Combinatorial limits

Part 2

Dan Král'
University of Warwick

Overview of the course

- Limits of dense graphs

Survey of main concepts in the area

- The flag algebra method

Applications in extremal combinatorics

- Limits of sparse graphs

Various concepts, less understood

Limit object: GRAPHON

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n random points $x_{i} \in[0,1]$, edge probability $W\left(x_{i}, x_{j}\right)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$
\square

\square

Limit object: Graphon

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n random points $x_{i} \in[0,1]$, edge probability $W\left(x_{i}, x_{j}\right)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$
- W-random graphs converge to W with probability one
- every convergent sequence of graphs has a limit

Flag algebras

- the flag algebra method independent of graph limits we introduce the method using graphons for simplicity
- algebra \mathcal{A} of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism f_{W} from \mathcal{A} to \mathbb{R} for a graphon W $f_{W}\left(\sum \alpha_{i} H_{i}\right):=\sum \alpha_{i} d\left(H_{i}, W\right)$
- examples: $f_{W}\left(K_{2}\right)=d\left(K_{2}, W\right)$
$f_{W}\left(K_{2}-K_{3}\right)=d\left(K_{2}, W\right)-d\left(K_{3}, W\right)$

Multiplication

- defined $f_{W}(H):=d(H, W)$ and extended linearly
- aim: define multiplication on \mathcal{A} preserved by f_{W} $f_{W}\left(H_{1} \times H_{2}\right)=f_{W}\left(H_{1}\right) \cdot f_{W}\left(H_{2}\right)$
- $H_{1} \times H_{2}=\sum_{H} \frac{\left|\left\{(A, B) \mid V(H)=A \cup B, H[A] \cong H_{1}, H[B] \cong H_{2}\right\}\right|}{\binom{\left|H_{1}\right|+\left|H_{1}\right|}{\left|H_{2}\right|}} H$

Kernel of the map

- defined $f_{W}(H):=d(H, W)$ and extended linearly
- $\operatorname{Ker}\left(f_{W}\right)$ always contains certain elements

$$
f_{W}\left(K_{2}\right)=\frac{1}{3} f_{W}\left(\overline{K_{1,2}}\right)+\frac{2}{3} f_{W}\left(K_{1,2}\right)+\frac{3}{3} f_{W}\left(K_{3}\right)
$$

- let \mathcal{A}^{\prime} be the space generated by $H-\sum_{H^{\prime}} d\left(H^{\prime}, H\right) H$ $\mathcal{A}^{\prime} \subseteq \operatorname{Ker}\left(f_{W}\right) \Rightarrow$ homomorphism $f_{W}: \mathcal{A} / \mathcal{A}^{\prime} \rightarrow \mathbb{R}$

Rooted homomorphisms

- consider a graph G with a distinguish vertex (root) a random sample always includes the root
- algebra \mathcal{A}^{\bullet} on combinations of rooted graphs
- rooted graphon \rightarrow a homomorphism from \mathcal{A}^{\bullet} to \mathbb{R} random choice of the root $x_{0} \rightarrow$ probability distribution on homomorphisms $f^{x_{0}}$ from \mathcal{A}^{\bullet} to \mathbb{R}

$$
\frac{f \bullet\left(K_{2}^{\bullet}\right)=1 / 2, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=1 / 2, f \bullet\left(K_{3}^{\bullet}\right)=1 / 4, \ldots}{f \bullet\left(K_{2}^{\bullet}\right)=1, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=0, f^{\bullet}\left(K_{3}^{\bullet}\right)=3 / 4, \ldots}
$$

Rooted homomorphisms

- algebra \mathcal{A}^{\bullet} of combinations of rooted graphs random choice of the root $x_{0} \rightarrow$ probability distribution on homomorphisms $f^{x_{0}}$ from \mathcal{A}^{\bullet} to \mathbb{R}
- the value $f_{W}^{x_{0}}(H)$ for H with root v_{0} is $\frac{k!}{\mid \text { Aut }(H) \mid} \times$ $\int \prod_{v_{i} v_{j} \in E(H)} W\left(x_{i}, x_{j}\right) \prod_{v_{i} v_{j} \notin E(H)}\left(1-W\left(x_{i}, x_{j}\right)\right) \mathrm{d} x_{1} \cdots x_{k}$

$$
\frac{f \bullet\left(K_{2}^{\bullet}\right)=1 / 2, f \bullet\left(\overline{K_{2}^{\mathbf{\bullet}}}\right)=1 / 2, f \bullet\left(K_{3}^{\bullet}\right)=1 / 4, \ldots}{f\left(K_{2}^{\bullet}\right)=1, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=0, f^{\bullet}\left(K_{3}^{\bullet}\right)=3 / 4, \ldots}
$$

Questions?

