Multi-join Query Evaluation on Big Data

Section 2

Dan Suciu

March, 2015
Lower Bound

\[Q(x, y, v, w) = R(x, y), S(y, z), T(z, v), L(v, w); \]
\[|R| = |S| = |T| = |L| = m \text{ tuples.} \]

Let \(u = (u_1, u_2, u_3, u_4) \) be any fractional edge packing.

Problem 1
Prove a lower bound for the load of computing \(Q \) on \(p \) servers.
Lower Bound

\[Q(x, y, v, w) = R(x, y), S(y, z), T(z, v), L(v, w); \]
\[|R| = |S| = |T| = |L| = m \text{ tuples.} \]

We already know \(\mathbf{E}[|K_1(\text{msg}_1)|] \leq f_1 m \text{ tuples, and similarly for } K_2, K_3, K_4. \)

Next step is to apply Friedgut’s inequality. Problem: we need an edge cover, but \(u \) is an edge packing.
(In class)
Lower Bound for General Query

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell) \]
\[|R_1| = \ldots = |R_\ell| = m. \]

Problem 2
Prove a lower bound for arbitrary full conjunctive queries.

Assume that \(R_1, \ldots, R_\ell \) are random matchings over a domain of size \(n \):
every \(R_j \subseteq [n]^{a_j} \), where \(a_j \) is the arity of \(a_j \), every attribute is a key, and
\(|R_j| = n \).

What is \(P(x_j \in R_j) = \) ?

What is the entropy of \(R_j \), \(H(R_j) = \) ?
Lower Bound for General Query

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell) \]
\[|R_1| = \ldots = |R_\ell| = m. \]

Problem 2

Prove a lower bound for arbitrary full conjunctive queries.

Assume that \(R_1, \ldots, R_\ell \) are random matchings over a domain of size \(n \):

- every \(R_j \subseteq [n]^{a_j} \), where \(a_j \) is the arity of \(a_j \), every attribute is a key, and \(|R_j| = n \).

What is \(P(x_j \in R_j) = ? \)

What is the entropy of \(R_j \), \(H(R_j) = ? \)

\[P(x_j \in R_j) = \frac{1}{n^{a_j-1}}, \quad H(R_j) = (a_j - 1) \cdot \log n!. \]
Lower Bound for General Query

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell) \]

Each server \(u \) receives a message \(\text{msg}_j(R_j) \) about \(R_j \), of \(L_j \) bits. If \(L_j \leq f_j H(R_j) \), then \(|K_j(m_j)| \leq f_j n \).

The proof is identical to that for permutations, and we won’t prove it.
Lower Bound for General Query

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell) \]

Denote \(a_j = \text{arity}(R_j) \) and \(a = \sum_j a_j \).

What is \(E[|Q|] = ? \)
Lower Bound for General Query

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell) \]

Denote \(a_j = \text{arity}(R_j) \) and \(a = \sum_j a_j \).

What is \(E[|Q|] =? \)

\[E[|Q|] = \sum_x \prod_j \frac{1}{n} a_j^{1-1} = n^{k+\ell-a} \]
Lower Bound for General Query

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell) \]

Define: \(w_{j,x_j} = \mathbb{P}(x_j \in K_j(R_j)) \). We want an upper bound on:

\[\mathbb{E}[|A_u|] = \sum_x \prod_j w_{j,x_j} \]

But \(u \) is a fractional edge packing; to apply Friedgut’s inequality we need a cover. What do we do?

"But u is a fractional edge packing; to apply Friedgut’s inequality we need a cover. What do we do?"
Lower Bound for General Query

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell) \]

Define: \(w_{j,x_j} = \mathbb{P}(x_j \in K_j(R_j)) \). We want an upper bound on:

\[\mathbb{E}[|A_u|] = \sum_x \prod_j w_{j,x_j} \]

But \(u \) is a fractional edge packing; to apply Friedgut’s inequality we need a cover. What do we do?

Add a unary symbol \(R'_i(x_i) \) for every variable \(x_i \):

\[Q(x_1, \ldots, x_k) = R_1(x_1), \ldots, R_\ell(x_\ell), R'_1(x_1), \ldots, R'_k(x_k) \]

Transform a packing \(u \) into a cover \(u' \) by defining: \(u'_i = 1 - \sum_{j:i \in R_j} u_j \).

Question: why is \(u' \) an edge cover?

Set \(w'_{i,x_i} = 1 \)
Proof

Use Friedgut; \(\sum_i u'_i = \sum_i (1 - \sum_{j:i \in R_j} w_j) = k - \sum_j a_j u_j \); \(P(w_j,x_j) \leq 1/n^{a_j-1} \):

\[
E[|A_u|] = \sum_x \prod_{j} w_{j,x_j} \prod_{i} w'_i \cdot x_i = \prod_j (\sum_{x_j} w_{j,x_j}^{1/u_j}) u_j \prod_i (\sum_{x_i} 1^{1/u'_i}) u'_i
\]

\[
\leq \prod_j (\sum_{x_j} w_{j,x_j}^{1/u_j}) u_j \prod_i (n) u'_i = n^{k-\sum_j a_j u_j} \cdot \prod_j (\sum_{x_j} w_{j,x_j} \cdot w_{j,x_j}^{1/u_j-1}) u_j
\]

\[
= n^{k-\sum_j(a_j u_j + a_j - 1 - a_j u_j + u_j)} \cdot \prod_j (f_j n) u_j = n^{k-a+\ell-u_0} n^{u_0} \prod_j f_j^{u_j}
\]

\[
= n^{k-a+\ell} \prod_j \left(\frac{L}{u_0}\right)^{u_j} \prod_j \left(\frac{u_j}{M_j}\right)^{u_j} \leq n^{k-a+\ell} \left(\frac{\sum_j f_j M_j}{u_0}\right)^{u_0} \prod_j \left(\frac{u_j}{M_j}\right)^{u_j}
\]

\[
\leq n^{k-a+\ell} \left(\frac{L}{u_0}\right)^{u_0} \prod_j \left(\frac{u_j}{M_j}\right)^{u_j}
\]

\[
E[|A|] \leq p E[|A_u|] \leq \frac{\prod_j u_j^{u_j}}{u_0^{u_0}} \left(\frac{L}{\prod_j M_j} \right)^{1/u_0} \left(\frac{L^{u_0}}{\prod_j u_j^{u_j}} \right) \leq \frac{L^{u_0}}{\prod_j u_j^{u_j}} E[|Q|] \leq O(1) \left(\frac{L^M}{p^{1/u_0}} \right)^{u_0} E[|Q|] \quad \text{note:} \sum_j f_j M_j = L
\]

\[
M_1 = \ldots = M_\ell = M
\]