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We now know how to store the Icp array and the RMQ structure in
4n+ o(n) bits. But we still need to store SA, so we need nlog n bits
(we might also need to store SA~', which is another nlog n bits). Let’s
see how to decrease this bound!
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Compressed suffix arrays

A text of length n over X can be stored in nlog |X| bits. Now if X is small
(think binary), nlog n bits taken by the suffix array is way too much.
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Compressed suffix arrays

A text of length n over X can be stored in nlog |X| bits. Now if X is small
(think binary), nlog n bits taken by the suffix array is way too much.

Compressed suffix arrays

Represent SA in o(nlog n) bits of spaces, so that we can efficiently

implement lookup(/) which returns SA[i]. (We don’t care about
extracting SA™".)
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Compressed suffix arrays

A text of length n over X can be stored in nlog |X| bits. Now if X is small
(think binary), nlog n bits taken by the suffix array is way too much.

Compressed suffix arrays

Represent SA in o(nlog n) bits of spaces, so that we can efficiently
implement lookup(/) which returns SA[i]. (We don’t care about
extracting SA™".)

Grossi and Vitter 2000

For any constant € > 0, SA can be represented using just
(1+ 1)nlog |Z| + o(nlog |%|) bits, so that lookup(/) takes O(log* n).
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Can we do even better?
The empirical entropy is the average number of bits per symbol
needed to encode the text.
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Can we do even better?

The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)

n n
Ho(T) = Z FC Iogn—
cex c

where n. is the number of occurrences of character cin T.
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Can we do even better?

The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)

n n
Ho(T) = Z Fclogn—
cex c

where n. is the number of occurrences of character cin T.

k-th order empirical entropy

H(T) = 3 [Tl Ho(T:)

sexk

where T is the concatenation of all characters in T following an
occurrence of s.
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Can we do even better?

The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)
n

n,
Ho(T) = Fclogn—
cex ©

where n. is the number of occurrences of character cin T.

k-th order empirical entropy

H(T) = 1 3 I TelHo(Te)

sexk

where T is the concatenation of all characters in T following an
occurrence of s.

It is known that Lempel-Ziv compression methods approach the k-th
order empirical entropy.
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Can we do even better?

Now we would like to represent SA in space proportional to the k-th
order empirical entropy of the text.
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Can we do even better?

Now we would like to represent SA in space proportional to the k-th
order empirical entropy of the text.

Sadakane 2003

For any constant ¢, ¢ > 0, SA can be represented using
Ho(T)n'*< + n(2log(1 + Ho(T)) + 3) + o(n) bits, so that lookup(/)
takes O(- log® n) time, assuming |Z| = polylog(n).
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Now we would like to represent SA in space proportional to the k-th
order empirical entropy of the text.

Sadakane 2003

For any constant ¢, ¢ > 0, SA can be represented using
Ho(T)n'*< + n(2log(1 + Ho(T)) + 3) + o(n) bits, so that lookup(/)
takes O(- log® n) time, assuming |Z| = polylog(n).

Grossi, Gupta, Vitter 2003
SA can be represented using Hy(T)n + O(nlog || “E°5") bits.
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Can we do even better?

Now we would like to represent SA in space proportional to the k-th
order empirical entropy of the text.

Sadakane 2003

For any constant ¢, ¢ > 0, SA can be represented using
Ho(T)n'*< + n(2log(1 + Ho(T)) + 3) + o(n) bits, so that lookup(/)
takes O(- log® n) time, assuming |Z| = polylog(n).

Grossi, Gupta, Vitter 2003
SA can be represented using Hy(T)n + O(nlog || “E°5") bits.

These bounds are painful to look at, so we will ignore them. J
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Grossi and Vitter

We will assume |X| = 2.

SA can be represented in %nlog log n+ 6n+ O(@) bits, so that
lookup(i) takes O(log log n) time.
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SAy is the suffix array for the original string w = wy. We create a new
string wy by chopping wy into blocks of two characters:

w[2]w[3], w[4]w[5],...

and treating each such block as a single letter. In other words, we keep
only suffixes starting at even positions. SA; is the suffix array
constructed for wj.
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SAy is the suffix array for the original string w = wy. We create a new
string wy by chopping wy into blocks of two characters:

w[2]w[3], w[4]w[5], ...

and treating each such block as a single letter. In other words, we keep
only suffixes starting at even positions. SA; is the suffix array
constructed for wj.

