Quantum Communication

Ronald de Wolf

Overview of this lecture

Quantum information
 + application to classical codes

- 2. Quantum communication complexity
- 3. Quantum cryptography

Quantum communication

Typical situation: Alice has $x \in \{0,1\}^n$, which she wants to communicate to Bob

- A k-qubit message contains 2^k amplitudes! Can we pack this much classical information into it?
- Holevo's theorem (1973): if Alice sends k qubits, then any measurement that Bob can do gives him at most k bits of mutual information with Alice
- k qubits are no better than k bits (?)

Proof of weaker version

- Suppose you encode $x \in \{0,1\}^n$ in quantum state $|\phi_x\rangle \in \mathbb{C}^d$. With k qubits, d = 2^k
- Recover with measurement operators $\{M_x\}$ (probability of outcome x on state ϕ is $\text{Tr}(M_x | \phi \rangle \langle \phi |)$, require $\sum_x M_x = I_d$)
- Success probability to recover *x*: $p_x = \text{Tr}(M_x |\phi_x\rangle \langle \phi_x |) \leq \text{Tr}(M_x)$

•
$$\sum_{x \in \{0,1\}^n} p_x \le \sum_x \operatorname{Tr}(M_x) = \operatorname{Tr}\left(\sum_x M_x\right) = \operatorname{Tr}(I_d) = d$$

- **•** Average success probability is at most $d/2^n$
- If $d \ll 2^n$, then bad average success probability

Random access codes

- Bob cannot learn all bits of $x \in \{0, 1\}^n$ from a k-qubit quantum message if k < n
- But could he learn any one bit x_i of his choice?
- Note that a measurement to learn x_i destroys the state
- Can encode 2 bits into 1 qubit: $|\phi_{\alpha}\rangle = \cos(\alpha)|0\rangle + \sin(\alpha)|1\rangle$ Use $\alpha = \pi/8, 3\pi/8, 5\pi/8, 7\pi/8$ for 00, 10, 11, 01To recover x_1 : measure, success prob $\cos(\pi/8)^2 \approx 0.85$ To recover x_2 : rotate and measure, success prob 0.85
- In general there's not much improvement: if Bob can learn any bit x_i with probability p > 1/2 then (Nayak'00)

$$k \ge (1 - H(p))n$$

Application: Locally decodable codes

- Error-correcting code: $C : \{0,1\}^n \to \{0,1\}^m$, $m \ge n$ decoding: D(w) = x if w is "close" to C(x)
- Inefficient if you only want to decode a small part of x
- C is q-query locally decodable if there is a decoder D that only looks at q bits of w, and $D(w, i) = x_i$ (w.h.p.)
- Hard question: optimal tradeoff between q and m?
- Using quantum, KW03 show: $q = 2 \Rightarrow m \ge 2^{\Omega(n)}$
- Still the only superpolynomial bound known for LDCs

Exponential bound on 2-query LDC

- Given $C: \{0,1\}^n \rightarrow \{0,1\}^m$, 2-query classical decoder
- Can replace 2 classical queries by 1 quantum query!
- Some massaging: make the quantum query uniform
- Consider query-result $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^m (-1)^{C(x)_j} |j\rangle$
- $|\phi_x\rangle$ has $\log m$ qubits, but allows us to predict each of the encoded bits x_1, \ldots, x_n
- Random access code bound: $\log m \ge \Omega(n)$

 \Rightarrow 2-query LDCs need exponential length $m \ge 2^{\Omega(n)}$

Part 2:

Quantum communication complexity

Quantum Communication - p. 8/24

Communication Complexity

- Information theory + complexity theory
- ▲ Alice receives input $x \in \{0,1\}^n$, Bob receives input $y \in \{0,1\}^n$, and they want to compute $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ with minimal communication

Well-studied classically (Yao 79, Kushilevitz & Nisan 97)

