Multi-join Query Evaluation – Outline

Part 1 Optimal Sequential Algorithms.

Part 2 Lower bounds for Parallel Algorithms.

Part 3 Optimal Parallel Algorithms.

Part 3 Data Skew.
Summary so far

\[Q(x) = R_1(x_1), \ldots, R_\ell(x_\ell) \]

\[|R_1| = m_1, \ldots, |R_\ell| = m_\ell \]

Sequential World Cost: output size of \(Q \)

Upper bound \(m^{\rho^*} \); general: \(m_1^{u_1} \cdots m_\ell^{u_\ell} \). Fractional edge cover.

Lower bound (tightness): fractional vertex packing

Generic-join algorithm.

Parallel World Cost: communication.

1-round, skew-free, equal-cardinalities.

Lower bound \(m/p^{1/\tau^*} \); general: \((m_1^{u_1} \cdots m_\ell^{u_\ell} / p)^{1/\sum u_j} \) Fractional edge packing.

Upper bound: fractional vertex cover.

HyperCube algorithm.
Outline of Lecture 4

- Background: Hash-Based Partition
- Coping with Skew
- Multi-rounds (very short)
- Open Problems

Will consider only databases without skew
Understanding Skew (Review from Lecture 2)

Given: \(R(x, y) \) with \(m \) items, \(p \) servers.
Send each tuple \(R(x, y) \) to server \(h(y) \), where \(h = \text{random function} \).

Claim 1 For each server \(u \), its expected load is \(E[L_u] = \frac{m}{p} \). Why?

Claim 2 We say that \(R \) is *skewed* if some value \(y \) occurs more than \(\frac{m}{p} \) times in \(R \). Then some server has load \(> \frac{m}{p} \).

Claim 3 If \(R \) is not skewed, the maximum load of all servers is \(O(\frac{m}{p}) \) with high probability. (Details in lecture 4.)

Take-away: we assume no skew, meaning every frequency is \(\leq \frac{m}{p} \), then:

\[
\text{Max-load} = O(\text{Expected load})
\]
Hash-Based Partition

- A *hash function* is a function from some domain D to a range of integers $[p]$. E.g. $h : \text{char}(30) \rightarrow \{1, \ldots, p\}$

- A *random family of hash functions* is a set of hash functions, from which we select one at random.

- A *strongly universal* family of hash function is a set with the property that for any distinct values $x_1, \ldots, x_n \in D$, and any outputs $(u_1, \ldots, u_n) \in [p]^n$,

 $$\mathbb{P}(h(x_1) = u_1 \wedge \ldots \wedge h(x_n) = u_n) = \frac{1}{p^n}$$
Hash-Based Partition

Let R be a bag (“multi-set”) with m elements.

Partition R into p bins, using a hash function h: send element $x \in R$ to bin $h(x) \in [p]$.

Denote $L_u = \text{number of elements in bin } u \in [p]$.

Example: $h(x) = [(x - \prime b) \mod 3] + 1$

- $x : a a a b c c d e e e$
- $h(x) : 3 3 3 1 2 2 3 1 1 1$
- $L_1 = 4$, $L_2 = 2$, $L_3 = 4$

Q: What is $E[L_u]$, for a fixed u?

A: $E[L_u] = \frac{m}{p}$

Q: What is $E[\max_u L_u]$?

A: May be as large as m.

Dan Suciu

Multi-Joins – Lecture 4

March, 2015 7 / 29
Hash-Based Partition

Let R be a bag ("multi-set") with m elements.

Partition R into p bins, using a hash function h: send element $x \in R$ to bin $h(x) \in [p]$.

Denote $L_u =$ number of elements in bin $u \in [p]$ (a random variable).

Example: $h(x) = [(x - b') \mod 3] + 1$

```
x: a a a b c c d e e e e
h(x): 3 3 3 1 2 2 3 1 1 1 1
```
Hash-Based Partition

Let R be a bag ("multi-set") with m elements.

Partition R into p bins, using a hash function h: send element $x \in R$ to bin $h(x) \in [p]$.

Denote $L_u =$ number of elements in bin $u \in [p]$ (a random variable).