Is there any relation between SAy and SA¢? J
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SAy is the suffix array for the original string w = wy. We create a new
string wy by chopping wy into blocks of two characters:

w[2]w[3], w[4]w[5],...

and treating each such block as a single letter. In other words, we keep
only suffixes starting at even positions. SA; is the suffix array
constructed for wj.

Is there any relation between SAy and SA¢? J

In other words, assume that we can perform lookup(i) on SA;. Can we
implement lookup(/) on SAq if we add just a little bit of additional data?
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128 4 56 78 91011121314 1516171819 2021 2223 24 2526 27 28 29 30 31 32

abbabbabbabbabaaabababbabbbabbat#

1516311317192810 7 4 1 2124321430121827 9 6 3 2023291126 8 5 2 2225

T:
SA():

01000011010011111100101000110110

By:

rankg:

0111112334445 6 78 910101011111212121213 14141516 16

2 214151823 7 8 28103031131415161718 7 8 211023 13 16 17 27 28 21 30 31 27

\I/()Z

128 46678 910111213141516

8145 21216 7156 9 3 1013 4 1 11

SAli
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6 7 8 91011121314 1516171819 20 21 22 23 24 25 26 27 28 29 30 51 32

5
abbabbabbabbabaaabababbabbbabbat#

1516311317192810 7 4 1 2124321430121827 9 6 3 2023291126 8 5 2 2225

1234

T:
SA():

01000011010011111100101000110110

By:

rankg:

0111112334445 6 78 910101011111212121213 14141516 16

2 214151823 7 8 28103031131415161718 7 8 211023 13 16 17 27 28 21 30 31 27

\I/()t

128 46678 910111213141516

8145 21216 7156 9 3 1013 4 1 11

SA]Z

@ If SAy[i] is even, then we return 2 - SA[/’], where /" is the number

of even suffixes in SAp[1..1].
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1283 4 56 6 7 8 91011121314 1516171819 2021 222324 252062728 29 30 31 32
T abbabbabbabbabaaabababbabbbabhbat#
SAp: 1516311317192810 7 4 1 2124321430121827 9 6 3 2023291126 8 5 2 2225
B, 01000011010011111100101000110110
ranko: 0 1 1 1 1 12 3344456 78 91010101111121212121314 141516 16
Wo: 2 214151823 7 8 28103031131415161718 7 8 211023 13 16 17 27 28 21 30 31 27
1238 45678 91011121314 1516
SA;: 8145 21216 7156 9 3 1013 4 1 11

@ If SAy[i] is even, then we return 2 - SA;[i'], where i’ is the number
of even suffixes in SAp[1..1].

Q If SAy[i] is odd, then we return 2 - SA;[i'] — 1, where /' is the
number of even suffixes in SAp[1..j], where SAq[i] = SAo[j] — 1.
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1283 4 56 6 7 8 91011121314 1516171819 2021 222324 252062728 29 30 31 32
T abbabbabbabbabaaabababbabbbabhbat#
SAp: 1516311317192810 7 4 1 2124321430121827 9 6 3 2023291126 8 5 2 2225
B, 01000011010011111100101000110110
ranko: 0 1 1 1 1 12 3344456 78 91010101111121212121314 141516 16
Wo: 2 214151823 7 8 28103031131415161718 7 8 211023 13 16 17 27 28 21 30 31 27
1238 45678 91011121314 1516
SA;: 8145 21216 7156 9 3 1013 4 1 11

@ If SAy[i] is even, then we return 2 - SA;[i'], where i’ is the number
of even suffixes in SAp[1..1].
Q If SAy[i] is odd, then we return 2 - SA;[i'] — 1, where /' is the
number of even suffixes in SAp[1..j], where SAq[i] = SAo[j] — 1.
i if SApli] is even
Vo(i)=1. . 0[.] -
j if SAgli] + 1 = SAplj] is odd
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1283 4 56 6 7 8 91011121314 1516171819 2021 222324 252062728 29 30 31 32
T abbabbabbabbabaaabababbabbbabhbat#
SAp: 1516311317192810 7 4 1 2124321430121827 9 6 3 2023291126 8 5 2 2225
B, 01000011010011111100101000110110
ranko: 0 1 1 1 1 12 3344456 78 91010101111121212121314 141516 16
Wo: 2 214151823 7 8 28103031131415161718 7 8 211023 13 16 17 27 28 21 30 31 27
128 45 678 910111213141516
SA;: 8145 21216 7156 9 3 1013 4 1 11

@ If SAy[i] is even, then we return 2 - SA;[i'], where i’ is the number
of even suffixes in SAp[1..1].

