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1 Problem set

Please attempt at least three of the five problems in this section, and turn in your solutions as a
pdf (preferably typeset in LATEX). You are urged to try and solve the problems without consulting
any reference material other than material covered in lectures and the accompanying lecture notes
posted on the website. If for some reason you end up consulting some external source (such as a
textbook or sources on the web), please acknowledge the source.

For any clarifications about the questions, do not hesitate to email me at guruswami@cmu.edu.

1. (Singly exponential time algorithm to construct codes meeting GV bound) Let n, k, d be
positive integers satisfying n ≥ k, d and

2k <
2n

�d−2
j=0

�n−1
j

� .

Prove that in such a case there exists an [n, k, d] binary linear code (i.e., a linear code of block
length n, with 2k codewords, and minimum distance d). Also give an algorithm running in
time 2n−kpoly(n) to construct the parity check matrix of such a code.

Hint: Use the characterization of distance in terms of minimal sized linear dependence of
columns of a parity check matrix.

2. (d-wise independent sets) For integers 1 ≤ d ≤ n, call a subset S ⊆ {0, 1}n to be d-wise
independent if for every 1 ≤ i1 < i2 < · · · < id ≤ n and (a1, a2, . . . , ad) ∈ {0, 1}d

Probx∈S [xi1 = a1 ∧ xi2 = a2 ∧ · · · ∧ xid = ad] =
1

2d

where the probability is over an element x chosen uniformly at random from S.

Small sample spaces of d-wise independent sets are of fundamental importance in derandom-
ization. The goal of this problem is to show how codes can be used to construct d-wise
independent sets.

Let H ∈ Fm×n
2 be the parity check matrix of an [n, n−m,D]2 binary linear code of distance

D ≥ d+ 1. Define S = {xTH | x ∈ Fm
2 }. Prove that S is a d-wise independent set of {0, 1}n

of size 2m.

3. (Codes and graph cuts) Let G = (V,E) be a connected undirected graph. For each U ⊂ V ,
define by χU ∈ {0, 1}E the indicator vector χU for the edge cut (U : V \ U)

χU (e) =

�
1 if e = {u, v} with u ∈ U , v ∈ V \ U
0 otherwise



(a) Prove the collection of vectors χU , U ⊆ V , is a binary linear code (call it cuts(G)) of
block length |E|.

(b) What is the minimum distance of cuts(G)? (Express the answer in terms of a basic
quantity concerning the graph G.)

(c) What is the rate of cuts(G)? (Hint: you answer should only involve |V | and |E|.)
(d) Can there be a family of graphs {Gn : n ≥ 1} such that the rate and relative distance

of cuts(Gn) are both bounded away from 0 as n → ∞? (In other words, can these “cut
codes” be asymptotically good?)

(e) What is the Hamming distance of the closest codeword in cuts(G) to 1E , the all-ones
vector?

(f) Can you argue why given x ∈ {0, 1}E , finding the codeword of cuts(G) that is closest to
x in Hamming distance is an NP-hard problem? (Hint: use part (e) above.)

(g) (Bonus; no need to turn in unless you want to) Can you describe the dual code of
cuts(G)? What are its rate and minimum distance? Can you describe a basis for the
dual code?

4. (Products of codes) Let C1 be an [n1, k1, d1]2 binary linear code, and C2 an [n2, k2, d2] binary
linear code. Let C ⊆ Fn1×n2

2 be the subset of n1 × n2 matrices whose columns belong to C1

and whose rows belong to C2.

Prove that C is an [n1n2, k1k2, d1d2]2 binary linear code.

5. (Chinese remainder theorem with errors) In this problem, we will consider the number-
theoretic counterpart of Reed-Solomon codes. Let 1 ≤ k < n be integers and let p1 <
p2 < · · · < pn be n distinct primes. Denote K =

�k
i=1 pi and N =

�n
i=1 pi. The notation ZM

stands for integers modulo M , i.e., the set {0, 1, . . . ,M−1}. Consider the Chinese Remainder
code defined by the encoding map E : ZK → Zp1 × Zp2 × · · · × Zpn defined by:

E(m) = (m mod p1, m mod p2, · · · , m mod pn) .

(Note that this is not a code in the usual sense we have been studying since the symbols at
different positions belong to different alphabets. Still notions such as distance of this code
make sense and are studied in the questions below.)

(a) Suppose that m1 �= m2. For 1 ≤ i ≤ n, define the indicator variable bi = 1 if E(m1)i �=
E(m2)i and bi = 0 otherwise. Prove that

�n
i=1 p

bi
i > N/K.

Use the above to deduce that when m1 �= m2, the encodings E(m1) and E(m2) differ in
at least n− k + 1 locations.

(b) This exercise examines how the idea behind the Welch-Berlekamp decoder for Reed-
Solomon codes, which we saw in lecture, can be used to decode these codes.

Suppose r = (r1, r2, . . . , rn) is the received word where ri ∈ Zpi . By Part (a), we know
there can be at most one m ∈ ZK such that

�

i:E(m)i �=ri

pbii ≤
�

N/K . (1)

(Be sure you see why this is the case.) The exercises below develop a method to find
the unique such m, assuming one exists.



