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Sometimes we use the Turing machine model, where we have a fixed
number of tapes consisting of binary cells, and the only thing we can
do is moving the heads. But this is not really how real computers are
built, and we would like to work in a more realistic model.
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Word RAM Memory is divided into cells of size w ≥
log n called words. There is a fixed set of
O(1) time C-style operations, one of them
being indirect addressing, so given a word
containing x , we can access the cell x (not
the case in the pointer machine model!).
The input consists of numbers stored in
single words.

AC0 RAM All operations must be implemented
by constant-depth, unbounded fan-in,
polynomial-size (in w) circuits. No multi-
plication.

Practical RAM Just addition, shift, and bitwise boolean
operations.

RAMBO RAM Bits in different words may overlap.
Cell probe model We only pay for accessing cells. The com-

putation itself is free and the model is no-
nuniform. Good for lower bounds!
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The goal
A string is just a sequence of characters over an alphabet Σ, for
example bbababababaab.

String indexing
We are given a very long string w [1..n]. We want to preprocess it in small

space, so that later we can answer MANY queries of the following
form: given a pattern p[1..m], doest it occur in w? And if so, where?

Today we will see suffix arrays, which allow us to preprocess a string in
O(n) space and time, so that later any query can be answered in time
O(m + log n), or (after some tweaks) even better.

This is also known as text indexing. One should keep in mind that by
text we don’t really mean a natural language text, as such texts are not
very long. It’s better to think about biological sequences, which are
very long strings over Σ = {A,C,G,T}.
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Lexicographical comparison
s ≤ t if either s is a prefix of t , or s and t agree on the first i − 1
positions, i.e., s[1] = t [1], s[2] = t [2], ..., s[i − 1] = t [i − 1], and then
s[i] < t [i].

While assuming that the size of the alphabet is constant is not unusual
here, in some applications we will work in a more general setting,
where a string of length n consists of letters which are numbers from
{1, . . . ,n}. (But not much larger!)
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Now the suffix array is simply the lexicographically sorted list of all
suffixes of a given word w .

w = mississippi

SA[1] = 11 = i
SA[2] = 8 = ippi
SA[3] = 5 = issippi
SA[4] = 2 = ississippi
SA[5] = 1 = mississippi
SA[6] = 10 = pi
SA[7] = 9 = ppi
SA[8] = 7 = sippi
SA[9] = 4 = sissippi
SA[10] = 6 = ssippi
SA[11] = 3 = ssissippi
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Why this is useful?

Generating all occurrences of a given pattern
Say that we want to output all occurrences of p = ippi. Can we say
something about the structure of the set of all occurrences when we
look at the sorted list of all suffixes?

Lemma
All occurrences of the same p create a contiguous fragment
SA[i],SA[i + 1], . . . ,SA[j] of the suffix array.

The question is how to determine this fragment?
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Lemma
SA[i − 1] < p ≤ SA[i].

Recall that SA[1] < SA[2] < . . . < SA[n]. Hence we can binary search
for the value of i ! And then verify if it corresponds to an occurrence,
i.e., whether p is indeed a prefix of SA[i].

How to determine j?
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So far so good, but there are at least three questions:
How much time the binary search takes?
How much space do we need to store the suffix array?
How much time do we need to compute the suffix array?
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Storing the suffix array is easy: even though we think that SA[i] is a
word, it is really just a number denoting the starting position in w .
Having the number we can access any letter of the word
corresponding to SA[i] in O(1) time. Hence the required space is O(n).

Binary searching is more tricky. There are just O(log n) iterations, but
each of them requires... ...O(m) time. Hence the total complexity is
O(m log n). Later we will see how to decrease it to O(m + log n).

Finally, constructing the suffix array in a naive way would take
O(n2 log n) time. Now we will see how to decrease it to O(n).
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For the linear time suffix array construction algorithm we need two
basic building blocks.

Radix sort
A sequence of n numbers from {1,2, . . . , k} can be sorted in O(n + k)
time. A sequence of n pairs from {1, . . . , k} × {1, . . . , k} can be sorted
in the same complexity.

What about a sequence of triples?

Merging
Two sorted sequences a1,a2, . . . ,an and b1,b2, . . . ,bm can be merged
in O(n + m) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 11 / 56



For the linear time suffix array construction algorithm we need two
basic building blocks.

Radix sort
A sequence of n numbers from {1,2, . . . , k} can be sorted in O(n + k)
time. A sequence of n pairs from {1, . . . , k} × {1, . . . , k} can be sorted
in the same complexity.

