Graph Minors, Bidimensionality and Algorithms




PART IV

Approximation algorithms



Definition: A c-approximation algorithm for a minimization
problem is a polynomial-time algorithm that finds a solution of

cost at most OPT - c.
Examples:

> %—approximation for METRIC TSP,

» 2-approximation for MINIMUM VERTEX COVER and
MINIMUM FEEDBACK VERTEX SET

> %—approximation for MAaX 3SAT, etc.



» For some problems, we have lower bounds: there is no

(2 — €)-approximation for VERTEX COVER or

(

complexity assumptions).

— €)-approximation for MAX 3SAT (under suitable

~Jloo

» For some other problems, arbitrarily good approximation is
possible in polynomial time: for any ¢ > 1 (say, ¢ = 1.000001),

there is a polynomial-time c-approximation algorithm!



Approximation schemes

Definition: A polynomial-time approximation scheme (PTAS)
for a problem P is an algorithm that takes an instance of P and a

rational number € > 0,
» always finds a (1 + €)-approximate solution,

» the running time is polynomial in n for every fixed ¢ > 0.

Typical running times: 2/¢.n, nl/¢, (n/€)?, nl/€.



Some classical PTAS

» VERTEX COVER for planar graphs
» TSP in the Euclidean plane
» STEINER TREE in planar graphs

» KNAPSACK



Shifting strategy

Classical approach: Baker [J. ACM 1994] and of Hochbaum and
Maass [J. ACM 1985]



Example: Vertex Cover

Fact: There is a 20(1/9) . i time PTAS for VERTEX COVER for

planar graphs.



Example: Vertex Cover

©@-OO0e

> Let D :=1/(3¢). For a fixed 0 < s < D, delete every layer L; with
t=s (mod D)

» The resulting graph G5 is D-outerplanar, hence it has treewidth

O(D) = O(1/e).

» Using the O(2" - n) time algorithm for VERTEX COVER, the

problem on G, can be solved in time 20(1/¢) . .



Example: Vertex Cover

©@-OO0e

» For a fixed 0 < s < D, define Fy as the graph induced by layers
Li—la Li’Li-i—lu 1=S (HlOd D)

» The resulting graph is 3-outerplanar, hence it has treewidth O(1).

» For at least one value of s, F, contains at most 3/D = ¢ vertices of

some optimal solution.

» The union of vertex covers of Fy and G is a (1 + €)-approximate

solution.



Let's take a different look

Bidimensionality and EPTAS



Branch-width separation

Lemma (Tree-width separation)

Let G = (V, E) be a graph of treewidth t, and w : V' — {0,1} be
a weight function. Then there is a set S C V' of size at most t + 1
such that the connected components C1,...,Cy of G[V \ S| can

be grouped into two sets C; and Cy such that

M <w(C) < w fori € {1,2}-

@@ 5
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Crucial Lemma

Lemma
Let X be a VC of size k in a planar graph GG. For every ¢ > 0, 4

set X' C V(G) such that
> | X' < ek,
> bw(G\ X') =0(2)

In other words, G has a constant-treewidth vertex removal set of

size O(k).



Put it a bit differently

Ve > 0,3 X' CV(G) st
> | X'| <ek;

» bw(G\ X)) =0(})



Put it a bit differently

Ve > 0,3 X' CV(G) st Ve >030 >0, X' CV(G) s.t.
> | X| <ek; > | X'| <ek;
» bw(G\ X') =0(1) » V component C of G'\ X',

V() NX|< %

Indeed, X is bidimensional, and thus

bw(C) = 0/|[V(C)NX]=0(2).



Proof

What we want to prove:
> | X'| <ek;
> For every component C of G\ X/, [V(C)N X[ < &

Ifkgg%,weputX’:(Z).



Proof

Let k > 5%
Let T'(G, k) be the minimum size of the set X' s.t.

» For every component C' of G\ X/,

V(C)NX|=0(%)

We prove that T(G, k) < ek — 6v/k for some § > 0.



Proof

We want to prove that 7(G, k) < ek — 5\/k.
Let S be a balanced X-separator.