Example: Equality

•
$$\mathsf{EQ}(x,y) = 1$$
 iff $x = y$

- Deterministic protocols need n bits Randomized: need only $O(\log n)$ bits
- Define polynomial $p_x(z) = x_1 + x_2 z + \cdots + x_n z^{n-1}$, over field \mathbb{F} with $|\mathbb{F}| \ge 10n$
 - 1. Alice picks $z \in_R \mathbb{F}$, sends z and $p_x(z)$)

 $O(\log n)$ bits

2. Bob outputs whether $p_x(z) = p_y(z)$

This works because: $x = y \Rightarrow p_x(z) = p_y(z) \text{ for all } z \in \mathbb{F}$ $x \neq y \Rightarrow p_x(z) \neq p_y(z) \text{ for most } z \in \mathbb{F}, \text{ because}$ $p_x - p_y \text{ has degree } < n, \text{ so } < n \text{ zeroes}$

Quantum communication complexity

- What if Alice and Bob have a quantum computer and can send each other qubits?
- Holevo's theorem: k qubits cannot contain more information than k classical bits
- This suggests that

quantum communication complexity

classical communication complexity ?

Why study this?

- For its own sake
- To get lower bounds for other models: data structures, circuits, streaming algorithms, ...
- It proves exponential quantum-classical separations in a realistic model, as opposed to
 - Factoring (Shor doesn't give us a proven separation, because we don't know if factoring ∉ P)
 - Query algorithms (not realistic)

Example 1: Distributed Deutsch-Jozsa

- Deutsch-Jozsa (black-box problem): Is bitstring $z_1 \dots z_N$ constant or balanced?
- Distributed Deutsch-Jozsa:
 Are x and y equal or at distance N/2?
- Efficient quantum protocol (BCW 98):
 - 1. Alice sends $|\phi\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} (-1)^{x_i} |i\rangle$ (log N qubits)
 - 2. Bob changes to $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{i} (-1)^{x_i + y_i} |i\rangle$, measures in a basis containing $|U\rangle = \frac{1}{\sqrt{N}} \sum_{i} |i\rangle$

3. If
$$x = y$$
: $|\psi\rangle = |U\rangle$

If $(x, y) = \frac{N}{2}$: $|\psi\rangle$ is orthogonal to $|U\rangle$

Classical protocols need to send almost N bits

Example 2: Disjointness

- Are $x \subseteq [N]$ and $y \subseteq [N]$ disjoint sets?
- Classical protocols need almost N bits, even if we allow some error probability
- We can use Grover's quantum search algorithm to search for an intersection (BCW 98):

Grover takes $O(\sqrt{N})$ steps, each step takes $O(\log N)$ qubits of communication $\implies O(\sqrt{N} \log N)$ qubits

Improved to $O(\sqrt{N})$ (AA 02), optimal (Razborov 01)

Example 3: Exponential separation

▲ Alice gets $v \in \mathbb{R}^n$, orthogonal spaces M_0, M_1 Bob gets a unitary U

Promise: Uv is either in M_0 or in M_1 Question: which one?

- $2\log n$ qubit protocol:
 - 1. Alice sends $|v\rangle$
 - 2. Bob applies U and sends back $U|v\rangle$
 - 3. Alice measures if $U|v\rangle \in M_0$ or M_1
- Raz 99: Classical protocols need to send $\approx \sqrt{n}$ bits (even if we allow error)

Example 4: Fingerprinting

- Quantum fingerprinting (BCWW 01): $n-bit \ x \Longrightarrow \log n-qubit \ |\phi_x\rangle, \ s.t. \ \langle\phi_x|\phi_y\rangle \ small$
- Simultaneous message passing model:

- Quantum protocol: Alice sends $|\phi_x\rangle$, Bob sends $|\phi_y\rangle$, referee tests equality ("Swap test")
- Classical lower bound: \sqrt{n} bits (NS 96)