What about a sequence of triples?

Merging
Two sorted sequences a1,a2, . . . ,an and b1,b2, . . . ,bm can be merged
in O(n + m) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 11 / 56



For the linear time suffix array construction algorithm we need two
basic building blocks.

Radix sort
A sequence of n numbers from {1,2, . . . , k} can be sorted in O(n + k)
time. A sequence of n pairs from {1, . . . , k} × {1, . . . , k} can be sorted
in the same complexity.

What about a sequence of triples?

Merging
Two sorted sequences a1,a2, . . . ,an and b1,b2, . . . ,bm can be merged
in O(n + m) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 11 / 56



For the linear time suffix array construction algorithm we need two
basic building blocks.

Radix sort
A sequence of n numbers from {1,2, . . . , k} can be sorted in O(n + k)
time. A sequence of n pairs from {1, . . . , k} × {1, . . . , k} can be sorted
in the same complexity.

What about a sequence of triples?

Merging
Two sorted sequences a1,a2, . . . ,an and b1,b2, . . . ,bm can be merged
in O(n + m) time.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 11 / 56



Let’s start with an O(n2) time algorithm.

O(n2) algorithm
For each i = n,n − 1,n − 2, . . . ,1 construct a sorted list Li containing
all w [i ..n], w [i + 1..n], w [i + 2..n], ... w [n..n].

Assume that we have the list Li+1, and want to construct the list for i .
For each j = i , i + 1, . . . ,n construct a pair (w [j], nri+1[j + 1]), where
nri(j) is the position of w [j ..n] on the list Li . Then sort all pairs, and
notice that their order determines Li+1.
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Now let’s try to improve the complexity to O(n log n).

When you think about the previous solution, some fragments of the
word will be compared again... and again...

We apply the doubling method. To make the description easier,
append n additional null characters to w , so that it is actually a word of
length 2n.

O(n log n) algorithm
For each i = 0,1,2, . . . , log n construct a sorted list Li containing all
w [1..1 + 2i − 1], w [2..2 + 2i − 1], ..., w [n..n + 2i − 1].

Assume that we have the list Li , and want to construct the list for i + 1.
For each j = 1,2, . . . ,n construct a pair (nri(j), nri(j + 2i)), where nri(j)
is the position of w [j ..j + 2i − 1] on the list Li . Then sort all pairs, and
notice that their order determines Li+1.
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Kärkkäinen and Sanders 2003
Suffix array can be constructed in O(n) time.

The idea is recursive. We will try to design the algorithm so that its
running time can be expressed as T (n) = T (αn) +O(n), where α is
some constant less than 1.

Notice that the recursion solves to T (n) = O(n).
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We partition all suffixes into three groups.

S0 = {w [3..n],w [6..n],w [9..n], . . .}
S1 = {w [1..n],w [4..n],w [7..n], . . .}
S2 = {w [2..n],w [5..n],w [8..n], . . .}

Sr are all suffixes that start at positions of the form 3k + r .

The goal is to sort all suffixes. We could start with something simpler:
sorting (separately) each Sr .
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First trick
Say that we want to sort only S1. We could split w into blocks of length
3, treat each block as a single letter, and recursively solve a smaller
problem of size n

3 .
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w[1] w[2] w[3] w[4] w[5] w[6] w[n]w[n-2]w[n-1]...

We must be careful here: we promised that the input word of length |w |
will contain only letters {1,2, . . . , |w |}, and here we create triples of
letters.

Alphabet renaming
Create a sorted list of all triples (w [i],w [i + 1],w [i + 2]) and then
compute the number nr(i) of each triples there. This can be done in
O(n) time using radix sort.

We append two null characters to w , so that the expression
(w [i],w [i + 1],w [i + 2]) always makes sense.
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OK, so we can sort S1. Similarly, we can sort S0 and S2, but we cannot
afford to sort all of them!

Second trick
Assuming that we have already sorted S1 ∪ S2, we can sort S0 ∪ S1 in
O(n) time. For this we represent every suffix from S0 ∪ S1 as a pair:

w [3k ..n] becomes (w [3k ],w [3k + 1..n]),
w [3k + 1..n] becomes (w [3k + 1],w [3k + 2..n]),

The order on pairs is clearly the same as the order on suffixes, so
sorting the pairs allows us to sort the suffixes.
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Why this idea is all we need?

We already have sorted S1 ∪ S2.

