Open lectures for PhD students in computer science Combinatorial limits course by D. Král' and A. Grzesik Assignment #3

1. Inspect the proof of Mantel's theorem and deduce the structure of the extremal graphs, i.e., graphs with & = 0 and & = 1/2.

2. Inspect the proof of Goodman's bound and deduce the structure of the extremal graphs, i.e., graphs with $\& = \mathcal{E}(2\mathcal{E}-1)$.

3. Let G_n be a graph on $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$ with xy being an edge if and only if $x - y \mod n$ is equal to $\pm 1, \pm 2$ or ± 3 . Prove that the sequence of graphs G_n is Benjamini-Schramm convergent.

Open lectures for PhD students in computer science Combinatorial limits course by D. Král' and A. Grzesik Assignment #3

1. Inspect the proof of Mantel's theorem and deduce the structure of the extremal graphs, i.e., graphs with & = 0 and & = 1/2.

2. Inspect the proof of Goodman's bound and deduce the structure of the extremal graphs, i.e., graphs with $\& = \mathcal{E}(2\mathcal{E} - 1)$.

3. Let G_n be a graph on $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$ with xy being an edge if and only if $x - y \mod n$ is equal to $\pm 1, \pm 2$ or ± 3 . Prove that the sequence of graphs G_n is Benjamini-Schramm convergent.