Q If SAy[i] is odd, then we return 2 - SA;[i'] — 1, where /' is the
number of even suffixes in SAp[1..j], where SAq[i] = SAo[j] — 1.

(i if SAd[i]is even
Vo(i)=1. . ; o
jif SAoli] +1 = SAq[j] is odd

In both cases, augmenting By with a rank structure reduces the
problem to storing W, in small space.
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Storing Vg

Wy [i] is the position of the even successor of SAy[/] in the suffix array. J
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Storing Vg

Wy [i] is the position of the even successor of SAy[/] in the suffix array. J

We need to compress all W[i] corresponding to odd suffixes. But the
values don’t seem to have any special structure...
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Storing Y

Wy [i] is the position of the even successor of SAy[/] in the suffix array. J

We need to compress all W[i] corresponding to odd suffixes. But the
values don’t seem to have any special structure...

Or do they? Let’s look at Wy[i] such that By[i] = 0 and T[SA[/]] = a.
The indices are:
1,3,4,5,6,9,11,12

and the values are:
2.14,15,18, 23,28, 30, 31

So, all Wy[i] such that By[i] = 0 can be decomposed into two
increasing lists. If the alphabet is larger, we just have more lists!
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Storing Y

We generate a list of pairs (T[SAo[i]], Vo[i]) for all i such that By[i] = 0.

To store all Wy[i] in small space, it is enough to show how to store an
increasing list of numbers. This sounds easier, as storing an
increasing list is easier than storing an arbitrary list!
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Storing Y

We generate a list of pairs (T[SAo[/]], Wo[i]) for all i such that By[i] = 0.

To store all W[i] in small space, it is enough to show how to store an
increasing list of numbers. This sounds easier, as storing an
increasing list is easier than storing an arbitrary list!

Recursion

We will recurse on SAg, SA;, SAs, SAs, .... In SAk, our alphabet is of
size 22", because we are operating on blocks of 2% characters from the
original text. So storing W reduces to storing an increasing list of 2
numbers consisting of 2 + log n bits, where ny = J..
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Lemma
A list of % numbers consisting of 2% + log nk bits can be stored in

3N+ 3Mk + O(jsziesr,) bits of space.

We split every number into a prefix of length log n, and the rest:
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Lemma
A list of % numbers consisting of 2% + log nk bits can be stored in

3N+ 3Mk + O(jsziesr,) bits of space.

We split every number into a prefix of length log n, and the rest:
@ The suffixes are stored naively, taking 2% bits each, so 2¢% = 2 in
total.
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Lemma

A list of % numbers consisting of 2% + log nk bits can be stored in

3N+ 3Mk + O(jsziesr,) bits of space.

We split every number into a prefix of length log ng and the rest:
@ The suffixes are stored naively, taking 2% bits each, so 2¢% = 2 in
total.

@ The prefixes are nondecreasing, so we store their differences.
The differences are encoded in unary (as in the lcp
representation), taking ng + %nk = %nk bits in total.
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Lemma

A list of % numbers consisting of 2% + log nk bits can be stored in

3N+ 3Mk + O(jsziesr,) bits of space.

We split every number into a prefix of length log ng and the rest:
N

@ The suffixes are stored naively, taking 2% bits each, so 2¢% = 2 in
total.

@ The prefixes are nondecreasing, so we store their differences.
The differences are encoded in unary (as in the lcp
representation), taking ng + %nk = %nk bits in total.

We augment the representation of the prefixes with a rank/select
structure so that we can extract any prefix in O(1) time. This adds
O( ) bits.

log Iog Nk
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Final space bound

We use such encoding at every level. When ny < o g we terminate
and switch to the naive representation, so there are log log n levels.