We can sort S0 by replacing a suffix w [3k ..n] with the corresponding
pair, and then sorting the pairs using radix sort. Just replace the
second element of each pair with its position in the already known
sorted sequence of all S1 ∪ S2!

Then we only have to merge two sorted sequences of length 1
3n and

2
3n. This can be done in linear time, assuming that we can compare
any two elements in O(1) time.
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So, how to compare any w [3i ..n] ∈ S0 with w [j ..n] ∈ S1 ∪ S2?
j = 3k + 1, then represent w [3i ..n] as (w [3i],w [3i + 1..n]) and
w [j ..n] = w [3k + 1..n] as (w [3k + 1],w [3k + 2..n]). w [3i + 1..n]
can be compared with w [3k + 2] as they both belong to S1 ∪ S2.
j = 3k + 2, then represent w [3i ..n] as a triple
(w [3i],w [3i + 1],w [3i + 2..n]) and w [j ..n] = w [3k + 2..n] as
(w [3k + 2],w [3(k + 1)],w [3(k + 1) + 1..n]). w [3i + 2..n] can be
compared with w [3(k + 1) + 1] as they both belong to S1 ∪ S2.

Hence any two elements can be compared in O(1) time.
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We are almost done. The only remaining question is how to sort
S1 ∪ S2. We know how to sort S1 and S2 separately with a recursive
call, but we need a stronger observation.

Third trick
The order on all S1 ∪ S2 can be computed by sorting all suffixes of
w ′ = nr(1)nr(4)nr(7) . . . nr(2)nr(5)nr(8) . . ..

Finally, we get an algorithm with the running time of the form

T (n) = T (2
3n) +O(n), which is O(n). Nice! ,
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Recall that our motivation for constructing the suffix array was that
using it we can locate an occurrence of any pattern of length m in
O(m log n) time. Now we are almost ready to speed this up!

The suffix array SA alone is not that useful. Usually it is augmented
with the inverse suffix array SA−1, where SA−1[i] is the position of
w [i ..n] in SA, i.e., SA[SA−1[i]] = i , and with a longest common prefix
structure.

LCP
lcp(i , j) is the longest common prefix of w [i ..n] and w [j ..n]. lcp[i] is the
longest common prefix of the (i − 1)-th and i-th suffix in the suffix
array, or in other words lcp(SA[i − 1],SA[i]), with lcp[1] not defined.
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w = mississippi

SA[1] = 11 = i
SA[2] = 8 = ippi
SA[3] = 5 = issippi
SA[4] = 2 = ississippi
SA[5] = 1 = mississippi
SA[6] = 10 = pi
SA[7] = 9 = ppi
SA[8] = 7 = sippi
SA[9] = 4 = sissippi
SA[10] = 6 = ssippi
SA[11] = 3 = ssissippi

What is lcp(8,2)?
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SA[2] = 8 = ippi lcp[2] = 1
SA[3] = 5 = issippi lcp[3] = 1
SA[4] = 2 = ississippi lcp[4] = 4
SA[5] = 1 = mississippi lcp[5] = 0
SA[6] = 10 = pi lcp[6] = 0
SA[7] = 9 = ppi lcp[7] = 1
SA[8] = 7 = sippi lcp[8] = 0
SA[9] = 4 = sissippi lcp[9] = 2
SA[10] = 6 = ssippi lcp[10] = 1
SA[11] = 3 = ssissippi lcp[11] = 3
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Lemma
lcp(i , j) is the minimum of all lcp[k ] over k = SA−1[i] + 1, SA−1[i] + 2,
. . ., SA−1[j], assuming i is before j in the suffix array.

So what?
So, assuming that we know lcp[i], computing any lcp(i , j) requires just
one range minimum query.

RMQ
Given an array A[1..n], preprocess it so that the minimum of any
fragment A[i],A[i + 1], . . . ,A[j] can be computed efficiently.

Later we will see a linear time/space preprocessing allowing answering
any query in O(1) time. For the time being assume that we know how
to do that.
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OK, but how to compute the array lcp[2], lcp[3], . . . , lcp[n]?

Kasai et al. 2001
All lcp can be computed in (amortized) O(1) time per entry.

The procedure uses the following observation

lcp[SA−1[i]]− 1 ≤ lcp[SA−1[i + 1]]

See the problem set.
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And recall that we wanted to use the suffix array to locate any (or all)
occurrences of a given pattern.

