds in terms of
σ?

Gawrychowski and Fischer (very simple)
There exists a static deterministic linear-size structure supporting
navigation in O(m + log log σ) time, which can be constructed in linear
time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 31 / 39



Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.

Weight-balanced BST
Given an ordered collection of n items, the i-th item having weight wi
and

∑
i wi = W , we can arrange them in a BST such that the depth of

the i-th item is O(1 + log(W/wi).

See the problemset.

Now the solution is to simply store the outgoing edges (at each node)
in weight-balanced BSTs, with weights being the sizes of the
substrees.

Do you see why this gives O(m + log n) query time?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 32 / 39



Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.

Weight-balanced BST
Given an ordered collection of n items, the i-th item having weight wi
and

∑
i wi = W , we can arrange them in a BST such that the depth of

the i-th item is O(1 + log(W/wi).

See the problemset.

Now the solution is to simply store the outgoing edges (at each node)
in weight-balanced BSTs, with weights being the sizes of the
substrees.

Do you see why this gives O(m + log n) query time?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 32 / 39



Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.

Weight-balanced BST
Given an ordered collection of n items, the i-th item having weight wi
and

∑
i wi = W , we can arrange them in a BST such that the depth of

the i-th item is O(1 + log(W/wi).

See the problemset.

Now the solution is to simply store the outgoing edges (at each node)
in weight-balanced BSTs, with weights being the sizes of the
substrees.

Do you see why this gives O(m + log n) query time?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 32 / 39



Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.

Weight-balanced BST
Given an ordered collection of n items, the i-th item having weight wi
and

∑
i wi = W , we can arrange them in a BST such that the depth of

the i-th item is O(1 + log(W/wi).

See the problemset.

Now the solution is to simply store the outgoing edges (at each node)
in weight-balanced BSTs, with weights being the sizes of the
substrees.

Do you see why this gives O(m + log n) query time?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 32 / 39



Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.

Weight-balanced BST
Given an ordered collection of n items, the i-th item having weight wi
and

∑
i wi = W , we can arrange them in a BST such that the depth of

the i-th item is O(1 + log(W/wi).

See the problemset.

Now the solution is to simply store the outgoing edges (at each node)
in weight-balanced BSTs, with weights being the sizes of the
substrees.

Do you see why this gives O(m + log n) query time?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 32 / 39



To construct a static deterministic linear-size structure, we could simply
to try to find a perfect hashing function storing pairs (node, character).
It is well-known that such functions can be found in polynomial time,
but we need linear time.

Ružić ICALP’08
A static linear-size constant-access dictionary on a set of k keys can
be deterministically constructed in time O(k log2 log k).

Hence we immediately get a static deterministic structure which can
be constructed in close-to-linear time. Can we do better?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 33 / 39



We store the edges outgoing from v in a few different ways depending
on the size of the subtree rooted at v .

Heavy nodes

A node is heavy if its subtree contains at least s = Θ(log2 log σ) leaves,
and otherwise light. Furthermore, a heavy node is branching if it has
more than one heavy child.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 34 / 39



heavy
light

heavy leaf

branching

nonbranching v
pv

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 35 / 39



We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

1 from (any) heavy node to a light node,
2 from a nonbranching heavy node to (any) heavy node,
3 from a branching heavy node to (any) heavy node,

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 36 / 39



We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

1 from (any) heavy node to a light node,
2 from a nonbranching heavy node to (any) heavy node,
3 from a branching heavy node to (any) heavy node,

At most one such edge per node, can be stored separately.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 36 / 39



We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

1 from (any) heavy node to a light node,
2 from a nonbranching heavy node to (any) heavy node,
3 from a branching heavy node to (any) heavy node,

The total number of such edges is just n
s , hence we can afford the

super-linear construction time. More precisely, we compute perfect
hashing functions for each such node separately in

O(k log2 log k) = O(k log2 log σ) = O(ks)

time, which takes O(n
s s) = O(n) time in total.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 36 / 39



We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

1 from (any) heavy node to a light node,
2 from a nonbranching heavy node to (any) heavy node,
3 from a branching heavy node to (any) heavy node,

We store all such edges in a predecessor structure. By combining the
perfect hashing result and the classical x-fast trees by Willard, there
exists a linear-size predecessor structure with O(log log σ) query time,
which can be constructed in linear time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 36 / 39



Observe that any navigation query traverses an edge of type (1) at
most once, hence we pay O(log log σ) just once (so far). But what
happens when we reach a light node?

Each light node contains at most s leaves. We can execute a binary
search over those leaves using the suffix array trick, namely in each
step we achieve at least one of the following:

1 halve the current interval,
2 consume one character from the pattern.

Hence in O(m + log s) time we can locate the predecessor of the
pattern among all leaves, and the search actually computes the
longest prefix of the pattern which is a prefix of a string corresponding
to some leaf.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 37 / 39



The total time complexity for a query is

O(m + log log σ + log s) = O(m + log log σ)

and the total construction time is linear.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 38 / 39



Questions?

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model II 39 / 39