Example: $h(x) = [(x -'b') \mod 3] + 1$

\[
\begin{align*}
x & : \ a \ a \ a \ b \ c \ c \ d \ e \ e \ e \\
h(x) & : \ 3 \ 3 \ 3 \ 1 \ 2 \ 2 \ 3 \ 1 \ 1 \ 1 \\
\end{align*}
\]

$L_1 = 4$, $L_2 = 2$, $L_3 = 4$

Q: What is $E[L_u]$, for a fixed u?
Hash-Based Partition

Let R be a bag ("multi-set") with m elements.

Partition R into p bins, using a hash function h: send element $x \in R$ to bin $h(x) \in [p]$.

Denote $L_u =$ number of elements in bin $u \in [p]$ (a random variable).

Example: $h(x) = [(x' - b') \mod 3] + 1$

<table>
<thead>
<tr>
<th>x</th>
<th>a</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>e</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(x)$</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$L_1 = 4$, $L_2 = 2$, $L_3 = 4$

Q: What is $E[L_u]$, for a fixed u? A: $E[L_u] = m/p$
Hash-Based Partition

Let R be a bag ("multi-set") with m elements.

Partition R into p bins, using a hash function h: send element $x \in R$ to bin $h(x) \in [p]$.

Denote $L_u =$ number of elements in bin $u \in [p]$ (a random variable).

Example: $h(x) = [(x - b') \mod 3] + 1$

- $x: a \ a \ a \ b \ c \ c \ d \ e \ e \ e$
- $h(x): 3 \ 3 \ 3 \ 1 \ 2 \ 2 \ 3 \ 1 \ 1 \ 1$

$L_1 = 4, L_2 = 2, L_3 = 4$

- Q: What is $E[\max_u L_u]$?
Hash-Based Partition

Let R be a bag ("multi-set") with m elements.

Partition R into p bins, using a hash function h: send element $x \in R$ to bin $h(x) \in [p]$.

Denote $L_u =$ number of elements in bin $u \in [p]$ (a random variable).
Example: $h(x) = [(x - b') \mod 3] + 1$

\[
\begin{align*}
x & : a \ a \ a \ b \ c \ c \ d \ e \ e \ e \\
h(x) & : 3 \ 3 \ 3 \ 1 \ 2 \ 2 \ 3 \ 1 \ 1 \ 1
\end{align*}
\]

$L_1 = 4, L_2 = 2, L_3 = 4$

- Q: What is $E[\max_u L_u]$? A: May be as large as m.
Hash-Based Partition

Let d_x denote the number of occurrences of the value x in R.

Theorem

Let $\alpha > 0$ be a constant such that $d_x \leq \frac{m}{\alpha \cdot p}$, for all x. Then, for all $\delta \geq 0$:

\[
\forall u \in [p] : \mathbb{P} \left(L_u > (1 + \delta) \frac{m}{p} \right) < \frac{1}{2^{\alpha \cdot \delta}} \quad \mathbb{P} \left(\max_u L_u > (1 + \delta) \frac{m}{p} \right) < \frac{p}{2^{\alpha \cdot \delta}}
\]

Exercise on the Problem Set: prove it (hint: use Bennett’s theorem).

Application: if $\alpha \delta \geq (1 + c) \log p$ for some constant $c > 0$, then

\[
\mathbb{P} \left(\max_u L_u > (1 + \delta) \frac{m}{p} \right) < \frac{1}{p^c}
\]
Summary on Hash-Based Partition

Basic Partition Sent item $R(x)$ to bin $h(x)$.

If R has *no skew* (degrees $\leq m/p$) then

Max-Size = $O(\text{Expected-Size}) = O(m/p)$, w.h.p. (hiding log p factor)

HyperCube Partition Send $R(x_1, \ldots, x_k)$ to bin $(h_1(x_1), \ldots, h_k(x_k))$

If R has *no skew* then Max-Size = $O(\text{Expected-Size}) = O(m/p)$ w.h.p.