Searching for an occurrence of p
We want to locate the smallest i such that SA[i] ≥ p. Then either SA[i]
begins with p, and hence p occurs at position i , or there is no
occurrence at all.

Binary search
Binary search uses log n iterations, but each of them might cost even
Ω(m) operations! Hence the whole procedure is O(m log n).
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Now the question is whether we can do better. It seems that we are
wasting lots of time comparing very similar blocks of texts again and
again. Not cool!

lcp again
Recall that lcp(i , j) is the longest common prefix of the suffixes w [i ..n]
and w [j ..n]. We know how to compute all lcp[i], and we observed that
computing lcp(i , j) reduces to the so-called Range Minimum Query on
the lcp[i] array.

For the time being assume that we know how to answer RMQ queries
on any array in O(1) time after linear preprocessing. Then we can
compute any lcp(i , j) in O(1) time. Can this help us to speed up the
binary searching?
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Invariant
We maintain a range [L,R] such that the answer is somewhere inside,
and we know the longest common prefix of SA[L] and p, and SA[R]
and p.

We choose M ∈ (L,R). Of course we know that the longest common
prefix of SA[M] and p is at least as long as the minimum of the two
known prefixes, but we can notice even more.

Let ` be the longest common prefix of SA[L] and p, and r be the
longest common prefix of SA[R] and p. Assume that ` ≤ r , the
situation is symmetric so the other case is very similar.
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Look at lcp(SA[M],SA[R]).
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`

r

L

R

M

If lcp(SA[M],SA[R]) < r , set L = M and ` = lcp(SA[M],SA[R]).
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`

r

L

R

M

If lcp(SA[M],SA[R]) > r , set R = M and keep old ` and r .
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`

r

L

R

M

If lcp(SA[M],SA[R]) = r , compute the longest common prefix of SA[M]
and p, but start from the r -th character. Depending on the next
character set L = M or R = M.
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Let’s look again at the last case. Say that the longest common prefix of
SA[M] and p be k . We have two cases:

the next character of SA[M] is less than p[k + 1], then we set
L = M and ` = k ,
the next character of SA[M] is greater than p[k + 1], then we set
R = M and r = k .

In both cases we spent just O(k − r + 1) time computing the longest
common prefix.

The value of `+ r doesn’t decrease.

It follows that the sum of O(k − r) over all steps of the procedure is just
O(m) in the worst possible case. We additionally spent O(1) time per
step to look at SA[M], hence the total complexity is O(m + log n).
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O(m) in the worst possible case. We additionally spent O(1) time per
step to look at SA[M], hence the total complexity is O(m + log n).
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Recall that we assumed that computing any lcp(i , j) takes O(1) time.
While it can be done (as we will soon see), that’s an overkill. Do we
really need to compute any such value?

L = 1, R = n

L = 1, R = n
2 L = n

2 , R = n

L = 1, R = n
4

L = n
4 , R = n

2 L = n
2 , R = 3n

4
L = 3n

4 , R = n

Each node of the recursion tree generates just two values
lcp(SA[L],SA[M]) and lcp(SA[M],SA[R]) to be computed. Hence we
have just O(n) values in total!
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All those values can be actually computed in O(n) time in a bottom-top
manner.

L

M

R

Lemma
lcp(SA[L],SA[R]) = min(lcp(SA[L],SA[M]), lcp(SA[M],SA[R]))
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Even though we showed yesterday that storing just 2n values of
lcp(i , j) allows us to execute the binary search efficiently, being able to
answer any lcp(i , j) would be great (we will see why during the
exercises). Recall that we were able to reduce the question to the
so-called RMQ problem.

RMQ
Given an array A[1..n], preprocess it so that the minimum of any
fragment A[i],A[i + 1], . . . ,A[j] can be computed efficiently.

First observe that answering any query in O(1) is trivial if we allow
O(n2) time and space preprocessing.
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Lemma
RMQ can be solved in O(1) time after O(n log n) time and space
preprocessing.

To prove the lemma, we will (again) apply the simple-yet-powerful
doubling technique. For each k = 0,1, . . . , log n construct a table Bk .

Bk [i] = min{A[i],A[i + 1],A[i + 2], . . . ,A[i + 2k − 1]}
How? Well, B0[i] = A[i], and Bk+1[i] = min(Bk [i],Bk [i + 2k ]). Hence we
can easily answer a query concerning a fragment of length that is a
power of 2. But, unfortunately, not all numbers are powers of 2...
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...or are they?

