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OVERVIEW OF THE COURSE

e Limits of dense graphs

Survey of main concepts in the area

e The flag algebra method

Applications in extremal combinatorics

e Limits of sparse graphs

Various concepts, less understood




FLAG ALGEBRAS

e algebra A of formal linear combinations of graphs

e homomorphism fy : A — R for a graphon W

multiplication, other relations between elements

e algebra A" of R-rooted graphs
random homomorphism f{f : A% — R

multiplication, average operator [-], : A" — A
Erfit(z) = fw([z] ) for every z € A"

o fw(|2?] ») = 0 - how to find suitable x?




SDP FORMULATION

e find maximum «g such that fiy (Gg) > ag
assming fy (G;) > a; where Gy, ..., G € A

e What inequalities can we use?
fw (G") > 0 for any graph G’
fw (K1) =1 where K; expressed in n-vertex graphs
fw ([ 22] 5) > 0forx e AL

o let Hy,...,H,, be elements of A® h = (Hy,...,H,,)
if M =0, then fuw (|h" Mh]| r) =0




SDP FORMULATION

e prove fiy(Goy) > ag assuming fiy (G;) > oy

e find~; >0,00€R, 5 >0, M >0
Go = S8 %G + 51 (60 + )G + [RTMR]

ap = 0p + Zle Vi O
where G/, ..., G} are all n-vert. graphs and h € (Af)™

o v X fw(Gi) = i X
oo X fw (G +---+Gy) = dp x 1
fW([[hTMh]]R) >0




SDP EXAMPLE
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SDP FORMULATION

® prove fw(Go) > Qg if fw(Gz) >

e findv; >0,60€R, 5 >0, M=0
GO — Zle ’ysz —|— Zle(é() —|_ 5Z)G; —|_ [[hTMh]]R

o = 60+ Dy Vit

where G/, ..., G} are all n-vert. graphs and h € (Af)™
o SDP: max{C, X> S.T. <AZ,X> = bz and X - 0

X of size kK + 2 + £ + m, diagonal ~;, 0¢, 0;, M

¢ constraints, b; is the coefficient of G in G




(Questions?
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SPARSE GRAPH CONVERGENCE

e convergence of graphs with bounded degree

trivially converging to the zero graphon

e need of a different notion of convergence

several notions, each having some cons

e absence of understood analytic representation
characterization of realizable neighborhood statistics

Aldous and Lyons Conjecture, relation to group theory
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BENJAMINI-SCHRAMM CONVERGENCE

e introduced by Benjamini and Schramm in 2001

also referred to as left convergence

e bounded number of types of d-neighborhoods

convergence of statistic of d-neighborhoods

e cons: connected vs. disconnected (G vs. G U G)

bipartite vs. non-bipartite graphs (random graphs)

v v Y
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LEFT CONVERGENCE

graph homomorphism ¢ : G — H
for every uv € E(G), p(u)p(v) € E(H)

hom(G, H) = number of homomorphisms from G to H

Dense graph convergence

(G )nen converges < &?én (ﬁ’ﬁ{;})' converges for all H

equivalent to subgraph densities by PIE

Benjamini-Schramm convergence

hom (H,G,,
(Gn)nen converges < O‘I‘I}EG?‘ ) converges for conn. H
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LLOCAL-GLOBAL CONVERGENCE

introduced by Hatami, Lovasz and Szegedy in 2012

types of d-neighborhoods k-vertex-colored graphs
convergence of d-neighborhood statistics

attainable by a k-vertex-coloring of graphs

K = number of k-vertex-colored d-neighborhood types
\V/k, d : (Gi)iEN yields (Ai)iEN where Az g RK
Ve>03dnVi,j>naxed, JycA;|lr—y|| ¢

local-global convergence = left convergence
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(FRAPHINGS

e graphing G is a graph with V(G) = [0, 1]

bounded maximum degree, Borel edge-set

mass preservation: [, degg(z) dz = [, deg,(y) dy

where degy () = |{y s.t. (z,y) € G}
Theorem (Elek, 2007)

Every BS-convergent sequence has a graphing.
Theorem (Hatami, Lovasz, Szegedy, 2012)

Every LG-convergent sequence has a graphing.
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(Questions?
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Thank you for your attention!
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