

GRAPH LIMITS

- large networks ≈ large graphs
 how to represent? how to model? how to generate?
- concise (analytic) representation of large graphs we implicitly use limits in our considerations anyway
- mathematics motivation extremal graph theory What is a typical structure of an extremal graph? calculations avoiding smaller order terms
- today: dense graphs $(|E| = \Omega(|V|^2))$
- convergence vs. analytic representation

OVERVIEW OF THE COURSE

- Limits of dense graphs Survey of main concepts in the area
- The flag algebra method Applications in extremal combinatorics
- Limits of sparse graphs

Various concepts, less understood

DENSE GRAPH CONVERGENCE

- convergence for dense graphs $(|E| = \Omega(|V|^2))$
- d(H,G) = probability |H|-vertex subgraph of G is H
- a sequence $(G_n)_{n \in \mathbb{N}}$ of graphs is convergent if $d(H, G_n)$ converges for every H
- extendable to other discrete structures

Convergent graph sequences

- complete graphs K_n
- complete bipartite graphs $K_{\alpha n,n}$
- Erdős-Rényi random graphs $G_{n,p}$
- any sequence of graphs with bounded maximum degree
- any sequence of planar graphs

LIMIT OBJECT: GRAPHON

- graphon $W : [0,1]^2 \to [0,1]$ measurable symmetric function, i.e. W(x,y) = W(y,x)
- "limit of adjacency matrices" (very imprecise)
- points of $[0,1] \approx$ vertices, values of $W \approx$ edge density

- graphon $W : [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order n sample n random points x_i ∈ [0, 1] ≈ vertices
 join two vertices by an edge with probability W(x_i, x_j)
- density of a graph H in a graphon W
 d(H,W) = prob. |H|-vertex W-random graph is H

- graphon $W : [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- d(H, W) = prob. |H|-vertex W-random graph is H

$$\frac{|H|!}{|\operatorname{Aut}(H)|} \int_{[0,1]^{|H|}} \prod_{v_i v_j} W(x_i, x_j) \prod_{v_i v_j} (1 - W(x_i, x_j)) \, \mathrm{d}x_1 \cdots x_n$$

- graphon $W : [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- d(H, W) = prob. |H|-vertex W-random graph is H
- d(H, W) = expected density of H in a W-random graph
- $d(K_2, W) = \frac{1}{3}d(\overline{K_{1,2}}, W) + \frac{2}{3}d(K_{1,2}, W) + d(K_3, W)$ Why? Integral. Random experiment.

- graphon $W : [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- d(H, W) = prob. |H|-vertex W-random graph is H
- d(H, W) = expected density of H in a W-random graph
- W is a limit of $(G_n)_{n \in \mathbb{N}}$ if $d(H, W) = \lim_{n \to \infty} d(H, G_n)$

GRAPHONS AS LIMITS

- Does every convergent sequence have a limit?
- Uniqueness of a graphon representing a sequence.
- Is every graphon a limit of convergent sequence?

MARTINGALES

- martingale is a sequence of random variables X_n $\mathbb{E}(X_{n+1}|X_1,\ldots,X_n) = X_n$ for every $n \in \mathbb{N}$
- Azuma-Hoeffding inequality suppose that $\mathbb{E}X_n = X_0$ and $|X_n - X_{n-1}| \le c_n$ $\mathbb{P}(|X_n - X_0| \ge t) \le 2e^{\frac{-t^2}{2\sum_{k=1}^n c_k^2}}$
- Doob's Martingale Convergence Theorem (corr.) if $|X_n| < K$, then $X_n \to X$ almost everywhere

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- fix $n \in \mathbb{N}$, a graph H and a graphon W
- $X_i = \exp$. number of H in an *n*-vertex W-rand. graph after fixing the first *i* vertices and edges between them

• apply Azuma-Hoeffding inequality with $c_i = n^{|H|-1}$ $\mathbb{P}\left(|X_n - X_0| \ge \varepsilon n^{|H|}\right) \le 2e^{-\varepsilon^2 n/2}$ $\mathbb{P}\left(|X_n - X_0| \ge t\right) \le 2e^{\frac{-t^2}{2\sum_{k=1}^n c_k^2}}$

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- $X_i = \exp$ number of H in an n-vertex W-rand. graph after fixing the first i vertices and edges between them $\mathbb{P}\left(\frac{|X_n - X_0|}{n^{|H|}} \ge \varepsilon\right) \le 2e^{-\varepsilon^2 n/2}$
- the sum of $2e^{-\varepsilon^2 n/2}$ is finite for every $\varepsilon > 0$
- Borel-Cantelli \Rightarrow the sequence converges with prob. one

•
$$X_0 \approx \frac{d(H,W)n^{|H|}}{|H|!} \Rightarrow$$
 the graphon W is its limit

UNIQUENESS OF THE LIMIT

- $W^{\varphi}(x,y) := W(\varphi(x),\varphi(y))$ for $\varphi: [0,1] \to [0,1]$
- $d(H, W) = d(H, W^{\varphi})$ if φ is measure preserving
- Theorem (Borgs, Chayes, Lovász) If $d(H, W_1) = d(H, W_2)$ for all graphs H, then there exist measure preserving maps φ_1 and φ_2 such that $W_1^{\varphi_1} = W_2^{\varphi_2}$ almost everywhere.

GRAPH REGULARITY

- Frieze-Kannan regularity, Szemerédi regularity
- $\forall \epsilon > 0 \ \exists K_{\varepsilon}$ such that every graph G has an ε -regular equipartition V_1, \ldots, V_k with $k \leq K_{\varepsilon}$ $||V_i| - |V_j|| \leq 1$ for all i and j
- equipartition $V_1, \ldots, V_k \to \text{density matrix } A_{ij} = \frac{e(V_i, V_j)}{|V_i| |V_j|}$
- $\forall \delta > 0, H \exists \varepsilon > 0$ such that the density matrix of an ε -regular partition determines d(H, G) upto an δ -error
- the lemma holds with prepartitions

EXISTENCE OF LIMIT GRAPHON

- fix a convergent sequence G_i , $i \in \mathbb{N}$, of graphs
- set $\varepsilon_j = 2^{-j}$ and fix ε_1 -regular partition of G_i fix ε_{j+1} -regular partition refining the ε_j -regular one
- take a subsequence G'_i of G_i such that all but finitely many ε_j -regular partitions have the same num. parts
- let A^{ij} be the density matrix for G_i and ε_j
- take a subsequence G''_i of G'_i such that A^{ij} coordinate-wise converge for every j

EXISTENCE OF LIMIT GRAPHON

- a convergent sequence G_i , density matrices A^{ij} let A^j be the coordinate-wise limit of A^{ij}
- interpret A^j as a random variable on $[0,1]^2$ and apply Doob's Martingale Convergence Theorem in this way, we obtain a graphon W
- relate d(H, W) to the density of H based on A^j

Questions?

GRAPHON ENTROPY

- Hatami, Janson, Szegedy (2013)
 Falgas-Ravry, O'Connell, Strömberg, Uzzell
- How many graphs resemble a graphon W? the number $\approx 2^{cn^2/2 + o(n^2)}$, what is c? $c = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{\log |n \text{-vertex graphs } \varepsilon \text{-close to } W|}{n^2/2}$
- graphon entropy $\operatorname{Ent}(W) = \int h(W(x,y)) dxy$ where $h(p) = -p \log_2 p - (1-p) \log_2(1-p)$
- the constant c is Ent(W)

Questions?