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Graph limits

• large networks ≈ large graphs

how to represent? how to model? how to generate?

• concise (analytic) representation of large graphs

we implicitly use limits in our considerations anyway

• mathematics motivation – extremal graph theory

What is a typical structure of an extremal graph?

calculations avoiding smaller order terms

• today: dense graphs (|E| = Ω(|V |2))

• convergence vs. analytic representation
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Overview of the course

• Limits of dense graphs

Survey of main concepts in the area

• The flag algebra method

Applications in extremal combinatorics

• Limits of sparse graphs

Various concepts, less understood
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Dense graph convergence

• convergence for dense graphs (|E| = Ω(|V |2))

• d(H,G) = probability |H |-vertex subgraph of G is H

• a sequence (Gn)n∈N of graphs is convergent

if d(H,Gn) converges for every H

• extendable to other discrete structures
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Convergent graph sequences

• complete graphs Kn

• complete bipartite graphs Kαn,n

• Erdős-Rényi random graphs Gn,p

• any sequence of graphs with bounded maximum degree

• any sequence of planar graphs
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Limit object: graphon

• graphon W : [0, 1]2 → [0, 1]

measurable symmetric function, i.e. W (x, y) = W (y, x)

• “limit of adjacency matrices” (very imprecise)

• points of [0, 1] ≈ vertices, values of W ≈ edge density
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W-random graphs

• graphon W : [0, 1]2 → [0, 1], s.t. W (x, y) = W (y, x)

• W -random graph of order n

sample n random points xi ∈ [0, 1] ≈ vertices

join two vertices by an edge with probability W (xi, xj)

• density of a graph H in a graphon W

d(H,W ) = prob. |H |-vertex W -random graph is H

7



W-random graphs

• graphon W : [0, 1]2 → [0, 1], s.t. W (x, y) = W (y, x)

• d(H,W ) = prob. |H |-vertex W -random graph is H

|H |!

|Aut(H)|

∫

[0,1]|H|

∏

vivj

W (xi, xj)
∏

vivj

(1−W (xi, xj)) dx1 · · · xn
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W-random graphs

• graphon W : [0, 1]2 → [0, 1], s.t. W (x, y) = W (y, x)

• d(H,W ) = prob. |H |-vertex W -random graph is H

• d(H,W ) = expected density of H in a W -random graph

• d(K2,W ) = 1
3d(K1,2,W ) + 2

3d(K1,2,W ) + d(K3,W )

Why? Integral. Random experiment.

9



W-random graphs

• graphon W : [0, 1]2 → [0, 1], s.t. W (x, y) = W (y, x)

• d(H,W ) = prob. |H |-vertex W -random graph is H

• d(H,W ) = expected density of H in a W -random graph

• W is a limit of (Gn)n∈N if d(H,W ) = lim
n→∞

d(H,Gn)

10



Graphons as limits

• Does every convergent sequence have a limit?

• Uniqueness of a graphon representing a sequence.

• Is every graphon a limit of convergent sequence?
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Martingales

• martingale is a sequence of random variables Xn

E(Xn+1|X1, . . . ,Xn) = Xn for every n ∈ N

• Azuma-Hoeffding inequality

suppose that EXn = X0 and |Xn −Xn−1| ≤ cn

P (|Xn −X0| ≥ t) ≤ 2e
−t2

2
∑n

k=1
c2
k

• Doob’s Martingale Convergence Theorem (corr.)

if |Xn| < K, then Xn → X almost everywhere
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W-random graphs converge

• A sequence of W -random graphs with increasing orders

converges with probability one.

• fix n ∈ N, a graph H and a graphon W

• Xi = exp. number of H in an n-vertex W -rand. graph

after fixing the first i vertices and edges between them

• apply Azuma-Hoeffding inequality with ci = n|H|−1

P
(

|Xn −X0| ≥ εn|H|
)

≤ 2e−ε2n/2

P (|Xn −X0| ≥ t) ≤ 2e
−t2

2
∑n

k=1
c2
k
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W-random graphs converge

• A sequence of W -random graphs with increasing orders

converges with probability one.

• Xi = exp. number of H in an n-vertex W -rand. graph

after fixing the first i vertices and edges between them

P

(

|Xn−X0|
n|H| ≥ ε

)

≤ 2e−ε2n/2

• the sum of 2e−ε2n/2 is finite for every ε > 0

• Borel-Cantelli ⇒ the sequence converges with prob. one

• X0 ≈ d(H,W )n|H|

|H|! ⇒ the graphon W is its limit
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Uniqueness of the limit

• Wϕ(x, y) := W (ϕ(x), ϕ(y)) for ϕ : [0, 1] → [0, 1]

• d(H,W ) = d(H,Wϕ) if ϕ is measure preserving

• Theorem (Borgs, Chayes, Lovász)

If d(H,W1) = d(H,W2) for all graphs H ,

then there exist measure preserving maps ϕ1 and ϕ2

such that Wϕ1

1 = W
ϕ2

2 almost everywhere.
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Graph regularity

• Frieze-Kannan regularity, Szemerédi regularity

• ∀ǫ > 0 ∃Kε such that every graph G has an ε-regular

equipartition V1, . . . , Vk with k ≤ Kε

||Vi| − |Vj || ≤ 1 for all i and j

• equipartition V1, . . . , Vk → density matrix Aij =
e(Vi,Vj)
|Vi||Vj |

• ∀δ > 0,H ∃ε > 0 such that the density matrix of an

ε-regular partition determines d(H,G) upto an δ-error

• the lemma holds with prepartitions
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Existence of limit graphon

• fix a convergent sequence Gi, i ∈ N, of graphs

• set εj = 2−j and fix ε1-regular partition of Gi

fix εj+1-regular partition refining the εj-regular one

• take a subsequence G′
i of Gi such that all but finitely

many εj-regular partitions have the same num. parts

• let Aij be the density matrix for Gi and εj

• take a subsequence G′′
i of G′

i such that

Aij coordinate-wise converge for every j
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Existence of limit graphon

• a convergent sequence Gi, density matrices Aij

let Aj be the coordinate-wise limit of Aij

• interpret Aj as a random variable on [0, 1]2 and

apply Doob’s Martingale Convergence Theorem

in this way, we obtain a graphon W

• relate d(H,W ) to the density of H based on Aj
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Questions?
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Graphon entropy

• Hatami, Janson, Szegedy (2013)

Falgas-Ravry, O’Connell, Strömberg, Uzzell

• How many graphs resemble a graphon W?

the number ≈ 2cn
2/2+o(n2), what is c?

c = lim
ε→0

lim
n→∞

log|n-vertex graphs ε-close to W |
n2/2

• graphon entropy Ent(W ) =
∫

h(W (x, y))dxy

where h(p) = −p log2 p− (1− p) log2(1− p)

• the constant c is Ent(W )
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Questions?
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