GENERAL ROOTED GRAPHS

- fix a graph R with vertices r_{1}, \ldots, r_{k} algebra \mathcal{A}^{R} of combinations of R-rooted graphs
- random homomorphism f^{R} from \mathcal{A}^{R} to \mathbb{R}
random choice of the roots x_{1}, \ldots, x_{k}
the roots do not induce $R \Rightarrow f^{R} \equiv 0$
otherwise, sampling $|H|-k$ vertices \Rightarrow prob. $f^{R}(H)$

$$
\begin{aligned}
& \frac{f^{K_{2}}\left(K_{3}^{K_{2}}\right)=0, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=0, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)=0, \ldots}{f^{K_{2}}\left(K_{3}^{K_{2}}\right)=1 / 2, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=1 / 4, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)}=1 / 2, \ldots \\
& \left.\frac{f^{K_{2}}\left(K_{3}^{K_{2}}\right)=1 / 2, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=1 / 4, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)}{}\right)=0, \ldots \\
& f^{K_{2}}\left(K_{3}^{K_{2}}\right)=1, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=3 / 4, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)=0, \ldots
\end{aligned}
$$

Operations with rooted graphs

- projection
prob. that deleting non-root vertices yields the flag

$$
\left.\oint=\frac{1}{2}{ }^{\circ}+\frac{1}{2} \cdots+\frac{2}{2}\right\}+\frac{2}{2} \wp
$$

- multiplication
prob. partitioning non-root vertices yields the terms

Expected value

- goal: $\mathbb{E}_{R} f_{W}^{R}(H)=f_{W}\left(\llbracket H \rrbracket_{R}\right)$ for $H \in \mathcal{A}^{R}$
- $f\left(\llbracket H \rrbracket_{\mathbf{\bullet}}\right)=\mathbb{E}_{z} f^{z}(H)$

$$
\llbracket \mathfrak{V} \rrbracket_{0} \frac{1}{3} \mathfrak{\gamma} \quad \llbracket 0 . \rrbracket_{0}=^{\frac{2}{3}}{ }^{\circ}
$$

- $\llbracket \rrbracket_{R}: \mathcal{A}^{R} \rightarrow \mathcal{A} \quad \llbracket H \rrbracket_{R}=\alpha H^{\prime}$
H^{\prime} is the graph H without distinguishing roots α is the prob. that randomly chosen roots yield H

Questions?

Flag algebras

- algebra \mathcal{A} of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism $f_{W}: \mathcal{A} \rightarrow \mathbb{R}$ for a graphon W $f_{W}\left(\sum \alpha_{i} H_{i}\right):=\sum \alpha_{i} d\left(H_{i}, W\right)$ multiplication, elements always in $\operatorname{Ker}\left(f_{W}\right)$
- algebra \mathcal{A}^{R} of R-rooted graphs
random homomorphism $f_{W}^{R}: \mathcal{A}^{R} \rightarrow \mathbb{R}$
multiplication, average operator $\llbracket \cdot \rrbracket_{R}: \mathcal{A}^{R} \rightarrow \mathcal{A}$
$\mathbb{E}_{R} f_{W}^{R}(x)=f_{W}\left(\llbracket x \rrbracket_{R}\right)$ for every $x \in \mathcal{A}^{R}$

Computing With Flags

- simple applications yields results such as $f_{W}\left(K_{2}\right)>1 / 2 \Rightarrow f_{W}\left(K_{3}\right)>0$ for every W $f_{W}\left(K_{3}+\overline{K_{3}}\right) \geq 1 / 4$ for every W
- shorthand notation for $x, y \in \mathcal{A}$

$$
\begin{aligned}
& x=y \Leftrightarrow \forall W f_{W}(x)=f_{W}(y) \\
& x \geq 0 \Leftrightarrow \forall W f_{W}(x) \geq 0
\end{aligned}
$$

- What can we use in computations?
$x^{2} \geq 0$ for every $x \in \mathcal{A}$
$\llbracket x^{2} \rrbracket_{R} \geq 0$ for every $x \in \mathcal{A}^{R}$

Goodman's Theorem

(

Questions?

