Multi-join Query Evaluation on Big Data

Section 1

Dan Suciu

March, 2015
Prove that the AGM Bound is Tight

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]
\[AGM(Q) = \min_u m^u_R m^u_S m^u_T \]
where \(u_R, u_S, u_T \) range over fractional edge covers.

When \(|R| = |S| = |T| = m \) then the optimal cover is \((1/2, 1/2, 1/2) \) and \(AGM(Q) = m^{3/2} \).

Problem 1

Prove that this bound is tight. Construct 3 relations \(R, S, T \) each of size \(m \) s.t. there are \(m^{3/2} \) triangles.
Prove that the AGM Bound is Tight

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]
\[AGM(Q) = \min_u m^u_R m^u_S m^u_T \]
where \(u_R, u_S, u_T \) range over fractional edge covers.

When \(|R| = |S| = |T| = m\) then the optimal cover is \((1/2, 1/2, 1/2)\) and \(AGM(Q) = m^{3/2} \).

Problem 1
Prove that this bound is tight. Construct 3 relations \(R, S, T \) each of size \(m \) s.t. there are \(m^{3/2} \) triangles.

Solution: \(R = S = T = \left[m^{1/2} \right] \times \left[m^{1/2} \right] \times \left[m^{1/2} \right] \)
Prove that the AGM Bound is Tight

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]
\[AGM(Q) = \min_u m_R^{u_R} m_S^{u_S} m_T^{u_T} \]
where \(u_R, u_S, u_T \) range over fractional edge covers.

Problem 2

Prove that this AGM bound is tight for arbitrary cardinalities \(m_R, m_S, m_T \).
Construct relations \(R, S, T \) that have \(\min_u m_R^{u_R} m_S^{u_S} m_T^{u_T} \) triangles.
Prove that the AGM Bound is Tight

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]
\[AGM(Q) = \min_u m_R^{u_R} m_S^{u_S} m_T^{u_T} \]

where \(u_R, u_S, u_T \) range over fractional edge covers.

Solution: write the primal and the dual LP:

\[
\begin{align*}
\text{minimize} & \quad (u_R \log m_R + u_S \log m_S + u_T \log m_T) \\
u_R + u_S & \geq 1 \\
u_R + u_T & \geq 1 \\
u_S + u_T & \geq 1
\end{align*}
\]
Prove that the AGM Bound is Tight

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

\[\text{AGM}(Q) = \min_u m_R^{u_R} m_S^{u_S} m_T^{u_T} \]

where \(u_R, u_S, u_T \) range over fractional edge covers.

Solution: write the primal and the dual LP:

<table>
<thead>
<tr>
<th>Primal LP</th>
<th>Dual LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimize((u_R \log m_R + u_S \log m_S + u_T \log m_T))</td>
<td>maximize((v_x + v_y + v_z))</td>
</tr>
<tr>
<td>(u_R + u_S \geq 1)</td>
<td>(v_x + v_y \leq \log m_R)</td>
</tr>
<tr>
<td>(u_R + u_T \geq 1)</td>
<td>(v_x + v_z \leq \log m_T)</td>
</tr>
<tr>
<td>(u_S + u_T \geq 1)</td>
<td>(v_y + v_z \leq \log m_S)</td>
</tr>
</tbody>
</table>
Prove that the AGM Bound is Tight

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

\[AGM(Q) = \min_u m^u_R m^u_S m^u_T \]

where \(u_R, u_S, u_T \) range over fractional edge covers.

Solution: write the primal and the dual LP:

<table>
<thead>
<tr>
<th>Minimize ((u_R \log m_R + u_S \log m_S + u_T \log m_T))</th>
<th>Maximize ((v_x + v_y + v_z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_R + u_S \geq 1)</td>
<td>(v_x + v_y \leq \log m_R)</td>
</tr>
<tr>
<td>(u_R + u_T \geq 1)</td>
<td>(v_y + v_z \leq \log m_S)</td>
</tr>
<tr>
<td>(u_S + u_T \geq 1)</td>
<td>(v_x + v_z \leq \log m_T)</td>
</tr>
</tbody>
</table>

Define: \(R = [2^{v^*_x}] \times [2^{v^*_y}], S = [2^{v^*_y}] \times [2^{v^*_z}], T = [2^{v^*_z}] \times [2^{v^*_x}] \)

Claim 1: \(|R| \leq m_R\) (why?) Note: if \(\neq \) the add arbitrary tuples.

Claim 2: Number of triangles is \(AGM(Q) \) (why?).