Lower bounds: Inner product

- Inner product problem: $f(x, y) = x \cdot y \mod 2$
- Suppose a protocol computes f: $|x\rangle|y\rangle \mapsto (-1)^{x \cdot y} \underbrace{|x\rangle}_{\text{Alice Bob}} \underbrace{|y\rangle}_{\text{Bob}}$
- Run the protocol on superposition of all y:

$$|x\rangle \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} |y\rangle \mapsto |x\rangle \underbrace{\frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle}_{H|x\rangle}$$

- Now a Hadamard transform gives Bob x!
- Then n bits have been communicated \implies protocol must have sent n qubits (CDNT'98, via Holevo)

Teleportation (BBCJPW'93)

- Power of entanglement: using an EPR-pair, we can send an unknown qubit over a classical channel
- Start with $(\alpha|0\rangle_A + \beta|1\rangle_A)\frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B)$
- Alice applies $(H \otimes I)C$. Result: $\frac{1}{2}|00\rangle_A(\alpha|0\rangle_B + \beta|1\rangle_B) + \frac{1}{2}|01\rangle_A(\alpha|1\rangle_B + \beta|0\rangle_B) + \frac{1}{2}|10\rangle_A(\alpha|0\rangle_B - \beta|1\rangle_B) + \frac{1}{2}|11\rangle_A(\alpha|1\rangle_B - \beta|0\rangle_B)$
- Alice measures her two qubits and sends Bob result (2 classical bits!)
- Bob then knows how to change his qubit to $\alpha |0\rangle + \beta |1\rangle$ e.g., if he received 01 then he applies an X

Part 3:

Quantum cryptography

Quantum Communication - p. 19/24

Cryptography

- Alice wants to send message $M \in \{0, 1\}^n$ to Bob
- The goal is not minimal communication, but secrecy: a third party (Eve) tapping the channel should not get information about the message
- If Alice and Bob share a secret key $K \in \{0,1\}^n$ then Alice can send $C = M \oplus K$ over the channel
- **9** Bob learns M, but Eve learns nothing about M from C
- How can we make Alice and Bob share a secret key?
- Classically this is impossible, but with quantum communication it can be done

Quantum key distribution (BB 84)

- Basis 0: $\{|0\rangle, |1\rangle\}$, Basis 1: $\{|+\rangle, |-\rangle\}$
- Alice chooses *n* random bits a_1, \ldots, a_n and *n* random bases b_1, \ldots, b_n . She sends a_i to Bob in basis b_i
- Bob chooses random bases b'_1, \ldots, b'_n and measures the qubits he received, yielding bits a'_1, \ldots, a'_n
- Alice sends Bob all b_i
- $\approx n/2$ i's: $b_i = b'_i$ hence $a_i = a'_i$ (unless Eve tampered)
- Use half of those bits to check for tampering/noise: information vs disturbance tradeoff
- **Proof** Rest: key of roughly n/4 shared bits
- Classical postprocessing: reconcilliation, privacy amplification

Building quantum computers?

- The main problem: quantum systems are very fragile. We need to simultaneously
 - Isolate them from the environment
 - Operate on them very precisely
- Strong effort going on around the world. Approaches:
 - Nuclear magnetic resonance (factored $15 = 3 \times 5$ on a 7-qubit computer in 2001)
 - Electron spins
 - Ion traps
 - Solid state
 - Optics (quantum crypto)
- Hard to predict if/when a QC will be built...

Summary: quantum communication

Holevo's theorem: k qubits contain at most k bits of information

Still, we can sometimes exponentially improve communication complexity with a quantum channel

Quantum cryptography allows Alice and Bob to obtain a secret shared key

Summary of the whole course

- The world is quantum, so the strongest computers that nature allows us are quantum computers
- This is fundamental for the theory of computation, but could also have big practical consequences
- Computation: strong algorithms, like Shor and Grover
- Communication: reduce communication complexity, quantum key distribution

Much more that I didn't talk about...