Pawet Gawrychowski String indexing in the Word RAM model Il 12/39



Final space bound

We use such encoding at every level. When ny < - we terminate
and switch to the naive representation, so there are Iog log n levels.

Then the total space (in bits) for storing all Wy is:

Ioglogn1 n

k
—— logn —-n n
ogn 87T ; 21+ M+ O iog )

Pawet Gawrychowski String indexing in the Word RAM model Il 12/39



Final space bound

We use such encoding at every level. When n, < -7 we terminate
and switch to the naive representation, so there are Iog log n levels.

Then the total space (in bits) for storing all W is:

loglogn

3 Ny
logn —
Iog og N+ Z 5+ 5+ O

)

log log Nk
and the query time is O(log log n).
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Final space bound

We use such encoding at every level. When n, < -7 we terminate
and switch to the naive representation, so there are Iog log n levels.

Then the total space (in bits) for storing all W is:

loglogn

3 Ny
I —n n
Iog ogn—+ Z +t3 k + O(

log log Nk

)

and the query time is O(log log n).

Together with all By, this gives us a bound of

1
—nloglogn n _—).
5Nloglog +6n+ O(Ioglogn)
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Grossi and Vitter

We will again assume |X| = 2.

For any constant e > 0, SA can be represented using just
(1 + 1)n+ o(n) bits, so that lookup(i) takes O(log® n). J
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We will build on the previous solution. Instead of storing log log n levels,
we will (for e = 1/2) store levels 0, ¢ = 1/2loglog n and ¢ = log log n.
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We will build on the previous solution. Instead of storing log log n levels,
we will (for e = 1/2) store levels 0, ¢ = 1/2loglog n and ¢ = log log n.

Thus, we consider SAg, SA, and SA,. We need a mechanism to
determine if a given index in SA, corresponds to an index in SA, (and
similarly for SA, and SA/).
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Static dictionary

Given a set S C [U], we want to construct a structure for membership
queries of the form “does x € S?”. Ideally, the structure should also
provide rank queries. We need constant query time!
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Static dictionary

Given a set S C [U], we want to construct a structure for membership
queries of the form “does x € S?”. Ideally, the structure should also
provide rank queries. We need constant query time!

Pagh 2002
Let B = log (Y). Then, there is a static dictionary using
B+ O(log log |U|) + o(n)

bits of space with constant query time. For U = n polylogn the
structure also provides rank queries (in constant time).
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Static dictionary

Given a set S C [U], we want to construct a structure for membership
queries of the form “does x € S?”. Ideally, the structure should also
provide rank queries. We need constant query time!

Pagh 2002
Let B = log (Y). Then, there is a static dictionary using
B+ O(log log |U|) + o(n)

bits of space with constant query time. For U = n polylogn the
structure also provides rank queries (in constant time).

In fact, the dense case is enough here, we will see a simple
implementation on the problemset.
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We store indices of SAg correspond to an index in SA, (and similarly
for SAy and SAy) in static dictionaries with rank queries. We denote
the respective structures by Dy and Dy.

We also store the function ®:

o) [1 T SA # ni and SA] = SA]+ 1
771 otherwise
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We store indices of SAg correspond to an index in SA, (and similarly
for SAy and SAy) in static dictionaries with rank queries. We denote
the respective structures by Dy and Dy.

We also store the function ®:

oy {1 T SAI # e and SA] = SAL] +
771 otherwise

v, was “half” of ¢, the other “half” behaves similarly.
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We store indices of SAg correspond to an index in SA, (and similarly
for SAy and SAy) in static dictionaries with rank queries. We denote
the respective structures by Dy and Dy.

We also store the function ®:

oy {1 T SAI # e and SA] = SAL] +
771 otherwise

v, was “half” of ¢, the other “half” behaves similarly.

Note that now we don’t need the bitvector By. )
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How to store W, ? Similarly to the list Ly, we can define a list L for the
other “half” of W, and concatenate both lists.

Lemma

For k = 0, the concatenated lists can be stored in n+ O(n/ log log n)
bits. For k > 0, they can be stored in n+4 n/2k=1 4 O(n/2K log log n).
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How to store W,? Similarly to the list Lx, we can define a list L) for the
other “half” of W, and concatenate both lists.

Lemma

For k = 0, the concatenated lists can be stored in n+ O(n/ log log n)
bits. For k > 0, they can be stored in n+4 n/2k=1 4 O(n/2K log log n).