To discuss in class: \(u^* \) is a vertex of the polytope, but \(v^* \) is not.
Adding Key Constraints
Assume all cardinalities = \(m \).

\[
Q_1(x, y, z) = R(x, y), S(y, z) \quad \quad |Q| \leq m^2
\]
\[
Q_2(x, y, z) = R(x, y), S(y, z), T(z, x) \quad \quad |Q| \leq m^{3/2}
\]

Problem 3
Suppose \(y \) is a key in \(S \). Give a formula for a tight bound for \(Q_1 \) and \(Q_2 \).

\[
Q_1(x, y, z) = R(x, y), S(y, z) \quad \quad |Q| \leq ?
\]
\[
Q_2(x, y, z) = R(x, y), S(y, z), T(z, x) \quad \quad |Q| \leq ?
\]
Adding Key Constraints

Assume all cardinalities = \(m \).

\[
Q_1(x, y, z) = R(x, y), S(y, z) \quad \text{\mid} \quad |Q| \leq m^2
\]
\[
Q_2(x, y, z) = R(x, y), S(y, z), T(z, x) \quad \text{\mid} \quad |Q| \leq m^{3/2}
\]

Problem 3

Suppose \(y \) is a key in \(S \). Give a formula for a tight bound for \(Q_1 \) and \(Q_2 \).

\[
Q_1(x, y, z) = R(x, y), S(y, z) \quad \text{\mid} \quad |Q| \leq ?
\]
\[
Q_2(x, y, z) = R(x, y), S(y, z), T(z, x) \quad \text{\mid} \quad |Q| \leq ?
\]

Claim: the answers of \(Q_1, Q_2 \) have the same sizes as those of \(Q'_1, Q'_2 \):

\[
Q'_1(x, y, z) = R'(x, y, z), S(y, z)
\]
\[
Q'_2(x, y, z) = R'(x, y, z), S(y, z), T(z, x)
\]

Their AGM bounds are \(AGM(Q'_1) = AGM(Q'_2) = m \). Let’s prove this.
AGM Bound for Relations with Keys

Consider only
\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

Claim 1

Denote: \(Q'(x, y, z) = R'(x, y, z), S'(y, z), T(z, x) \)
where both \(R' \) and \(S' \) satisfy the functional dependency \(y \to z \).
Any instance \(R, S, T \) can be transformed into a canonical instance
\(R', S', T \) with the same cardinalities. The claim is that \(|Q| = |Q'| \) on these instances.
Consider only
\(Q(x, y, z) = R(x, y), S(y, z), T(z, x) \)

Claim 1

Denote: \(Q'(x, y, z) = R'(x, y, z), S'(y, z), T(z, x) \)

where both \(R' \) and \(S' \) satisfy the functional dependency \(y \rightarrow z \).

Any instance \(R, S, T \) can be transformed into a canonical instance \(R', S', T \) with the same cardinalities. The claim is that \(|Q| = |Q'| \) on these instances.

Solution: simply expand each tuple \(R(x, y) \) to \(R'(x, y, z) \) with the unique value \(z \) from \(S(y, z) \).
AGM Bound for Relations with Keys

Consider only
\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

Claim 2

Denote \(Q''(x, y, z) = R''(x, y, z), S''(y, z), T(z, x) \)

where \(R'', S'' \) have no constraints.

Claim: Then \(\max |Q'| = \max |Q''| \)
AGM Bound for Relations with Keys

Consider only
\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

Claim 2

Denote \[Q''(x, y, z) = R''(x, y, z), S''(y, z), T(z, x) \]

where \(R'', S'' \) have no constraints.

Claim: Then \(\max |Q'| = \max |Q''| \)

Solution: clearly \(\max |Q'| \leq \max |Q''| \) because we can simply forget the functional dependencies.
Conversely, consider an instance \(R''(x, y, z), S''(y, z), T(z, x) \). Modify the instance as follows: replace everywhere a value \(y \) with a pair \((y, z) \). E.g. replace \(R''(a, b, c) \) with \(R'(a, (b, c), c) \), and replace \(S''(b, c) \) with \(S'((b, c), c) \). (Possible because every atom that contains \(y \) also contains \(z \).) Clearly \(Q' = Q'' \).
AGM Bound for Relations with Keys: General case

Problem 4
Given a query Q with simple keys, find a tight upper bound formula.

Expand the query Q by repeating the following procedure: if x is a key in the atom $R_j(x_j)$, then add all the variables x_j to all other atoms that contain x. Call Q' the modified query (it has no keys and no constraints).

Then $|Q| \leq AGM(Q')$ and this bound is tight.

Notice: upper bounds for non-simple keys, or general FD’s are open.
The LeapFrog Trie-Join Algorithm

(time permitting, will discuss in class)