Answering a query concerning a range [i , j ]
To figure out which two power-of-two queries should be asked,
compute k = blog j − i + 1c. Then return min(Bk [i],Bk [j − 2k + 1]).
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Lemma
RMQ can be solved in O(log n) time after O(n) time and space
preprocessing.

We apply another simple-yet-powerful technique: indirection. Chop the
input array into blocks of length b = log n.

Construct a new array A′:

A′[i] = min{A[ib + 1],A[ib + 2], . . . ,A[(i + 1)b]}

Build the previously described structure for A′.
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For each block, precompute the maximum in each prefix and each
suffix, which takes just O(n) time and space. Then, using the structure
built for A′, we can answer any query in O(1) time.

Unfortunately, life is not that simple.

But the only case when we cannot answer a query in O(1) time is
when the range is strictly inside a single block. Revert to the naive
one-by-one computation!
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OK, but we promised the best of both worlds: O(1) query and O(n)
space.

Lemma
RMQ can be solved in O(1) time by adding 2n + o(n) bits of space.

We “only” have to deal with the strictly-inside-a-block case.
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We observe that the exact values of the elements don’t matter that
much, and we consider the so-called Cartesian tree of each block.

Cartesian tree
We choose the position p corresponding to the (leftmost) maximum to
be the root. Then, we recursively define the Cartesian tree of the prefix
before p, and attach it as the left child. Next, we recursively define the
Cartesian tree of the suffix after p, and attach it as the right child.

What is the connection between the Cartesian tree and RMQ?
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Whole idea
When in doubt, use indirection... twice.

1 Partition the array into superblocks of length s′ = log2+ε n,
preprocess the shorter array of length n/s′ for RMQ.

2 Partition each superblock into blocks of length s = log n/(2 + δ),
preprocess each short array of length s/s′ for RMQ.

3 Finally, for every block store the shape of its Cartesian tree. The
number of such trees is 1

s+1

(2s
s

)
= 4s/(

√
πs3/2)(1 +O(s−1)).

The overall space is
1 n/s′ · log n · log n = o(n)

2 n/s · log(s′/s) · log s′ = o(n)

3 n/s · log(4s/s3/2) = n/s(2s−O(log s)) = 2n−O(n log log n/ log n).
Do you see why we have applied indirection twice?
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Compressing lcp array

Suffix array clearly takes linear space: we only need to store the arrays
SA, SA−1, lcp, and the RMQ structure over lcp. Sounds great, but if we
take a closer look, it might substantially exceed the size of the input.
For example, if our string is binary, we need only n bits to represent it,
and then the whole machinery adds O(n) words, which is O(n log n)
bits. Maybe we could do better?

Succinct RMQ
Given an array A[1..n], we can built a structure consisting of 2n + o(n)
bits, so that the position of a minimum of any fragment
A[i],A[i + 1], . . . ,A[j] can be computed in O(1) time without accessing
A.

See the problemset.

OK, but what about the lcp array?
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See the problemset.

OK, but what about the lcp array?
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Recall that we have a nice observation about lcp array:

lcp[SA−1[i]]− 1 ≤ lcp[SA−1[i + 1]]

Define a(i) = lcp[SA−1[i]] + i − 1. Then:

a(1) ≤ a(2) ≤ a(2) ≤ . . . ≤ a(n − 1) ≤ a(n)

Furthermore, a(i) ∈ [0,n], because the length of w [i ..n] is n − i + 1.
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New (simpler) problem
How many bits of space do we need to store a nondecreasing
sequence of numbers from [0,n]?

We store the differences between every two consecutive a(i). The
differences a′(i) = a(i)− a(i − 1) (where a(0) = 0) have the property
that a′(i) ≥ 0 and

∑
i a′(i) = n. So, it makes sense to store them as:

0a′(1)10a′(2)10a′(3) . . . 0a′(n−1)10a′(n)1

Extracting a(i) reduces to counting zeroes before the i-th one.

We will show that a sequence of 2n bits can be stored using 2n + o(n)
bits so that such operation can be performed in O(1) time.
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Rank/select structure

Given a n-bit string, we want to add just o(n) bits of additional
information, which allow us to find in O(1) time:

rank(i) = the number of ones at or before position i ,
select(i) = position of the i-th one.
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Rank

Tabulation
Let k = 1

2 log n. There are just
√

n different binary strings of such size,
so we can afford to precompute, for each such string, the answer for
each possible rank query. The space required is just
O(2kk log k) = o(n).

