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PART II

Branchwidth and grids

WIN/WIN approach



Tree-likeness

We have to define the tree-likeness of a graph.

Branchwidth is a tree-likeness measure, alternative to treewidth,

appeared in GM-X (1991).



Main tool: Branch Decompositions

Definition

A branch decomposition of a graph G = (V,E) is a tuple (T, µ)

where

I T is a tree with degree 3 for all internal nodes.

I µ is a bijection between the leaves of T and E(G).



Example of Branch Decomposition
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Edge e ∈ T partitions the edge set of G in Ae and Be
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Edge e ∈ T partitions the edge set of G in Ae and Be
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Middle set mid(e) = V (Ae) ∩V (Be)
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Branchwidth

I The width of a branch decomposition is maxe∈T |mid(e)|.

I The branchwidth of a graph G is the minimum width over all

branch decompositions of G.



Branchwidth vs Treewidth

Lemma (Robertson-Seymour)

For every graph G,

branchwidth(G) ≤ treewidth(G) + 1 ≤ b32branchwidth(G)c.



Exercises

I What is the branchwidth of a tree?

I Complete graph on n vertices?

I (`× `)-grid?

I Prove Treewidth vs Branchwidth lemma



Small Branchwidth is good for designing algorithms!

Theorem (Courcelle)

Any MSOL expressible property can be decided in linear time for

graphs of bounded branchwidth.
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Advantage of Courcelle’s Theorem: It constructs the algorithm

Drawback of Courcelle’s Theorem: the contribution of the formula

and the branchwidth in the running time is immense.

What do we do for specific problems?

Standard (or, not so standard) dynamic programming!
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Vertex Cover

A vertex cover C of a graph G, vc(G), is a set of vertices

such that every edge of G has at least one endpoint in C.



Dynamic programming: Vertex Cover

Main idea—dynamic programming.

I Start from leaves, compute all possible vertex covers of each

edge

I We have two branches Left and Right

Left Right

Left Right

Remaining

Remaining



Dynamic programming: Vertex Cover

I mid(e) = V (Left) ∩ (V (Right) ∪ V (Remaining))

I mid(g) = V (Right) ∩ (V (Left) ∪ V (Remaining))

I mid(f) = V (Remaining) ∩ (V (Left) ∪ V (Right))

Left Right

Left Right

Remaining

Remaining
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Dynamic programming: Vertex Cover

I For every A ⊆ mid(f) we want to compute a minimum size

cA of vertex cover CA in Left ∪ Right such that

CA ∩mid(f) = A

I cA = min B⊆mid(e)
C⊆mid(g)

(B∪C)∩mid(f)=A

cB + cC − |B ∩ C|

Left Right
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Remaining

Remaining
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Dynamic programming: Vertex Cover
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Dynamic programming: Vertex Cover

Let ` = bw(G) and m = |E(G)|.

I Running time: size of every table for middle set is O(2`).

I To compute a new table: O(22`)

I Number of steps O(m)

I Total running time: O(22`m).



Dynamic programming: Vertex Cover

Exercise

Try to improve the running time, say to O(21.5`m).



Dynamic programming: Counting Matchings



Grid Theorem

Theorem (Robertson, Seymour & Thomas, 1994)

Let ` ≥ 1 be an integer. Every planar graph of branchwidth ≥ 4`

contains ` as a minor.



Grid Theorem: Sketch of the proof

The proof is based on Menger’s Theorem

Theorem (Menger 1927)

Let G be a finite undirected graph and x and y two nonadjacent

vertices. The size of the minimum vertex cut for x and y (the

minimum number of vertices whose removal disconnects x and y)

is equal to the maximum number of pairwise vertex-disjoint paths

from x to y.



Grid Theorem: Sketch of the proof

Let G be a plane graph that has no (`× `)-grid as a minor.

WEST

NORTH

SOUTH

EAST



Grid Theorem: Sketch of the proof

Either East can be separated from West, or South from North by

removing at most ` vertices

WEST

NORTH

SOUTH

EAST



Grid Theorem: Sketch of the proof

Otherwise by making use of Menger we can construct `× ` grid as

a minor
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Grid Theorem: Sketch of the proof

Partition the edges. Every time the middle set contains only

vertices of East, West, South, and North, at most 4` in total.