- Given shares $p_1, p_2, \ldots, p_k = p$, *no skew* means:

 $\forall S \subseteq [r]$, every value of $(x_i)_{i \in S}$ occurs $\leq m/\prod_{i \in S} p_i$ times:

 - $x_1 = a$ occurs $\leq m/p_1$ times
 - $x_2 = b$ occurs $\leq m/p_2$ times
 - $(x_1 = a, x_2 = b)$ occurs $\leq m/p_1 p_2$ times, etc.

- The hidden log p factor becomes a poly-log factor.
Summary on Hash-Based Partition

Basic Partition Sent item $R(x)$ to bin $h(x)$.
If R has *no skew* (degrees $\leq m/p$) then
Max-Size $= O(\text{Expected-Size}) = O(m/p)$, w.h.p. (hiding log p factor)

HyperCube Partition Send $R(x_1, \ldots, x_k)$ to bin $(h_1(x_1), \ldots, h_k(x_k))$
If R has *no skew* then Max-Size $= O(\text{Expected-Size}) = O(m/p)$ w.h.p.

- Given shares $p_1 p_2 \cdots p_k = p$, *no skew* means:
 $\forall S \subseteq [r], \text{every value of } (x_i)_{i \in S} \text{ occurs } \leq m/\prod_{i \in S} p_i \text{ times:}$
 - $x_1 = a$ occurs $\leq m/p_1$ times
 - $x_2 = b$ occurs $\leq m/p_2$ times
 - $(x_1 = a, x_2 = b)$ occurs $\leq m/p_1 p_2$ times, etc.

- The hidden log p factor becomes a poly-log factor.
Summary on Hash-Based Partition

Basic Partition Sent item $R(x)$ to bin $h(x)$.
If R has no skew (degrees $\leq m/p$) then
Max-Size = $O(\text{Expected-Size}) = O(m/p)$, w.h.p. (hiding log p factor)

HyperCube Partition Send $R(x_1, \ldots, x_k)$ to bin $(h_1(x_1), \ldots, h_k(x_k))$
If R has no skew then Max-Size = $O(\text{Expected-Size}) = O(m/p)$ w.h.p.

- Given shares $p_1p_2\cdots p_k = p$, no skew means:
 $\forall S \subseteq [r]$, every value of $(x_i)_{i \in S}$ occurs $\leq m/\prod_{i \in S} p_i$ times:
 $x_1 = a$ occurs $\leq m/p_1$ times
 $x_2 = b$ occurs $\leq m/p_2$ times
 $(x_1 = a, x_2 = b)$ occurs $\leq m/p_1p_2$ times, etc.

- The hidden log p factor becomes a poly-log factor.
Summary on Hash-Based Partition

Basic Partition Sent item $R(x)$ to bin $h(x)$.
If R has no skew (degrees $\leq m/p$) then
Max-Size = $O(\text{Expected-Size}) = O(m/p)$, w.h.p. (hiding log p factor)

HyperCube Partition Send $R(x_1, \ldots, x_k)$ to bin $(h_1(x_1), \ldots, h_k(x_k))$
If R has no skew then Max-Size = $O(\text{Expected-Size}) = O(m/p)$ w.h.p.

- Given shares $p_1p_2\cdots p_k = p$, no skew means:
 $\forall S \subseteq [r]$, every value of $(x_i)_{i \in S}$ occurs $\leq m/ \prod_{i \in S} p_i$ times:

 $x_1 = a$ occurs $\leq m/p_1$ times
 $x_2 = b$ occurs $\leq m/p_2$ times
 $(x_1 = a, x_2 = b)$ occurs $\leq m/p_1p_2$ times, etc.

- The hidden log p factor becomes a poly-log factor.
Heavy Hitters

Definition

(Informal) A value (or tuple of values) is a heavy hitter if it occurs more often than its skew threshold.

Example:

Basic partition of $R(x, y)$ into p bins: x is heavy hitter if $d_x > m/p$

Hypercube partition of $R(x, y, z)$ into a cube $p_1p_2p_3$:

- x is a heavy hitter if $d_x > m/p_1$.
- y is a heavy hitter if $d_y > m/p_2$.
- A pair (x, y) is a heavy hitter if $d_{xy} > m/p_1p_2$.
- A triple (x, y, z) is never heavy. (Why?)
- etc

Fact

There are at most $O(p)$ heavy hitters. (Why?)
Heavy Hitters

Two ways to cope with heavy hitters:

Unknown Heavy Hitters Design the algorithm to be robust to heavy hitters.