Now split the long string into fragments of length k . Store each such
fragment in a single word, so that we can look-up the precomputed
information quickly. Then, for each boundary between two fragments,
store the cumulative rank.

Total space is n
k log n = Θ(n) bits, too much.
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But we can do better. Split the long string into fragments of length
log2 n. For each boundary between two fragments, store the
cumulative rank. This takes just O( n

log n ) bits.

Then split each fragment into sub-fragments of size k . For each
sub-fragment, store the cumulative rank within the fragment. This
takes just O( n

log n log log n) bits.

And we are done.
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Select

Similar, but more complicated. Because we are looking for the i-th one,
we split into fragments with the same number of ones.

Let t1 = log n log log n. We pick every t1-th one and store its index in the
whole string. This takes O( n

t1
log n) = o(n) bits. Then, given a query,

we divide it by t1 to locate the desired fragment. Hence from now on
we can focus on single fragments.
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Let r be the total number of bits in a fragment.
r > t2

1 things are sparse. There can be at most n
t2
1

such

fragments, and we can afford to store the index of each
one in such fragment explicitly.

r ≤ t2
1 we cannot repeat the above simple trick, but things are

not very bad, either. The fragment is short and relative
indices can be stored.

More specifically, we repeat the reasoning, and split into
subfragments containing t2 = (log log n)2 ones. For each
one we pick, we store its relative index, which takes
O( n

t2
log log n) bits in total. Then, again, we consider the

total number bits r in a subfragment.
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r > t2
2 things are sparse, and we store the relative index of each

one. There are at most n
t2
2

such subfragments, each
contains t2 ones, and relative indices take log log n bits.

r ≤ t2
2 then r ≤ 1

2 log n, and we use the tabulation trick.
Total space is O( n

log log n ) bits.

It often happens in this area that o(n) means “something just a little bit
below n”, which is surely not what we would like if the result are to be
of any relevance to the real world, but...

Pătraşcu 2008
For any constant c, rank/select can be implemented in n +O( n

logc n )

bits of space.
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Now we can store the lcp array and the RMQ structure in 4n + o(n)
bits. But we still need to store SA, so we need n log n bits (we might
also need to store SA−1, which is another n log n bits). Now we will see
how to decrease this bound!
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Compressed suffix arrays

A text of length n over Σ can be stored in n log |Σ| bits. Now if Σ is small
(think binary), n log n bits taken by the suffix array is way too much.

Compressed suffix arrays
Represent SA in o(n log n) bits of spaces, so that we can efficiently
implement lookup(i) which returns SA[i]. (We don’t care about
extracting SA−1.)

Grossi and Vitter 2000
For any constant ε > 0, SA can be represented using just
(1 + 1

ε )n log |Σ|+ o(n log |Σ|) bits, so that lookup(i) takes O(logε n).
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Can we do even better?
The empirical entropy is the average number of bits per symbol
needed to encode the text.

Entropy (or zeroth order empirical entropy)

H0(T ) =
∑
c∈Σ

nc

n
log

n
nc

where nc is the number of occurrences of character c in T .

k -th order empirical entropy

Hk (T ) =
1
n

∑
s∈Σk

|Ts|H0(Ts)

where Ts is the concatenation of all characters in T following an
occurrence of s.

It is known that Lempel-Ziv compression methods approach the k -th
order empirical entropy.
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Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits, so that

lookup(i) takes O(log1+ε n) time.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 54 / 56



Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits, so that

lookup(i) takes O(log1+ε n) time.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 54 / 56



Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits, so that

lookup(i) takes O(log1+ε n) time.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 54 / 56



Can we do even better?

Now we would like to represent SA in space proportional to the k -th
order empirical entropy of the text.

Sadakane 2003
For any constant ε, ε′ > 0, SA can be represented using
H0(T )n 1+ε′

ε + n(2 log(1 + H0(T )) + 3) + o(n) bits, so that lookup(i)
takes O( 1

εε′ logε n) time, assuming |Σ| = polylog(n).

Grossi, Gupta, Vitter 2003

SA can be represented using Hk (T )n +O(n log |Σ| log log n
log n ) bits, so that

lookup(i) takes O(log1+ε n) time.

These bounds are painful to look at, so we will ignore them.

Paweł Gawrychowski (University of Wrocław)String indexing in the Word RAM model I 54 / 56



Grossi and Vitter

We will assume |Σ| = 2.

SA can be represented in 1
2n log log n + 6n +O( n

log log n ) bits, so that
lookup(i) takes O(log log n) time.
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Questions?
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