Combinatorial limits

Part 1

Dan Král'
University of Warwick

GRAPH LIMITS

- large networks \approx large graphs how to represent? how to model? how to generate?
- concise (analytic) representation of large graphs we implicitly use limits in our considerations anyway
- mathematics motivation - extremal graph theory What is a typical structure of an extremal graph? calculations avoiding smaller order terms
- today: dense graphs $\left(|E|=\Omega\left(|V|^{2}\right)\right)$
- convergence vs. analytic representation

Overview of the course

- Limits of dense graphs

Survey of main concepts in the area

- The flag algebra method

Applications in extremal combinatorics

- Limits of sparse graphs

Various concepts, less understood

DENSE GRAPH CONVERGENCE

- convergence for dense graphs $\left(|E|=\Omega\left(|V|^{2}\right)\right)$
- $d(H, G)=$ probability $|H|$-vertex subgraph of G is H
- a sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs is convergent if $d\left(H, G_{n}\right)$ converges for every H
- extendable to other discrete structures

Convergent graph sequences

- complete graphs K_{n}
- complete bipartite graphs $K_{\alpha n, n}$
- Erdős-Rényi random graphs $G_{n, p}$
- any sequence of graphs with bounded maximum degree
- any sequence of planar graphs

Limit object: GRAPHON

- graphon $W:[0,1]^{2} \rightarrow[0,1]$
measurable symmetric function, i.e. $W(x, y)=W(y, x)$
- "limit of adjacency matrices" (very imprecise)
- points of $[0,1] \approx$ vertices, values of $W \approx$ edge density

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n
sample n random points $x_{i} \in[0,1] \approx$ vertices join two vertices by an edge with probability $W\left(x_{i}, x_{j}\right)$
- density of a graph H in a graphon W $d(H, W)=$ prob. $|H|$-vertex W-random graph is H

\square

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H

$$
\frac{|H|!}{|\operatorname{Aut}(H)|} \int_{[0,1]^{|H|}} \prod_{v_{i} v_{j}} W\left(x_{i}, x_{j}\right) \prod_{\bar{v}_{i} v_{j}}\left(1-W\left(x_{i}, x_{j}\right)\right) \mathrm{d} x_{1} \cdots x_{n}
$$

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- $d(H, W)=$ expected density of H in a W-random graph
- $d\left(K_{2}, W\right)=\frac{1}{3} d\left(\overline{K_{1,2}}, W\right)+\frac{2}{3} d\left(K_{1,2}, W\right)+d\left(K_{3}, W\right)$ Why? Integral. Random experiment.

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- $d(H, W)=$ expected density of H in a W-random graph
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$

Graphons AS LIMITS

- Does every convergent sequence have a limit?
- Uniqueness of a graphon representing a sequence.
- Is every graphon a limit of convergent sequence?

MARTINGALES

- martingale is a sequence of random variables X_{n} $\mathbb{E}\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right)=X_{n}$ for every $n \in \mathbb{N}$
- Azuma-Hoeffding inequality suppose that $\mathbb{E} X_{n}=X_{0}$ and $\left|X_{n}-X_{n-1}\right| \leq c_{n}$ $\mathbb{P}\left(\left|X_{n}-X_{0}\right| \geq t\right) \leq 2 e^{\frac{-t^{2}}{2 \sum_{k=1}^{n} c_{k}^{2}}}$
- Doob's Martingale Convergence Theorem (corr.) if $\left|X_{n}\right|<K$, then $X_{n} \rightarrow X$ almost everywhere

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- fix $n \in \mathbb{N}$, a graph H and a graphon W
- $X_{i}=$ exp. number of H in an n-vertex W-rand. graph after fixing the first i vertices and edges between them
- apply Azuma-Hoeffding inequality with $c_{i}=n^{|H|-1}$
$\mathbb{P}\left(\left|X_{n}-X_{0}\right| \geq \varepsilon n^{|H|}\right) \leq 2 e^{-\varepsilon^{2} n / 2}$
$\mathbb{P}\left(\left|X_{n}-X_{0}\right| \geq t\right) \leq 2 e^{\frac{-t^{2}}{2 \sum_{k=1}^{n} c_{k}^{2}}}$