Known Heavy Hitters Find all heavy hitters (only $O(p)$) and treat them specially. This is by far preferred in practice.
Unknown Heavy Hitters

Consider a join: \(Q(x, y, z) = R(x, y), S(y, z) \).

Algorithm 1 Use shares \(p_x = 1, p_y = p, p_z = 1 \) (standard hash-join).
- If data has no skew: \(L = m/p \).
- If data is skewed: \(L = m \). **Sensitive to skew**

Algorithm 2 Use shares \(p_x = p_y = p_z = 1/3 \).
- If data has no skew: \(L = m/p^{2/3} \).
- If data is skewed: \(L = m/p^{1/3} \). **Resilient to skew**

This observation generalizes: for any query, we can compute shares that minimize the load under the worst skew.
Known Heavy Hitters

Let HH be the set of all heavy hitter values. $|HH| = O(p)$
For each relation $R_j(x_j)$, variables $z \subseteq x_j$, constants $v \in \text{Domain}^z$, let:

$$m_{j,z}[v] = \text{number of tuples in } R_j \text{ that have } z = v$$

In particular, $m_{j,\emptyset}[] = m_j$

Definition

Given a database instance R_1, \ldots, R_ℓ, its statistics are the set of numbers:

$$\Sigma = \{m_{j,z}[v] \mid j = 1, \ell, z \subseteq x_j, v \subseteq HH^z\}$$

Note: $|\Sigma| = O(p)$, small enough that we can broadcast to all servers.

Open Problem design a Σ-optimal query evaluation algorithms (provably optimal for the set of statistics Σ).
Known Heavy Hitters

Let HH be the set of all heavy hitter values. $|HH| = O(p)$

For each relation $R_j(x_j)$, variables $z \subseteq x_j$, constants $v \in \text{Domain}^z$, let:

$$m_{j,z}[v] = \text{number of tuples in } R_j \text{ that have } z = v$$

In particular, $m_{j,\emptyset}[] = m_j$

Definition

Given a database instance R_1, \ldots, R_ℓ, its statistics are the set of numbers:

$$\Sigma = \{m_{j,z}[v] \mid j = 1, \ell, z \subseteq x_j, v \subseteq HH^z\}$$

Note: $|\Sigma| = O(p)$, small enough that we can broadcast to all servers.

Open Problem design a Σ-optimal query evaluation algorithms (provably optimal for the set of statistics Σ).
Known Heavy Hitters

Let HH be the set of all heavy hitter values. \(|HH| = O(p)\)

For each relation $R_j(x_j)$, variables $z \subseteq x_j$, constants $v \in \text{Domain}^z$, let:

$$m_{j,z}[v] = \text{number of tuples in } R_j \text{ that have } z = v$$

In particular, $m_{j,\emptyset}()[()] = m_j$

Definition

Given a database instance R_1, \ldots, R_ℓ, its statistics are the set of numbers:

$$\Sigma = \{ m_{j,z}[v] \mid j = 1, \ell, z \subseteq x_j, v \subseteq HH^z \}$$

Note: \(|\Sigma| = O(p)\), small enough that we can broadcast to all servers.

Open Problem design a Σ-optimal query evaluation algorithms (provably optimal for the set of statistics Σ).
Discussion

- A Σ-optimal algorithm represents the sweet spot between worst-case algorithm, and instance-optimal algorithms [Ngo’14].

- In practice, systems often compute on the fly some statistics in Σ in order to avoid significant skew, e.g. skew-join in PigLatin.

- No Σ-optimal algorithm for arbitrary queries is known to date. [Beame’14] describe an algorithm that is optimal only within a poly-log p factor (due to the algorithm, not to the hash function).