Then

T(G, k) < |S|+ 1/3r£r13§2/3 (T(Gh,ak) +T(Ge, (1 — a)k))



Proof

Take a weight function w assigning weight 1 to vertices of X and
0to V(G)\ X.

By bidimensionality of VC, bw(G) = O(\/k). By Separation
Lemma, G has a balanced X-separator of size at most 3v/k for

some 0 > 0.



Proof

Let S be a balanced X-separator of size at most /.

Then

TG, k) < |S|+ max (T(Gy,ak)+T(Ga, (1 - a)k))

1/3<a<2/3
k 2k
< BVE+T(Gy, 3) +T(Ge )



Proof

TG, k) < |S|+ max (T(Gy,ak)+T(Ga, (1 - a)k))
1/3<a<2/3

< ﬁ\/E+T(G1,k)+T(Gz72k)

< ﬁf+(—5\/z> -8
= ck+AVE— 5\/> \/>

< ek—6Vk

for 6 > B3/(—1++/1/3+/2/3)



Remark

If VC X is given, construction of to-constant-branchwidth-removal

set X’ can be done in polynomial time.



Algorithm

INPUT: Planar graph G, ¢ > 0
OUTPUT: vertex cover of size at most (1 +&)OPT
Use well-known 2-approximation to compute VC of G: X

Put ¢/ = £/2 and use Lemma to compute set X' C V(G) s.t.
> | X < EE;
» bw(G\ X') =0(1)

Compute in time O(QO(é)n) optimum VC of G'\ X’

Output VO (G \ X') U X’



Algorithm

VO(G\ X')UX"isaVCin G of size

VOG\ X)) +|X'| < VO(G\ X') +£/|X|
—VCO(G) +¢|X| < VCO(G) +£VO(G) = (1 +)OPT



Usual questions

» What properties of Vertex Cover did we use?

» What properties of planar graph did we use?



What properties of Vertex Cover did we use?

» bw(G) = O(Vk), or bidimensionality. But bw(G) = o(k)

also will do



What properties of Vertex Cover did we use?

» bw(G) = O(Vk), or bidimensionality. But bw(G) = o(k)
also will do

» Constant factor approximation



What properties of Vertex Cover did we use?

» bw(G) = O(Vk), or bidimensionality. But bw(G) = o(k)
also will do

» Constant factor approximation
» “Separability”, meaning that for separator .S, and components
GV 5]
Y OPT(C) < OPT(G) + |5
C
Again,
Y OPT(C) < OPT(G) +1|S|
C

will do



What properties of Vertex Cover did we use?

» On graphs of constant branchwidth the problem is solvable in
polynomial time

» Remark: For EPTAS problem is FPT parameterized by

branchwidth



What about FVS?

» bw(G) = O(Vk), or bidimensionality. OK.



What about FVS?

» bw(G) = O(Vk), or bidimensionality. OK.

» Constant factor approximation. OK



What about FVS?

» bw(G) = O(Vk), or bidimensionality. OK.
» Constant factor approximation. OK

» “Separability”, meaning that for separator S, and components
G[V\ 5]
Y OPT(C) < OPT(G) +5|.
c

OK



What about FVS?

» bw(G) = O(Vk), or bidimensionality. OK.



What about FVS?

» bw(G) = O(Vk), or bidimensionality. OK.

» Constant factor approximation. OK



What about FVS?

» bw(G) = O(VE), or bidimensionality. OK.
» Constant factor approximation. OK

» “Separability” OK



What about FVS?

» bw(G) = O(VE), or bidimensionality. OK.
» Constant factor approximation. OK
» “Separability” OK

» Branchwidth algorithm. OK



What about FVS?

» bw(G) = O(Vk), or bidimensionality. OK.
» Constant factor approximation. OK

> “Separability” OK

» Branchwidth algorithm. OK

Which means that FVS has PTAS on planar graphs!



What about Dominating Set?