WEST

NORTH

SOUTH
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Grid Theorem: Sketch of the proof
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We have the hammer!

WIN/WIN on planar graphs:

Either small branch-width or large grid as a minor

APPLICATION I: Parameterized Algorithms
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APPLICATION I: Parameterized Algorithms



Example: The city of Bergen



How to place k fire stations such that every building is

within r city blocks from the nearest fire station?



How to place k fire stations?

I Some simplifications: Bergen is a planar graph and r = 1.

I There is a linear kernel O(k) for dominating set on planar

graph, so 2O(k)nO(1) algorithm is possible

I We show how to get subexponential 2O(
√

k)nO(1) algorithms.

I The idea works even when Bergen has more complicated

structure, like embedded on a surface of bounded genus, or

excluding some fixed graph as a minor; it works for every fixed

r ≥ 1, and for many other problems
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How to compute branchwidth

I NP-hard in general (Seymour-Thomas, Combinatorica 1994)

I On planar graphs can be computed in time O(n3)

(Seymour-Thomas, Combinatorica 1994 and Gu-Tamaki,

ICALP 2005)

I RST grid theorem provides 4-approximation on planar graphs.

I On general graphs there are constant factor approximation

algorithms of running time 2O(bw(G))nO(1)



We know enough to solve Vertex Cover!

vc(Hr,r) ≥ r2

2



We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ `

=⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√

k)m).



We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√

k)m).



We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√

k)m).



We know enough to solve Vertex Cover!

Let G be a planar graph of

branchwidth ≥ ` =⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

WIN/WIN

If k < `2/32, we say “NO”

If k ≥ `2/32, then we do DP in time

O(22`m) = O(2O(
√

k)m).



Challenges to discuss

I How to generalize the idea to work for other parameters?

I Does not work for Dominating Set. Why?

I Is planarity essential?

I Dynamic programming. Does MSOL helps here?



Parameters (Reminder)

I Parameter P is a function mapping graphs to nonnegative

integers.

I The parameterized problem associated with P asks, for some

fixed k, whether for a given graph G, P (G) ≤ k (for

minimization) and P (G) ≥ k (for maximization problem).

I A parameter P is closed under taking of minors/contractions

(or, briefly, minor/contraction closed) if for every graph H,

H � G / H �c G implies that P (H) ≤ P (G).



k-Vertex Cover

k-Vertex Cover is closed under taking minors.



Examples of parameters: k-Dominating set

A dominating set D of a graph G is a set of vertices such

that every vertex outside D is adjacent to a vertex of D.

The k-Dominating Set problem is to decide, given a

graph G and a positive integer k, whether G has a

dominating set of size k.



k-Dominating set

k-Dominating set is not closed under taking minors. However,

it is closed under contraction of edges.



Subexponential algorithms on planar graphs: What is the

main idea?

Dynamic programming and
Grid Theorem



Meta conditions

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps.



Algorithm

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps.

If bw(T, µ) > α ·
√
k, then by (A) the answer is clear

Else, by (B), P (G) can be computed in f(α ·
√
k) · nO(1) steps.

When f(k) = 2O(k), the running time is 2O(
√

k) · nO(1)



Using the hammer:

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

(B) For every graph G ∈ G and given a branch decomposition

(T, µ) of G, the value of P (G) can be computed in

f(bw(T, µ)) · nO(1) steps

I How to prove (A)?

I How to do (B)?



Combinatorial bounds:
Bidimensionality and excluding a grid
as a minor



Reminder

Theorem (Robertson, Seymour & Thomas, 1994)

Let ` ≥ 1 be an integer. Every planar graph of branchwidth ≥ `

contains an (`/4× `/4)-grid as a minor.



Planar k-Vertex Cover

Hr,r for r = 10
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vc(Hr,r) ≥ r2

2



Planar k-Vertex Cover

Let G be a planar graph of

branchwidth ≥ `

=⇒
G contains an (`/4× `/4)-grid

H as a minor

The size of any vertex cover of H is at least `2/32. Since H is a

minor of G, the size of any vertex cover of G is at least `2/32.

