
PhD Open lecture: Data Aware Algorithms Autumn 2023

Homework

Exercise 1 Pebble Game for Pyramid Graphs

We focus on computations described by pyramid graphs as depicted in Figure 1. A pyramid graph
is obtained by slicing a 2D n × n grid along its diagonal and orienting edges towards the corner
facing the diagonal. We consider the (black) pebble game with the rules seen in the lecture; in
particular, one may put a (new) pebble on a node only if all its predecessors are already pebbled.

5,1 5,2 5,3 5,4 5,5

4,1 4,2 4,3 4,4

3,1 3,2 3,3

2,1 2,2

1,1

Figure 1: Pyramid graph with n = 5 levels

Question 1. Describe a strategy that pebbles the n-level pyramid using only n+ 1 pebbles (for
n ≥ 2).

Question 2. Prove that any pebbling strategy in the pebble game for the n-level pyramid uses
at least n+ 1 pebbles (for n ≥ 2).

Exercise 2 I/O-Efficient Matrix Multiplication

We consider here a computing system with a fast memory of size M and an unlimited (but slower)
disk. All data initially reside on disk, but we can only compute on the data held in fast memory.
We analyse the performance of an algorithms in terms of data read and written from/to the disk.

To compute the product of two square n × n matrices, we propose the following partition of
the matrices, illustrated below:

• Matrix C is partitioned in block-rows of size (
√
M − 1)× 1

• Matrix A is partitioned in block-rows of size (
√
M − 1)× 1

• Matrix B is partitioned in square blocks of size (
√
M − 1)× (

√
M − 1)

1:8 • Tyler Michael Smith, Bradley Lowery, Julien Langou, and Robert A. van de Geijn

Algorithm C

Algorithm B

Algorithm A

+=

+=

+=

Data in cache.

Data in main memory.

Fig. 1. Three algorithms for matrix multiplication that a!ain the lower bound for a single level of cache.

!e read cost of this algorithm, illustrated in Figure 1, is essentially equal to the I/O lower bound, but it
requires many writes to slow memory and so cannot be considered I/O optimal. On the other hand, processors
o"en have full-duplex memory bandwidth (meaning that the bandwidth available for reads is separate from the
bandwidth available for writes), so the write cost may not be visible if it is less than or equal to than the read
cost and if the reads and writes can be overlapped. Since that is the case for this algorithm, it may execute just
as e#ciently as the algorithm presented in Section 4.2. !us, we can say that this algorithm is read-optimal and
write-hidden. !is becomes important when we later discuss practical implementations.

Algorithm A. We now present an algorithm that is in some sense the mirror image to Algorithm B, keeping a
square block of A in fast memory instead instead of a square block of B. Partition:

C →
!""
#

C0
...

CM−1

$%%
&
, A →

!""
#

A0,0 · · · A0,K−1
...

...

AM−1,0 · · · AK−1,N−1

$%%
&
, B →

!""
#

B0
...

BK−1

$%%
&
,

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1

The sketch of the algorithm is the following. We load a square block Bp of B. We successively
load each pair of blocks of Cp and Ap so that we compute the contribution Cp = Cp + Ap × Bp.
Only when all computations involving Bp are completed, we remove Bp from the memory and
start over with another block of B.

Question 1. Write a proper algorithm following these directions.

Question 2. What is the number of read operations for this algorithm ? Of write operations? Is
this algorithm I/O-optimal?

Question 3. In modern systems, read and write operations can happen concurrently, so that a
better metric for the I/O cost is MI/O = max(reads,writes). Do you think this algorithm is
optimal for the problem of minimizing MI/O ? (only simple justification expected)

Exercise 3 Cache Oblivious Matrix Transposition

We consider a simple algorithm to compute the transposition of a n× n matrix (B = AT):

Algorithm 1: MatrixTanspose(A)

for i=1, . . . , n do
for j=1, . . . , n do

Bi,j ← Aj,i

return B

Both matrices A and B are stored in row-major layout (elements in one row are store consec-
utively, rows are stored one after the other).

Question 1. Compute the I/O complexity of this algorithm in the external memory model, with
cache size M and block size B.

Question 2. Design an efficient divide-and-conquer algorithm for this problem (when n is a power
of two), and analyse its I/O complexity. Is it an optimal cache-oblivious algorithm?

Exercise 4 Memory-Aware DAG scheduling

We consider a computation modeled as a Directed Acyclic Graph G of tasks: vertices represent
computations (=tasks), and an edge u→ v represents a data dependency from task u to task v (u
produces a data used as input by v). Edges have weight representing the size of the corresponding
data. We use the simple model of computation seen in class: when a task is processed, its inputs
are replaced by its outputs. A schedule σ of the graph is defined by σ(u) = t if task u is processed
at step t.

Question 1. Consider a graph G, and assume we know a schedule σ that minimizes the peak
memory for G. We define G as the DAG obtained from G by reversing all edges u→ v into
v → u. Exhibit an optimal schedule for G.

Question 2. Consider a tree T of tasks where all edges are oriented towards the root. We assume
now that all edge weights are identical and equal to m. Prove that there exists a postorder
schedule with minimal memory peak. Give a recursive formula M(T) of the minimum
memory peak of the tree T .

2