- Σ-optimal algorithms are known for a few special cases, in particular for a join [Beame’14]. We will discuss next.
Σ-Optimal Join Algorithm

\[Q(x, y, z) = R(x, y), S(y, z) \]

\[|R| = m_R, |S| = m_S. \]

∀ \(v \in \text{Domain} \) \[m_R[v] = \text{degree of } v \text{ in } R \]

\[m_S[v] = \text{degree of } v \text{ in } S \]

(Thus: \(\Sigma_v m_R[v] = m_R \) and \(\Sigma_v m_S[v] = m_S \))

Heavy hitters:

\[HH_R = \{ v \mid m_R[v] \geq m_R/p \} \]

\[HH_S = \{ v \mid m_S[v] \geq m_S/p \} \]

\[HH = HH_R \cup HH_S \]

Statistics:

\[\Sigma = \{ m_R, m_S \} \cup \{ m_R[v] \mid v \in HH_R \} \cup \{ m_S[v] \mid v \in HH_S \} \]
Σ-Optimal Join Algorithm

\[Q(x, y, z) = R(x, y), S(y, z) \]

\[|R| = m_R, |S| = m_S. \]

\[\forall v \in \text{Domain} \]

\[m_R[v] = \text{degree of } v \text{ in } R \]

\[m_S[v] = \text{degree of } v \text{ in } S \]

(Thus: \(\sum_v m_R[v] = m_R \) and \(\sum_v m_S[v] = m_S \))

Heavy hitters:

\[HH_R = \{ v \mid m_R[v] \geq m_R/p \} \]

\[HH_S = \{ v \mid m_S[v] \geq m_S/p \} \]

\[HH = HH_R \cup HH_S \]

Statistics:

\[\Sigma = \{ m_R, m_S \} \cup \{ m_R[v] \mid v \in HH_R \} \cup \{ m_S[v] \mid v \in HH_S \} \]
Σ-Optimal Join Algorithm

\[Q(x, y, z) = R(x, y), S(y, z) \]

\[|R| = m_R, |S| = m_S. \]

∀ \(v \in \text{Domain} \)

\[m_R[v] = \text{degree of } v \text{ in } R \]

\[m_S[v] = \text{degree of } v \text{ in } S \]

(Thus: \(\sum_v m_R[v] = m_R \) and \(\sum_v m_S[v] = m_S \))

Heavy hitters:

\[HH_R = \{ v \mid m_R[v] \geq m_R/p \} \]

\[HH_S = \{ v \mid m_S[v] \geq m_S/p \} \]

\[HH = HH_R \cup HH_S \]

Statistics:

\[\Sigma = \{ m_R, m_S \} \cup \{ m_R[v] \mid v \in HH_R \} \cup \{ m_S[v] \mid v \in HH_S \} \]
Σ-Optimal Join Algorithm

\[Q(x, y, z) = R(x, y), S(y, z) \]
\[|R| = m_R, |S| = m_S. \]

\[\forall v \in \text{Domain} \quad m_R[v] = \text{degree of } v \text{ in } R \]
\[m_S[v] = \text{degree of } v \text{ in } S \]

(Thus: \(\sum_v m_R[v] = m_R \) and \(\sum_v m_S[v] = m_S \))

Heavy hitters:

\[HH_R = \{ v \mid m_R[v] \geq m_R/p \} \]
\[HH_S = \{ v \mid m_S[v] \geq m_S/p \} \]
\[HH = HH_R \cup HH_S \]

Statistics:

\[\Sigma = \{ m_R, m_S \} \cup \{ m_R[v] \mid v \in HH_R \} \cup \{ m_S[v] \mid v \in HH_S \} \]
Cartesian Product Revisited

A heavy hitter transforms the join into a cartesian product, let's revisit it

\[Q(x, z) = R(x), S(z). \]

The load is: \[L = \max_u \left(\frac{m_1^{u_1} m_2^{u_2}}{p} \right)^{1/(u_1+u_2)} \]

<table>
<thead>
<tr>
<th>u</th>
<th>L(u)</th>
<th>Shares (p_x, p_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>((m_R m_S / p)^{1/2})</td>
<td>(\sqrt{p m_R / m_S}, \sqrt{p m_S / m_R})</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>(m_R / p)</td>
<td>(p, 1)</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>(m_S / p)</td>
<td>(1, \sqrt{p})</td>
</tr>
</tbody>
</table>

\[L = \max((m_R m_S / p)^{1/2}, m_R / p, m_S / p) \]
Σ-Optimal Join Algorithm – Intuition

$Q(x, y, z) = R(x, y), S(y, z)$

- $\forall v \in HH$ a cartesian product: $Q_v(x, z) = R_v(x), S_v(z)$, where $R_v(x) = R(x, v), S_v(z) = S(v, y)$.

