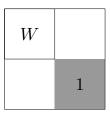

Open lectures for PhD students in computer science Combinatorial limits course by D. Král' and A. Grzesik Assignment #1

1. Decide which of the following graph sequences $(G_n)_{n\in\mathbb{N}}$ are convergent:

- a) $G_n = K_{n,4n}$,
- **b**) G_n is $K_{n,4n}$ with a perfect matching on the side with 4n vertices,
- c) G_n is the graph on *n* vertices containing a clique on $\lfloor \pi n^2 \rfloor \mod n$ vertices and the remaining vertices are isolated.

2. For each convergent sequence from the previous problem find a graphon to which it converges.

3. Express $d(\bigstar, W')$ in terms of $d(\bigstar, W)$, $d(\bigstar, W)$, $d(\bigstar, W)$ and $d(\bigstar, W)$, where W' is the depicted graphon containing two equal-sized parts, one with the graphon W and one with the complete graphon.


Open lectures for PhD students in computer science Combinatorial limits course by D. Král' and A. Grzesik Assignment #1

1. Decide which of the following graph sequences $(G_n)_{n\in\mathbb{N}}$ are convergent:

- $\mathbf{a)} \ G_n = K_{n,4n},$
- **b)** G_n is $K_{n,4n}$ with a perfect matching on the side with 4n vertices,
- c) G_n is the graph on *n* vertices containing a clique on $\lfloor \pi n^2 \rfloor \mod n$ vertices and the remaining vertices are isolated.

2. For each convergent sequence from the previous problem find a graphon to which it converges.

3. Express $d(\bigstar, W')$ in terms of $d(\bigstar, W)$, $d(\bigstar, W)$, $d(\bigstar, W)$ and $d(\bigstar, W)$, where W' is the depicted graphon containing two equal-sized parts, one with the graphon W and one with the complete graphon.