For k > 0, this is the same as earlier. For k = 0, we store a single
bitvector (treating # as a 0) with a select structure.
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Now assume that we can to access SA[i] = SAy|[i]. We use V; to walk
along indices /, /", ... until we reach an index stored in Dy. Let s be
the number of steps and r the rank of the found index in Dy.
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Now assume that we can to access SA[i] = SAy|[i]. We use V; to walk
along indices /, /", ... until we reach an index stored in Dy. Let s be
the number of steps and r the rank of the found index in Dy.

We switch to level ¢/ and proceed similarly. Let s’ be the number of
steps and r’ the rank of the found index in D,.
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Now assume that we can to access SA[i] = SAy|[i]. We use V; to walk
along indices /, /", ... until we reach an index stored in Dy. Let s be
the number of steps and r the rank of the found index in Dy.

We switch to level ¢/ and proceed similarly. Let s’ be the number of
steps and r’ the rank of the found index in D,.

We return SA/[r'] + s - 2% +s-20. The total number of steps is 2+/log n.
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This easily generalises to ¢! + 1 levels instead of 2, with the total
number of steps becoming O(log® n).
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This easily generalises to ¢! + 1 levels instead of 2, with the total
number of steps becoming O(log® n).

Now we analyse the total space in bits:
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This easily generalises to ¢! + 1 levels instead of 2, with the total
number of steps becoming O(log® n).

Now we analyse the total space in bits:

nlogn
ot
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This easily generalises to ¢! + 1 levels instead of 2, with the total
number of steps becoming O(log® n).

Now we analyse the total space in bits:

nlogn + n+ O(n/loglogn)
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This easily generalises to ¢! + 1 levels instead of 2, with the total
number of steps becoming O(log® n).

Now we analyse the total space in bits:

TSET + n+0(n/loglog n) + S k_jer,i>1 N1 + g5 + Olgriomiagn)
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This easily generalises to ¢! + 1 levels instead of 2, with the total
number of steps becoming O(log® n).

Now we analyse the total space in bits:

nlogn +n+0(n/ |Og Iogn)—i-zk iet,i>1 n(1 +O(§k|og—logn)
=1 +eNn+0(n/loglogn) + C’)(n/ log® n)
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This easily generalises to ¢! + 1 levels instead of 2, with the total
number of steps becoming O(log® n).

Now we analyse the total space in bits:

TSET + n+0(n/loglog n) + S k_jer,i>1 N1 + g5 + Olgriomiagn)
=1 +eNn+0(n/loglogn) + C’)(n/ log® n)
=(1+eNn+0(n/loglog n)
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This easily generalises to e~' + 1 levels instead of 2, with the total
number of steps becoming O(log® n).

Now we analyse the total space in bits:

nlogn

+n+(’)(n/ Iog Iogn)—i-zk jet,i>1 n(1 2k 1 +O(
=1 +e")n+0(n/loglogn) + O(n/ log n)
=1 +e")n+0(n/loglogn)

2k Iog log n)

The largest dictionary takes only O(n.ef) + o(n) bits of space, so this
is subsumed by O(n/ log log n).
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Time for a pattern matching query is O(mlog® n+ log n), disappointing.
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Time for a pattern matching query is O(mlog® n+ log n), disappointing.

This can be improved to e.g. O(m/ log n + log® n) in (O(1) + ¢~ ")n bits
of space using a hierarchy of compacted tries.
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So, we have seen suffix arrays (and compressed suffix arrays). The
annoying thing about suffix arrays is that we pay some additional
penalty of log n (or even more) for every query. Is this necessary?

Pawet Gawrychowski String indexing in the Word RAM model Il 21/39



So, we have seen suffix arrays (and compressed suffix arrays). The
annoying thing about suffix arrays is that we pay some additional
penalty of log n (or even more) for every query. Is this necessary?

NO!
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So, we have seen suffix arrays (and compressed suffix arrays). The
annoying thing about suffix arrays is that we pay some additional
penalty of log n (or even more) for every query. Is this necessary?

NO!