- $Q_v = \text{residual query}$; $|R_v| = m_R[v], |S_v| = m_S[v]$.

- Allocate $p_v \leq p$ servers to compute Q_v.
 Load $L_v = (m_R[v] \cdot m_S[v]/p_v)^{1/2}$ (assuming $> m_R[v]/p, m_S[v]/p$)

- Determine the number of servers p_v such that $\sum_{v \in HH} p_v = p$, and $\max_v L_v$ is minimized.

- Optimal solution: $p_v = p \frac{m_R[v]m_S[v]}{\sum_{w \in HH} m_R[w]m_S[w]}$

- Optimal load $L = \left(\frac{\sum_{w \in HH} m_R[w]m_S[w]}{p}\right)^{1/2} = L_v$, for all $v \in HH$.
Σ-Optimal Join Algorithm – Intuition

\[Q(x, y, z) = R(x, y), S(y, z) \]

- \(\forall v \in HH \) a cartesian product: \(Q_v(x, z) = R_v(x), S_v(z) \), where \(R_v(x) = R(x, v), S_v(z) = S(v, y) \).

- \(Q_v = \text{residual query}; |R_v| = m_R[v], |S_v| = m_S[v] \).

- Allocate \(p_v \leq p \) servers to compute \(Q_v \).
 Load \(L_v = (m_R[v] \cdot m_S[v]/p_v)^{1/2} \) (assuming \(> m_R[v]/p, m_S[v]/p \))

- Determine the number of servers \(p_v \) such that \(\sum_{v \in HH} p_v = p \), and \(\max_v L_v \) is minimized.

- Optimal solution: \(p_v = p \frac{m_R[v]m_S[v]}{\sum_{w \in HH} m_R[w]m_S[w]} \)

- Optimal load \(L = \left(\frac{\sum_{w \in HH} m_R[w]m_S[w]}{p} \right)^{1/2} = L_v \), for all \(v \in HH \).
Σ-Optimal Join Algorithm – Intuition

\[
Q(x, y, z) = R(x, y), S(y, z)
\]

- \(\forall v \in HH \) a cartesian product: \(Q_v(x, z) = R_v(x), S_v(z) \), where \(R_v(x) = R(x, v), S_v(z) = S(v, y) \).
- \(Q_v = \text{residual query}; |R_v| = m_R[v], |S_v| = m_S[v] \).
- Allocate \(p_v \leq p \) servers to compute \(Q_v \).
 Load \(L_v = (m_R[v] \cdot m_S[v]/p_v)^{1/2} \) (assuming \(> m_R[v]/p, m_S[v]/p \))
 - Determine the number of servers \(p_v \) such that \(\sum_{v \in HH} p_v = p \), and \(\max_v L_v \) is minimized.
- Optimal solution: \(p_v = p \frac{m_R[v]m_S[v]}{\sum_{w \in HH} m_R[w]m_S[w]} \)
- Optimal load \(L = \left(\frac{\sum_{w \in HH} m_R[w]m_S[w]}{p} \right)^{1/2} = L_v \), for all \(v \in HH \).
\(\Sigma \)-Optimal Join Algorithm – Intuition

\[Q(x, y, z) = R(x, y), S(y, z) \]

- \(\forall v \in HH \) a cartesian product: \(Q_v(x, z) = R_v(x), S_v(z) \), where \(R_v(x) = R(x, v), S_v(z) = S(v, y) \).

- \(Q_v = \text{residual query}; |R_v| = m_R[v], |S_v| = m_S[v] \).

