

OVERVIEW OF THE COURSE

- Limits of dense graphs Survey of main concepts in the area
- The flag algebra method Applications in extremal combinatorics
- Limits of sparse graphs

Various concepts, less understood

FLAG ALGEBRAS

- algebra \mathcal{A} of formal linear combinations of graphs
- homomorphism $f_W : \mathcal{A} \to \mathbb{R}$ for a graphon W $f_W(\sum \alpha_i H_i) := \sum \alpha_i d(H_i, W)$ multiplication, other relations between elements
- algebra \mathcal{A}^R of R-rooted graphs random homomorphism $f_W^R : \mathcal{A}^R \to \mathbb{R}$ multiplication, average operator $\llbracket \cdot \rrbracket_R : \mathcal{A}^R \to \mathcal{A}$ $\mathbb{E}_R f_W^R(x) = f_W(\llbracket x \rrbracket_R)$ for every $x \in \mathcal{A}^R$
- $f_W(\llbracket x^2 \rrbracket_R) \ge 0$ how to find suitable x?

SDP FORMULATION

- find maximum α_0 such that $f_W(G_0) \ge \alpha_0$ assuming $f_W(G_i) \ge \alpha_i$ where $G_0, \ldots, G_k \in \mathcal{A}$
- What inequalities can we use? $f_W(G') \ge 0$ for any graph G' $f_W(K_1) = 1$ where K_1 expressed in *n*-vertex graphs $f_W(\llbracket x^2 \rrbracket_R) \ge 0$ for $x \in \mathcal{A}^R$
- let H_1, \ldots, H_m be elements of \mathcal{A}^R , $h = (H_1, \ldots, H_m)$ if $M \succeq 0$, then $f_W(\llbracket h^T M h \rrbracket_R) \ge 0$

SDP FORMULATION

• prove $f_W(G_0) \ge \alpha_0$ assuming $f_W(G_i) \ge \alpha_i$

• find
$$\gamma_i \geq 0, \ \delta_0 \in \mathbb{R}, \ \delta_i \geq 0, \ M \succeq 0$$

 $G_0 = \sum_{i=1}^k \gamma_i G_i + \sum_{i=1}^\ell (\delta_0 + \delta_i) G'_i + \llbracket h^T M h \rrbracket_R$
 $\alpha_0 = \delta_0 + \sum_{i=1}^k \gamma_i \alpha_i$
where G'_1, \ldots, G'_ℓ are all *n*-vert. graphs and $h \in (\mathcal{A}^R)^m$

•
$$\gamma_i \times f_W(G_i) \ge \gamma_i \times \alpha_i$$

 $\delta_0 \times f_W(G'_1 + \dots + G'_\ell) = \delta_0 \times 1$
 $\delta_i \times f_W(G'_i) \ge 0$
 $f_W(\llbracket h^T M h \rrbracket_R) \ge 0$

SDP EXAMPLE

- prove $f_W(\overline{K_3} + K_3) \ge \alpha_0$ for maximum α_0
- $(G'_1, \dots, G'_4) = (\overline{K_3}, \overline{K_{1,2}}, K_{1,2}, K_3), h = (\overline{K_2}^{\bullet}, K_2^{\bullet})$
- SDP: $\max \langle C, X \rangle$ s.t. $\langle A_i, X \rangle = b_i, X \succeq 0, X \in \mathbb{R}^{8 \times 8}$

SDP FORMULATION

- prove $f_W(G_0) \ge \alpha_0$ if $f_W(G_i) \ge \alpha_i$
- find $\gamma_i \geq 0, \ \delta_0 \in \mathbb{R}, \ \delta_i \geq 0, \ M \succeq 0$ $G_0 = \sum_{i=1}^k \gamma_i G_i + \sum_{i=1}^\ell (\delta_0 + \delta_i) G'_i + \llbracket h^T M h \rrbracket_R$ $\alpha_0 = \delta_0 + \sum_{i=1}^k \gamma_i \alpha_i$ where G'_1, \ldots, G'_ℓ are all *n*-vert. graphs and $h \in (\mathcal{A}^R)^m$
- SDP: $\max \langle C, X \rangle$ s.t. $\langle A_i, X \rangle = b_i$ and $X \succeq 0$ X of size $k + 2 + \ell + m$, diagonal $\gamma_i, \pm \delta_0, \delta_i, M$ ℓ constraints, b_i is the coefficient of G'_i in G_0

Questions?

OVERVIEW OF THE COURSE

- Limits of dense graphs Survey of main concepts in the area
- The flag algebra method Applications in extremal combinatorics
- Limits of sparse graphs

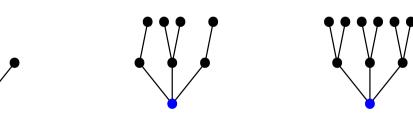
Various concepts, less understood

Sparse graph convergence

- convergence of graphs with bounded degree trivially converging to the zero graphon
- need of a different notion of convergence several notions, each having some cons
- absence of understood analytic representation characterization of realizable neighborhood statistics Aldous and Lyons Conjecture, relation to group theory

BENJAMINI-SCHRAMM CONVERGENCE

- introduced by Benjamini and Schramm in 2001 also referred to as left convergence
- bounded number of types of *d*-neighborhoods convergence of statistic of *d*-neighborhoods
- cons: connected vs. disconnected (G vs. $G \cup G$) bipartite vs. non-bipartite graphs (random graphs)



LEFT CONVERGENCE

- graph homomorphism $\varphi: G \to H$ for every $uv \in E(G), \ \varphi(u)\varphi(v) \in E(H)$
- $\hom(G, H) =$ number of homomorphisms from G to H
- Dense graph convergence $(G_n)_{n \in \mathbb{N}}$ converges $\Leftrightarrow \frac{\hom(H, G_n)}{|V(G_n)|^{|V(H)|}}$ converges for all Hequivalent to subgraph densities by PIE
- Benjamini-Schramm convergence $(G_n)_{n \in \mathbb{N}}$ converges $\Leftrightarrow \frac{\hom(H, G_n)}{|V(G_n)|}$ converges for conn. H

LOCAL-GLOBAL CONVERGENCE

- introduced by Hatami, Lovász and Szegedy in 2012
- types of *d*-neighborhoods *k*-vertex-colored graphs convergence of *d*-neighborhood statistics attainable by a *k*-vertex-coloring of graphs
- K = number of k-vertex-colored d-neighborhood types $\forall k, d : (G_i)_{i \in \mathbb{N}}$ yields $(A_i)_{i \in \mathbb{N}}$ where $A_i \subseteq \mathbb{R}^K$ $\forall \varepsilon > 0 \exists n \forall i, j > n, x \in A_i \exists y \in A_j ||x - y|| \le \varepsilon$
- local-global convergence \Rightarrow left convergence

GRAPHINGS

• graphing G is a graph with V(G) = [0, 1]bounded maximum degree, Borel edge-set mass preservation: $\int_A \deg_B(x) dx = \int_B \deg_A(y) dy$ where $\deg_Y(x) = |\{y \text{ s.t. } (x, y) \in G\}|$

Theorem (Elek, 2007)
 Every BS-convergent sequence has a graphing.
 Theorem (Hatami, Lovász, Szegedy, 2012)
 Every LG-convergent sequence has a graphing.

Questions?

Thank you for your attention!