University of Warsaw, PhD Open, Exam Fixed Parameter Algorithms

Dániel Marx, Tel Aviv University, dmarx@cs.bme.hu

1. Either show that the following problem is FPT or show that it is W[1]-complete.

DUAL OF CLIQUE		
Input:	A graph G , an integer k	
Parameter:	k	
Question:	Does G have a clique of size $n - k$, where n is the number of vertices of G?	

2. Either show that the following problem is FPT or show that it is W[1]-complete.

DISTANCE-4 INDEPENDENT SET		
Input:	A graph G , an integer k	
Parameter:	k	
Question:	Is there a set S of k vertices in G such such that the	
	distance of any two vertices in S is at least 4?	

- 3. Show (by whatever method) that there is an $f(k, w) \cdot n^{O(1)}$ time algorithm for DOMI-NATING SET, where k is the size of the dominating set we are looking for and w is the treewidth of the graph.
- 4. Show that the following problem has a polynomial kernel:

TRIANGLE DELETION		
Input:	A graph G , an integer k	
Parameter:	k	
Question:	Is there a set S of at most k vertices such that $G \setminus S$ contains no triangles?	

5. Show that the following problem is FPT:

Edge Dominating Set		
Input:	A graph G , an integer k	
Parameter:	k	
Question:	Is there a set D of at most k edges such that every edge	
	is either in D or shares an endpoint with an edge in D ?	