Conclusion: Property (A) holds for α = 4
√

2, i.e.

bw(G) ≤ 4
√

2
√

vc(G).
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Planar k-Vertex Cover

Dorn, 2006: given a branch decomposition of G of width `, the

minimum vertex cover of G can be computed in time

f(`)n = 2
ω
2

`n, where ω is the fast matrix multiplication constant.



Planar k-Vertex Cover: Putting things together

I Use Seymour-Thomas algorithm to compute a branchwidth of

a planar graph G in time O(n3)

I If bw(G) ≥ 4
√

k√
2

, then G has no vertex cover of size k

I Otherwise, compute vertex cover in time

O(2
2ω
√

k√
2 n) = O(23.56

√
kn)

I Total running time O(n3 + 23.56
√

kn)



Planar k-Vertex Cover: Kernelization never hurts

I Find a kernel of size O(k) in time n3/2 (use Fellows et al.

crown decomposition method)

I Use Seymour-Thomas algorithm to compute a branchwidth of

the reduced planar graph G in time O(k3)

I If bw(G) ≥ 4
√

k√
2

, then G has no vertex cover of size k

I Otherwise, compute vertex cover in time

O(2
2ω
√

k√
2 k) = O(23.56

√
kk)

I Total running time O(n3/2 + 23.56
√

kk)



k-Feedback Vertex Set
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k-Feedback Vertex Set

I If bw(G) ≥ r, then G ≥m H r
4
, r
4

I fvs is minor-closed, therefore fvs(G) ≥ fvs(H r
4
, r
4
) ≥ r2

64

we have that bw(G) ≤ 8 ·
√

fvs(G)

therefore, for p-Vertex Feedback Set, f(k) = O(
√
k)

Conclusion: Since p-Vertex Feedback Set is “easily” solvable

in time bw(G)bw(G)m, p-Vertex Feedback Set on planar

graphs is solvable in time 2O(log k·
√

k) ·O(n). (Can be improved to

2O(
√

k) ·O(n).)
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Planar k-Dominating Set

Can we proceed by the same arguments with Planar

k-Dominating Set?

Oops! Here is a problem! Dominating set is not minor closed!

However, dominating set is closed under contraction
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Planar k-Dominating Set

Hr,r for r = 10



Planar k-Dominating Set

a partial triangulation of

H10,10



Planar k-Dominating Set

Every inner vertex of p.t.

grid H̃r,r dominates at most 9 vertices. Thus ds(H̃r,r) ≥ (r−2)2

9 .



Planar k-Dominating Set

I By RST-Theorem, a planar graph G of branchwidth ≥ ` can

be contracted to a partially triangulated (`/4× `/4)-grid

I Since dominating set is closed under contraction, we can

make the following

Conclusion: Property (A) holds for α = 12, i.e.

bw(G) ≤ 12
√

ds(G).



Planar k-Dominating Set

I By RST-Theorem, a planar graph G of branchwidth ≥ ` can

be contracted to a partially triangulated (`/4× `/4)-grid

I Since dominating set is closed under contraction, we conclude

that Planar k-Dominating Set also satisfies property (A)

with α = 12.

I Dorn, 2006, show that for k-Dominating Set in (B), one

can choose f(`) = 3
ω
2

`, where ω is the fast matrix

multiplication constant.

I Conclusion: Planar k-Dominating Set can be solved in

time O(n3 + 222.6
√

kn)
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Bidimensionality: The main idea

If the graph parameter is closed under taking minors or

contractions, the only thing needed for the proof

branchwidth/parameter bound is to understand how this parameter

behaves on a (partially triangulated) grid.



Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005

Definition

A parameter P is minor bidimensional with density δ if

1. P is closed under taking of minors, and

2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).



Bidimensionality: Demaine, FF, Hajiaghayi, Thilikos, 2005

Definition

A parameter P is called contraction bidimensional with density δ if

1. P is closed under contractions,

2. for any partially triangulated (r × r)-grid R,

P (R) = (δRr)2 + o((δRr)2), and

3. δ is the smallest δR among all paritally triangulated

(r × r)-grids.