We can use suffix trees.
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Suffix tree ST(w(1..n])

We append a special terminating character $ to our word w(1..n]. Then
we arrange all suffixes of w[1..n]$ in a compacted trie.
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Suffix tree ST(w(1..n])

We append a special terminating character $ to our word w(1..n]. Then
we arrange all suffixes of w[1..n]$ in a compacted trie.
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Why?
The resulting structure represents all subwords of w[1..n]. Each such
subword is an explicit or implicit node of the suffix tree.
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So, a suffix tree allows us to index the input word.
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So, a suffix tree allows us to index the input word.

Text indexing

Given a word w[1..n], construct a small structure allowing to answer
queries of the form “where does p[1..m| occur in w[1..n]?”".
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So, a suffix tree allows us to index the input word.

Text indexing

Given a word w(1..n], construct a small structure allowing to answer
queries of the form “where does p[1..m] occur in w[1..n]?".

We keep only the explicit nodes, there are n of them. The labels of the
edges are not kept explicitly, we just remember where do they occur in
w(1..n].
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So, a suffix tree allows us to index the input word.

Text indexing

Given a word w(1..n], construct a small structure allowing to answer
queries of the form “where does p[1..m] occur in w[1..n]?".

We keep only the explicit nodes, there are n of them. The labels of the
edges are not kept explicitly, we just remember where do they occur in
w(1..n].

The total size of the structure is O(n) and a query can be answered in
O(m+ occ) time. J
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We consider a fundamental data structure question: how to represent
atree?

(Compacted) Trie

A trie is simply a tree with edges labeled by single characters. A
compacted trie is created by replacing maximal chains of unary
vertices with single edges labeled by (possibly long) words.

Navigation queries

Given a pattern p, we want to traverse the edges of a compacted trie
to find the node corresponding to p. If there is no such node, we would
like to compute its longest prefix for which the corresponding node
does exist.
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Consider p = wewpxcwrehyzrt and the following compacted trie.
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Static case

Given a compacted trie, can we quickly construct a small structure
which allows us to execute navigation queries efficiently?
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Static case

Given a compacted trie, can we quickly construct a small structure
which allows us to execute navigation queries efficiently?

There are clearly three parameters: the number of nodes in the
compacted trie n, the size of the alphabet o, and the length of the
pattern m. We aim to achieve good bounds in terms of those n, o, m.

Pawet Gawrychowski String indexing in the Word RAM model Il 27/39



So, what would be your first idea?

Hashing

For each node store a hash table mapping characters to the
corresponding outgoing edges.

Randomized!

Table

Or, for each node store a table of size o mapping characters to the
corresponding outgoing edges.

Space usage is no!

BST

Or, for each node store a binary search tree mapping characters to the
corresponding outgoing edges.

Navigation query takes O(mlog o) time!
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To make life interesting, the rules of the game are as follows:
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To make life interesting, the rules of the game are as follows:
@ the solution must be deterministic,
@ the space usage must be linear in n, irrespectively of o,
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To make life interesting, the rules of the game are as follows:
@ the solution must be deterministic,
@ the space usage must be linear in n, irrespectively of o,

Then it seems that navigation queries must necessarily take O(mf(c))
time, for some function of o, for instance f(o) = log o, or something
better if we use a more sophisticated predecessor structure. (Maybe)
Surprisingly, this is not true.
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To make life interesting, the rules of the game are as follows:
@ the solution must be deterministic,
@ the space usage must be linear in n, irrespectively of o,

Then it seems that navigation queries must necessarily take O(mf(c))
time, for some function of o, for instance f(o) = log o, or something
better if we use a more sophisticated predecessor structure. (Maybe)
Surprisingly, this is not true.

Suffix trays of Cole, Kopelowitz, and Lewenstein ICALP’06

There exists a deterministic linear-size structure supporting navigation
in O(m + log o) time, which can be constructed in linear time.
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The natural question is if the O(m + log ) and O(log o) bounds are the
best possible. The answer is... no, they are not.
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The natural question is if the O(m + log ) and O(log o) bounds are the
best possible. The answer is... no, they are not.

Andersson and Thorup (even in the dynamic setting)
There exists a deterministic linear-size structure supporting navigation

in O(m + Io'g"ﬁ,’g’n) time.
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The natural question is if the O(m + log o) and O(log o) bounds are the
best possible. The answer is... no, they are not.

