- This problemset has four questions. The points denote the intended difficulty.
- To pass, you need 2 points (partial points are possible).
- Please send the solutions to gawry1+phdopen@gmail.com
- The deadline is 29.02 .2024 anywhere on Earth.
(1) 1. Show how to find, given s and t, a shortest substring of s that DOES NOT occur in t in linear time.
(1+1) 2. We want to store n natural numbers $x_{1}, x_{2}, \ldots, x_{n}$. Show how to save them in $\sum_{i} 2+2\left\lfloor\log _{2} x_{i}\right\rfloor+$ $o(n)$ bits, so that given an index i, we can return x_{i} in $\mathcal{O}(1)$ time. Try to further optimise the space while keeping the query time constant.
$(1+1)$ 3. We are given a weight-balanced SLP of size g describing a string $s[1 . . n]$. Weight-balanced means that, for any production $A \rightarrow B C$, we have that lengths of the strings derived from B and C are within a multiplicative constant factor. The grammar can be preprocessed in $\mathcal{O}(\mathrm{g})$ time and space. Show how to store, for a given position $b, \mathcal{O}\left(\log ^{*} n\right)$ words of information that allow us to later extract, given t , the substring $\mathrm{s}[\mathrm{b} . .(\mathrm{b}+\mathrm{t}-1)]$ in $\mathcal{O}(\mathrm{t})$ time using the previously stored information. Try to design your algorithm so that it does need to know the value of t, and outputs $s[b], s[b+1], s[b+2], s[b+3], \ldots$ in worst-case constant time per character.
(1) 4. Explain in detail how to efficiently generate all secondary occurrences from the primary occurrences for a LZ77-compressed string $s[1 . . n]$ described by z phrases. State the space and the total time to generate all occ such occurrences (as functions of n, z, occ).