Bidimensionality

(A) For every graph G ∈ G, bw(G) ≤ α ·
√
P (G) +O(1)

Lemma

If P is a bidimensional parameter with density δ then P satisfies

property (A) for α = 4/δ, on planar graphs.

Proof.

Let R be an (r × r)-grid.

P (R) ≥ (δRr)2.

If G contains R as a minor, then bw(G) ≤ 4r ≤ 4/δ
√
P (G).



Examples of bidimensional problems

Vertex cover

Dominating Set

Independent Set

(k, r)-center

Feedback Vertex Set

Minimum Maximal Matching

Planar Graph TSP

Longest Path ...



How to extend bidimensionality to more general graph

classes?

I We need excluding grid theorems (sufficient for minor closed

parameters)

I For contraction closed parameters we have to be more careful



Bounded genus graphs: Demaine, FF, Hajiaghayi, Thilikos,

2005

Theorem

If G is a graph of genus at most γ with branchwidth more than r,

then G contains a (r/4(γ + 1)× r/4(γ + 1))-grid as a minor.



The grid-minor-excluding theorem gives linear bounds for H-minor

free graphs:

Theorem (Demaine & Hajiaghayi, 2008)

There is a function φ : N→ N such that for every graph G

excluding a fixed h-vertex graph H as a minor the following holds:

I if bw(G) ≥ φ(h) · k then k ≤m G.



What about contraction-closed parameters?

We define the following two pattern graphs Γk and Πk:

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

What about contraction-closed parameters?

We define the following two pattern graphs Γk and Πk:

Πk =Γk =

vnew

Πk = Γk+ a new vertex vnew, connected to all the vertices in V (Γk).

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 77

Πk = Γk+ a new vertex vnew, connected to all the vertices in

V (Γk).



Theorem (FF, Golovach, & Thilikos, 2009)

There is a function φ : N→ N such that for every graph G

excluding a fixed h-vertex graph H as contraction the following

holds:

I if bw(G) ≥ φ(h) · k then either Γk ≤c G, or Πk ≤c G.

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

What about contraction-closed parameters?

We define the following two pattern graphs Γk and Πk:

Πk =Γk =

vnew

Πk = Γk+ a new vertex vnew, connected to all the vertices in V (Γk).

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 77



H∗ is an apex graph if

∃v ∈ V (H∗): H∗ − v is planar

(apex graphs are exactly the minors of Πk)



Corollary

There is a function φ : N→ N such that for every graph G

excluding a fixed h-vertex apex graph H as contraction the

following holds:

I if bw(G) ≥ φ(h) · k then Γk ≤c G.



(Redefining contraction bidimensionality

For contraction-closed graph class a contraction-closed parameter

p is bidimensional if

p(Γk) = Ω(k2).



Conclusion

Minor bidimensional: minor- closed and p( k) = Ω(k2)

Contraction-bidimensional: contraction-closed and

Bidimensionality for minors and contractions The irrelevant vertex technique

Limits of bidimensionality

Therefore for every apex-minor free graph class

a contraction-closed parameter p is bidimensional if

p(
k
) = Ω(k2)

Dimitrios M. Thilikos ΕΚΠΑ-NKUA

Algorithmic Graph Minor Theory Part 2 80

Theorem (Bidimensionality meta-algorithm)

Let p be a minor (resp. contraction)-bidimensional parameter that

is computable in time 2O(bw(G)) · nO(1).

Then, deciding p(G) ≤ k for general (resp. apex) minor-free

graphs can be done (optimally) in time 2O(
√

k) · nO(1).



Limits of the bidimensionality



Remark

Bidimensionality cannot be used to obtain subexponential algorithms for

contraction closed parameterized problems on H-minor free graphs.

For some problems, like k-Dominating Set, it is still possible to design

subexponential algorithms on H-minor free graphs.

The main idea here is to use decomposition theorem of Robertson-Seymour about

decomposing an H-minor free graph into pieces of apex-minor-free graphs, apply

bidimensionality for each piece, and do dynamic programming over the whole

decomposition.
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