In what follows, let r be the unique integer in ZN such that r mod pi = ri for every
i = 1, 2, . . . , n (note that the Chinese Remainder theorem guarantees that there is a
unique such r).

i. Assuming an m satisfying (1) exists, prove that there exist integers y, z with 0 ≤
y <

√
NK and 1 ≤ z ≤

�
N/K such that y ≡ rz (mod N).

ii. Prove also that if y, z are any integers satisfying the above conditions, then in fact
m = y/z.

(An algorithmic side remark: A pair of integers (y, z) satisfying above can be found
by solving the integer linear program with integer variables y, z, t and linear constraints:
0 < z ≤

�
N/K; and 0 ≤ z · r − t · N <

√
NK. This is an integer program in a fixed

number of dimensions and can be solved in polynomial time. Faster, easier methods are
also known for this special problem.)

2 Some “extra” problems

All problems in this section are optional. They are merely meant to provide additional challenges
to those interested. You are welcome to attempt and email back solutions to any of these, but this
is not required.

1. (NP-hardness of Reed-Solomon decoding over large fields) In one of the above problems,
we saw that finding the closest codeword in the “code of graph cuts” is NP-hard. In this
problem, you will prove that finding the closest codeword in Hamming metric for a certain
Reed-Solomon code is NP-hard.

You may assume that the following problem is NP-hard.

Instance: A set S = {α1, . . . , αn} ⊆ F2m , an element β ∈ F2m , and an integer 1 ≤ k < n.
(Here F2m denotes the field with 2m elements, which is a field extension of degree m over
the field F2 with two elements.)

Question: Is there a nonempty subset T ⊆ {1, 2, . . . , n} with |T | = k+1 such that
�

i∈T αi =
β?

Consider the [n, k] Reed-Solomon code CRS over F2m obtained by evaluating polynomials of
degree at most k − 1 at points in S. Define y ∈ (F2m)n as follows: yi = αk+1

i − βαk
i for

i = 1, 2, . . . , n.

Prove that there is a codeword of CRS at Hamming distance at most n− k − 1 from y if and
only if there is a set T as above of size k + 1 satisfying

�
i∈T αi = β.

Conclude that finding the nearest codeword in a Reed-Solomon code over exponentially large
fields is NP-hard.

Remark: Proving NP-hardness for Reed-Solomon code over polynomially sized fields remains
an important open problem!

2. (Lower bound on alphabet size for optimal rate list decoding) Let � > 0 be a positive constant,
and Σ be a fixed finite alphabet. Suppose we have an infinite family of codes of increasing
block lengths over alphabet Σ, each having rate R and list decodable up to a fraction 1−R−�
of errors with a list size bounded from above by n1/�2 where n is the block length of the code.
Prove the following lower bound on the alphabet size: |Σ| ≥ 2Ω(1/�).



3. (Optimal size d-wise independent sets) In this problem we will present a generalization of
Hamming codes to larger distance, and obtain an implied construction of d-wise independent
sample spaces via the connection from one of the earlier problems. We will then prove the
optimality of the bound achieved by these codes.

(a) Let D = 2t+ 1 be an odd integer. Let n = 2m − 1, and let α be a primitive element of
the extension field F2m . Define the following subset of Fn

2 :

{(f0, f1, . . . , fn−1) ∈ Fn
2 | f(α) = f(α2) = f(α3) = · · · = f(α2t) = 0

for f(X) = f0 + f1X + · · ·+ fn−1X
n−1 ∈ F2[X]} .

Prove that the above is an [n, k, d] binary linear code for k ≥ n−t log2(n+1) and d ≥ D.

Hint: The distance bound is based on non-singularity of Vandermonde matrices. For
the lower bound on k, the identity f(γ)2 = f(γ2) for polynomials f ∈ F2[X] is handy.

(b) Using the above (and problem 2 of Section 1), show how one can construct a 2t-wise
independent subset of {0, 1}n of size at most (n + 1)t when n is of the form 2m − 1.
Deduce a construction of size at most (2n)t for any n.

(c) Prove an almost matching lower bound, namely any 2t-wise independent set S ⊆ {0, 1}n
satisfies

|S| ≥
t�

i=0

�
n

i

�
. (2)

Suggestion: Use the “linear algebra” method. That is, find an orthonormal set of vectors

in R|S| of cardinality at least the R.H.S of (2).

4. (Covering codes) For τ ∈ [0, 1/2], define a binary code C of block length n to be τ -covering
if every r ∈ {0, 1}n is within Hamming distance τn from some codeword of C.

(a) Prove that the rate of a τ -covering code must be at least 1− h(τ).

(b) Prove the following characterization for when a binary linear code is τ -covering:

If H is a parity check matrix for an [n, k]2 linear code C, then C is τ -covering if and
only if for every s ∈ Fn−k

2 , there is a set of at most τn columns of H which sum up to s
(over F2).

(c) Prove that there exist τ -covering binary linear codes C of rate 1− h(τ) + o(1).

(Hint: (a) First prove that a random linear code of rate 1−h(τ)+ o(1) τ -covers most of
the points in Fn

2 . This step will rely on pairwise independence of the nonzero codewords
in a random linear code, and Chebyshev’s tail inequality. (b) Then prove that some
O(log n) translates (cosets) of such a linear code suffice to τ -cover the whole space.)


