Open lectures for PhD students in computer science Combinatorial limits course by D. Král' and A. Grzesik Assignment #2

- **1.** Express \forall in terms of 4-vertex rooted flags.
- **2.** Consider a convergent sequence of graphs, where vertices of each n-vertex graph are of degree n/3 or 2n/3. Prove that in the limit the sum of densities of $_{\circ}$ and $_{\circ}$ is equal to 1/3.
- **3.** Using the inequality $[((\ \ \)^2]]_{\bullet} \ge 0$ prove Mantel's Theorem for limits, i.e., if & = 0 then $\& \le 1/2$.
- 4. By considering the sequence of blow-ups of a hypothetical counterexample, prove Mantel's Theorem, i.e, each n-vertex triangle-free graph has at most $n^2/4$ edges.
- **5.** Using the Cauchy-Schwarz inequality $[\![\mathcal{L}]\!]_{\bullet}^2 \leq [\![\mathcal{L}^2]\!]_{\bullet}$ prove Goodman's bound, i.e., $\mathcal{L}_{\bullet} \geq \mathcal{L}(2\mathcal{L}-1)$.

Open lectures for PhD students in computer science Combinatorial limits course by D. Král' and A. Grzesik Assignment #2

- 1. Express \forall in terms of 4-vertex rooted flags.
- **2.** Consider a convergent sequence of graphs, where vertices of each n-vertex graph are of degree n/3 or 2n/3. Prove that in the limit the sum of densities of $_{\circ}$ and $_{\circ}$ is equal to 1/3.
- **3.** Using the inequality $[(? \circ)^2]_{\bullet} \ge 0$ prove Mantel's Theorem for limits, i.e., if & = 0 then $? \le 1/2$.
- **4.** By considering the sequence of blow-ups of a hypothetical counterexample, prove Mantel's Theorem, i.e, each n-vertex triangle-free graph has at most $n^2/4$ edges.
- **5.** Using the Cauchy-Schwarz inequality $[\![\mathcal{L}]\!]_{\bullet}^2 \leq [\![\mathcal{L}^2]\!]_{\bullet}$ prove Goodman's bound, i.e., $\mathcal{L} \geq \mathcal{L}(2\mathcal{L}-1)$.