- Allocate \(p_v \leq p \) servers to compute \(Q_v \).
 Load \(L_v = (m_R[v] \cdot m_S[v])/p_v)^{1/2} \) (assuming > \(m_R[v]/p, m_S[v]/p \))

- Determine the number of servers \(p_v \) such that \(\sum_{v \in HH} p_v = p \), and \(\max_v L_v \) is minimized.

 - Optimal solution: \(p_v = p \frac{m_R[v] m_S[v]}{\sum_{w \in HH} m_R[w] m_S[w]} \)

 - Optimal load \(L = \left(\frac{\sum_{w \in HH} m_R[w] m_S[w]}{p} \right)^{1/2} = L_v \), for all \(v \in HH \).
Σ-Optimal Join Algorithm – Intuition

\[Q(x, y, z) = R(x, y), S(y, z) \]

- \(\forall v \in HH \) a cartesian product: \(Q_v(x, z) = R_v(x), S_v(z) \), where \(R_v(x) = R(x, v), S_v(z) = S(v, y) \).
- \(Q_v = \text{residual query}; |R_v| = m_R[v], |S_v| = m_S[v] \).
- Allocate \(p_v \leq p \) servers to compute \(Q_v \).
 Load \(L_v = (m_R[v] \cdot m_S[v]/p_v)^{1/2} \) (assuming \(> m_R[v]/p, m_S[v]/p \))
- Determine the number of servers \(p_v \) such that \(\sum_{v \in HH} p_v = p \), and \(\max_v L_v \) is minimized.
- Optimal solution:
 \[p_v = p \frac{m_R[v] m_S[v]}{\sum_{w \in HH} m_R[w] m_S[w]} \]
- Optimal load \(L = \left(\frac{\sum_{w \in HH} m_R[w] m_S[w]}{p} \right)^{1/2} = L_v \), for all \(v \in HH \).
\(\Sigma\)-Optimal Join Algorithm – Intuition

\(Q(x, y, z) = R(x, y), S(y, z)\)

- \(\forall v \in HH\) a cartesian product: \(Q_v(x, z) = R_v(x), S_v(z)\), where \(R_v(x) = R(x, v), S_v(z) = S(v, y)\).

- \(Q_v = \text{residual query}; |R_v| = m_{R[v]}, |S_v| = m_{S[v]}\).

- Allocate \(p_v \leq p\) servers to compute \(Q_v\).

 Load \(L_v = (m_{R[v]} \cdot m_{S[v]}/p_v)^{1/2}\) (assuming \(> m_{R[v]}/p, m_{S[v]}/p\))

- Determine the number of servers \(p_v\) such that \(\sum_{v\in HH} p_v = p\), and \(\max_v L_v\) is minimized.

- Optimal solution: \(p_v = p \frac{m_{R[v]} m_{S[v]}}{\sum_{w\in HH} m_{R[w]} m_{S[w]}}\)

- Optimal load \(L = \left(\frac{\sum_{w\in HH} m_{R[w]} m_{S[w]}}{p}\right)^{1/2} = L_v\), for all \(v \in HH\).
Algorithm HyperSkew

Assume $HH_R = HH_S = HH$

Light Hitters Run HyperCube on the light hitters.

Load: $\max(m_R/p, m_S/p)$

Heavy Hitters In parallel, for each $v \in HH$:

Compute Q_v using HyperCube on $p_v = p \frac{m_R[v] m_S[v]}{\sum_{w \in HH} m_R[w] m_S[w]}$ servers.

Load: $L = \left(\frac{\sum_{w \in HH} m_R[w] m_S[w]}{p} \right)^{1/2}$

Exercise: generalize to $HH_R \neq HH_S$ (Hint: set $m_R[v] = 1$ for $v \in HH_S - HH_R$ etc).