» Should be a bit more careful to define separability property

and use contraction bidimensionality



Crucial Lemma for DS

Lemma
Let X be a DS of size k in a planar graph GG. For every ¢ > 0, 3

set X' C V(G) such that
> | X' < ek,
> bw(G\ X') =0(2)

In other words, G has a constant-treewidth vertex removal set of

size O(k).



Proof

As for VC, we put T'(G, k) be the minimum size of set X'
We want to prove that for some § > 0, (G, k) < ek + 6/k.
Let S be a balanced X-separator. Instead of removal S, we
contract!

Then

T < T T 1-—
(Ga k) = ‘S’ + 1/3213;(2/3( (Gla ak) + (G27( Oé)k’))



Proof

Let S be a balanced X-separator.
By bidimensionality of DS, bw(G) = O(Vk). By separation

lemma, G has a balanced X-separator of size at most 3+/.



Proof

Let S be a balanced X-separator of size at most 5/k.

Then

k 2k

TG k) < BVE+T(Gi, 3) + TG, %)



Algorithm

INPUT: Planar graph G, € > 0
OUTPUT: dominating set of size at most (1 + ¢)OPT
Use a (constant) c-approximation to compute DS of planar graph
G: X
Put &’ = £/c and use Lemma to compute set X' C V(@) s.t.

> | X'| < Ek;

» bw(G\ X') = O(é)
For each component C; of G\ X' define C! as contracting G on
C;.

Compute in time 0(20(%)71) optimum solution D of union of C!



Algorithm

DUX'"isaDSin G of size

|D| + | X'| < [D| + €| X]|
= DS(G) +£'|X| < DS(G) + eDS(G) = (1 + £)OPT



What about Connected Dominating Set?

Or shall we try to state a generic result?



Theorem
Let II be a “reducible” minor- (contraction-) bidimensional
problem with the “separation” property. There is an EPTAS for 11

on planar graphs.



Where did we use planarity?

» Only for bidimensionality, i.e. the grid theorem

PTAS for Vertex Cover holds also on graphs excluding some fixed

graph as a minor!



Where did we use planarity?

Theorem (FF, Lokshtanov, Raman, Saurabh, 2011)

Let II be a “reducible” minor- (contraction-) bidimensional
problem with the separation property and H be a (apex) graph.
There is an EPTAS for 11 on the class of graphs excluding H as a

minor.



EPTAS on H-minor-free graphs

FEEDBACK VERTEX SET, VERTEX COVER, CONNECTED
VERTEX COVER, CYCLE PACKING, DIAMOND HITTING SET,
VERTEX-H-PACKING, VERTEX-H-COVERING, MAXIMUM
INDUCED FOREST, MAXIMUM INDUCED BIPARTITE

SUBGRAPH, MAXIMUM INDUCED PLANAR SUBGRAPH ...



EPTAS on apex-minor-free graphs

EDGE DOMINATING SET, DOMINATING SET, r-DOMINATING
SET, ¢-THRESHOLD DOMINATING SET, CONNECTED
DOMINATING SET, DIRECTED DOMINATION, r-SCATTERED
SET, MINIMUM MAXIMAL MATCHING, INDEPENDENT SET,
MAXIMUM FULL-DEGREE SPANNING TREE, MAX INDUCED AT
MOST d-DEGREE SUBGRAPH, MAX INTERNAL SPANNING

TREE, INDUCED MATCHING, TRIANGLE PACKING ...



What we learned in this course?

» Graph Minors

» Implication of Graph Minors to Algorithmsto check in

polynomial time properties closed under minors
» Branchwidth and its obstructions

» Grid theorem



What we learned in this course?

v

Bidimensionality

v

Use of bidimensionality to design subexponential

parameterized algorithms

v

Catalan structures and dynamic programming

v

Bidimensionality and PTAS



Further reading. Bidimensionality and PTAS

[ E. D. DEMAINE AND M. HAJIAGHAYI, Bidimensionality:
new connections between FPT algorithms and PTASs, SODA
2005, 590-601.

[§ F. V. FoMiN, D. LOKSHTANOV, V. RAMAN, AND

S. SAURABH, Bidimensionality and EPTAS, SODA 2011.
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