Andersson and Thorup (even in the dynamic setting)
There exists a deterministic linear-size structure supporting navigation

in O(m+ |o§ﬁ,'g’n) time.

Are these bounds are the best possible?

Under some assumptions, yes. More specifically, they are the best
possible if o is unbounded in terms of n, and we are interested in
stronger version of the navigation queries, which actually gives us the
predecessor of the string we are searching for.
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But it seems reasonable to consider the scenario where o is
non-constant, yet (significantly) smaller than n. Hence we get the
following question: what are the best possible time bounds in terms of
o?

Gawrychowski and Fischer (very simple)

There exists a static deterministic linear-size structure supporting
navigation in O(m + log log o) time, which can be constructed in linear
time.
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Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.
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Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.

Weight-balanced BST

Given an ordered collection of n items, the i-th item having weight w;
and ), w; = W, we can arrange them in a BST such that the depth of

the i-th item is O(1 + log(W/w;).
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Given an ordered collection of n items, the i-th item having weight w;
and ), w; = W, we can arrange them in a BST such that the depth of
the i-th item is O(1 + log(W/w;).

See the problemset.

Now the solution is to simply store the outgoing edges (at each node)
in weight-balanced BSTs, with weights being the sizes of the
substrees.
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Let us first see the folklore solution with O(m + log n) query time that
uses weight-balanced BSTs.

Weight-balanced BST

Given an ordered collection of n items, the i-th item having weight w;
and ), w; = W, we can arrange them in a BST such that the depth of
the i-th item is O(1 + log(W/w;).

See the problemset.

Now the solution is to simply store the outgoing edges (at each node)
in weight-balanced BSTs, with weights being the sizes of the
substrees.

Do you see why this gives O(m + log n) query time?
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To construct a static deterministic linear-size structure, we could simply
to try to find a perfect hashing function storing pairs (node, character).
It is well-known that such functions can be found in polynomial time,
but we need linear time.

Ruzi¢ ICALP’08
A static linear-size constant-access dictionary on a set of k keys can
be deterministically constructed in time O(k log? log k).

Hence we immediately get a static deterministic structure which can
be constructed in close-to-linear time. Can we do better?
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We store the edges outgoing from v in a few different ways depending
on the size of the subtree rooted at v.

Heavy nodes

A node is heavy if its subtree contains at least s = @(Iog2 log o) leaves,
and otherwise light. Furthermore, a heavy node is branching if it has
more than one heavy child.
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Ae heavy
A O light
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We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

@ from (any) heavy node to a light node,
@ from a nonbranching heavy node to (any) heavy node,
© from a branching heavy node to (any) heavy node,
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We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

@ from (any) heavy node to a light node,
@ from a nonbranching heavy node to (any) heavy node,
© from a branching heavy node to (any) heavy node,

At most one such edge per node, can be stored separately. )
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We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

@ from (any) heavy node to a light node,
@ from a nonbranching heavy node to (any) heavy node,
© from a branching heavy node to (any) heavy node,

The total number of such edges is just 2, hence we can afford the
super-linear construction time. More precisely, we compute perfect
hashing functions for each such node separately in

O(k log?log k) = O(k log?log o) = O(ks)

time, which takes O(§s) = O(n) time in total.
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We classify edges outgoing from heavy nodes into three types, and
deal with each type separately:

@ from (any) heavy node to a light node,
@ from a nonbranching heavy node to (any) heavy node,
© from a branching heavy node to (any) heavy node,

We store all such edges in a predecessor structure. By combining the
perfect hashing result and the classical x-fast trees by Willard, there
exists a linear-size predecessor structure with O(log log o) query time,
which can be constructed in linear time.
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Observe that any navigation query traverses an edge of type (1) at
most once, hence we pay O(loglog o) just once (so far). But what
happens when we reach a light node?

Each light node contains at most s leaves. We can execute a binary
search over those leaves using the suffix array trick, namely in each
step we achieve at least one of the following:

@ halve the current interval,
© consume one character from the pattern.

Hence in O(m + log s) time we can locate the predecessor of the
pattern among all leaves, and the search actually computes the
longest prefix of the pattern which is a prefix of a string corresponding
to some leaf.
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The total time complexity for a query is
O(m+ loglogo + log 8) = O(m + log log o)

and the total construction time is linear.
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Questions?
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