The total load is:

$$L_{\text{lower}} = \max(m_R/p, m_S/p, \left(\frac{\sum_{w \in HH} m_R[w] m_S[w]}{p} \right)^{1/2})$$
One Sided Heavy Hitters

The contribution of one-sided heavy hitters is negligible:

Lemma

\[
\left(\frac{\sum_{w \in HH_R - HH_S} m_R[w] m_s[w]}{p} \right)^{1/2} \leq \max(m_R, m_S)/p
\]

Proof.

\[
\sum_{w \in HH_R - HH_S} m_R[w] m_s[w] \leq \left(\sum_{w \in HH_R - HH_S} m_R[w] \right) \frac{m_s}{p} \leq \frac{m_R m_s}{p}
\]

Thus, the load due to one sided heavy hitters will not exceed the load due to light hitters, and it’s OK to approximate the missing degree with 1.
Discussion

- Skew may affect significantly the communication cost for joins: the speedup decreases from $1/p$ to $1/p^{1/2}$

- Adapting the algorithm to the statistics Σ is also important: if all heavy hitters are one sided, then the extra cost can be avoided completely.
Multiple Rounds

- Basic idea is very simple: generate a query plan for \(Q \), then compute the plan bottom up, each level is one round.
- Goal: reduce the load by having multiple rounds.
- Challenge (major!): intermediate results may be much bigger, and are hard to estimate.

Two approaches:

- In [Beame’13] each operator in the query plan is a conjunctive query (rather than just a single join), and is evaluated using 1-round HyperCube. No control over the intermediate results.
- In [Afrati’14] the GYM algorithm computes conjunctive queries only at the leaves s.t. the residual query is acyclic, then use Yannakakis’ semi-join reduction to control the size of the intermediate results.
Grand Summary

- Big Data Analytics needs to run complex queries, on big data.

- Traditional query processing: one join at a time. Challenge: large and unpredictable intermediate results.

- Novel worst-case optimal sequential algorithm: runtime = AGM bound.

- Novel parallel algorithm: communication cost = provably optimal.

- Many open problems (next)
Open Problem 1: AGM Bounds for Given Statistics

Generalize the AGM bound to databases with known statistics Σ.

Simpler problems:

Generalize the AGM bound for databases with bounded degrees. E.g. $Q = R(x, y), S(y, z)$, normal AGM upper bound is m^2, if all degrees $\leq d$, upper bound is dm.

Generalize the AGM bound to functional dependencies. This immediately proves the previous item (for details, send me email)
Open Problem 2: Σ-Optimal Sequential Algorithm

Design a sequential algorithm that is worst-case optimal for instances satisfying given statistics Σ.

E.g. $Q = R(x, y), S(y, z), T(z, x)$. Suppose $\forall y$, degree of y in S is ≤ 5. Then compute Q in time $O(m)$. What if we know one HH y_0 with degree $m/2$?
Open Problem 3: Lower Bounds for Multi-Round Parallel Algorithm

Prove lower bounds for 2 or more rounds, assuming servers can send messages encoding arbitrary information.

Example: prove that $R(x, y), S(y, z), T(z, u), K(u, v), L(v, w)$ cannot be computed in 2 rounds, with load m/p.

Note: [Beame’13] proved such lower bounds, but for a weaker model, when message consists of tuples, not of arbitrary bits.
Open Problem 4: Optimal Multi-round Algorithms

Find the exact tradeoff between the load/round L and the number of rounds r for a general query.

Note: emphasis here is on algorithm, not lower bounds. For lower bounds it’s OK to give the proof for a weaker models (as in [Beame’13]).
Open Problem 5: \(\Sigma \)-Optimal Parallel Algorithms

Generalize HyperSkew from joins to an arbitrary queries. Seems straightforward how to generalize it, but it's open whether this is optimal.

Conjectured tight bound:

\[
L_{\text{lower}} = \max_{u,z} \left(\frac{\sum_{v \in \text{Domain}^z} m_{1,z}^u[v] \cdots m_{\ell,z}^u[v]}{p} \right)^{1/\sum_j u_j}
\]

where \(z \subseteq \{x_1, \ldots, x_k\} \), and \(u \) is fractional edge packing of the residual query \(q_z \) that covers all variables in \(z \).

This formula is known to be a lower bound [Beame’14], but not known if tight.
Final Remark

- Please solve the 7 problems on the Problem Set. Some are quite easy, some more challenging.

- If you work on any of the open problems and make progress, please let me know.
Thank you!