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- $X_{i}=$ exp. number of H in an n-vertex W-rand. graph after fixing the first i vertices and edges between them $\mathbb{P}\left(\frac{\left|X_{n}-X_{0}\right|}{n^{|H|}} \geq \varepsilon\right) \leq 2 e^{-\varepsilon^{2} n / 2}$
- the sum of $2 e^{-\varepsilon^{2} n / 2}$ is finite for every $\varepsilon>0$
- Borel-Cantelli \Rightarrow the sequence converges with prob. one
- $X_{0} \approx \frac{d(H, W) n^{|H|}}{|H|!} \Rightarrow$ the graphon W is its limit

Uniqueness of The Limit

- $W^{\varphi}(x, y):=W(\varphi(x), \varphi(y))$ for $\varphi:[0,1] \rightarrow[0,1]$
- $d(H, W)=d\left(H, W^{\varphi}\right)$ if φ is measure preserving
- Theorem (Borgs, Chayes, Lovász)

If $d\left(H, W_{1}\right)=d\left(H, W_{2}\right)$ for all graphs H,
then there exist measure preserving maps φ_{1} and φ_{2} such that $W_{1}^{\varphi_{1}}=W_{2}^{\varphi_{2}}$ almost everywhere.

GRAPH REGULARITY

- Frieze-Kannan regularity, Szemerédi regularity
- $\forall \epsilon>0 \exists K_{\varepsilon}$ such that every graph G has an ε-regular equipartition V_{1}, \ldots, V_{k} with $k \leq K_{\varepsilon}$ $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all i and j
- equipartition $V_{1}, \ldots, V_{k} \rightarrow$ density matrix $A_{i j}=\frac{e\left(V_{i}, V_{j}\right)}{\left|V_{i}\right|\left|V_{j}\right|}$
- $\forall \delta>0, H \exists \varepsilon>0$ such that the density matrix of an ε-regular partition determines $d(H, G)$ upto an δ-error
- the lemma holds with prepartitions

Existence of Limit graphon

- fix a convergent sequence $G_{i}, i \in \mathbb{N}$, of graphs
- set $\varepsilon_{j}=2^{-j}$ and fix ε_{1}-regular partition of G_{i} fix ε_{j+1}-regular partition refining the ε_{j}-regular one
- take a subsequence G_{i}^{\prime} of G_{i} such that all but finitely many ε_{j}-regular partitions have the same num. parts
- let $A^{i j}$ be the density matrix for G_{i} and ε_{j}
- take a subsequence $G_{i}^{\prime \prime}$ of G_{i}^{\prime} such that $A^{i j}$ coordinate-wise converge for every j

Existence of limit graphon

- a convergent sequence G_{i}, density matrices $A^{i j}$ let A^{j} be the coordinate-wise limit of $A^{i j}$
- interpret A^{j} as a random variable on $[0,1]^{2}$ and apply Doob's Martingale Convergence Theorem in this way, we obtain a graphon W
- relate $d(H, W)$ to the density of H based on A^{j}

Questions?

Graphon entropy

- Hatami, Janson, Szegedy (2013)

Falgas-Ravry, O'Connell, Strömberg, Uzzell

- How many graphs resemble a graphon W ? the number $\approx 2^{c n^{2} / 2+o\left(n^{2}\right)}$, what is c ?
$c=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\log \mid n \text {-vertex graphs } \varepsilon \text {-close to } W \mid}{n^{2} / 2}$
- graphon entropy $\operatorname{Ent}(W)=\int h(W(x, y)) \mathrm{d} x y$ where $h(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)$
- the constant c is $\operatorname{Ent}(W)$

Questions?

