Multi-join Query Evaluation on Big Data
Lecture 2

Dan Suciu

March, 2015
Multi-join Query Evaluation – Outline

Part 1 Optimal Sequential Algorithms. Thursday 14:15-15:45

Part 2 Lower bounds for Parallel Algorithms. Friday 14:15-15:45

Part 3 Optimal Parallel Algorithms. Saturday 9-10:30

Part 3 Data Skew. Saturday 11-12:30
Brief Review of the AGM Bound

\[Q(x) = R_1(x_1), \ldots, R_\ell(x_\ell) \]

Equal Cardinalities: \(|R_1| = \ldots |R_\ell| = m \)

\[|Q| \leq m^{\rho^*}, \text{where } \rho^* = \text{fractional edge covering number of } Q. \]

General Case: \(R_1 = m_1, \ldots, R_\ell = m_\ell \)

\[|Q| \leq \min_u m_1^{u_1} \ldots m_\ell^{u_\ell} \]
Outline for Lecture 2

- Background: Parallel Databases
- The MPC Model
- Algorithm for Triangles
- Lower Bound on the Communication Cost
- Lower Bound for General Queries
- Summary
Parallel Query Processing: Overview

Parallel Databases: Queries and updates
- GAMMA machine (80’s), today in all commercial DBMS.
- Typically x10’s nodes.
- FO in AC0; “SQL embarrassingly parallel”

Parallel Data Analytics: Queries only – this course
- MapReduce, Hadoop, PigLatin, Dremel, Scope, Spark.
- Typically x100’s or x1000’s nodes.
- Data reshuffling / communication is new bottleneck.

Distributed State: Updates (transactions) – will not discuss
- Replicate objects (3-5 times). Central problem: consistency.
- E.g. Google, Amazon, Yahoo, Microsoft, Ebay.
- Eventual consistency (NoSQL, Dynamo, BigTable, Peanuts).
- Strong consistency: Paxos, Spanner.
Parallel Query Processing: Overview

Parallel Databases: Queries and updates
- GAMMA machine (80’s), today in all commercial DBMS.
- Typically x10’s nodes.
- FO in AC^0; “SQL embarrassingly parallel”

Parallel Data Analytics: Queries only – this course
- MapReduce, Hadoop, PigLatin, Dremel, Scope, Spark.
- Typically x100’s or x1000’s nodes.
- Data reshuffling / communication is new bottleneck.

Distributed State: Updates (transactions) – will not discuss
- Replicate objects (3-5 times). Central problem: consistency.
- E.g. Google, Amazon, Yahoo, Microsoft, Ebay.
- Eventual consistency (NoSQL, Dynamo, BigTable, Peanuts).
- Strong consistency: Paxos, Spanner.
Parallel Query Processing: Overview

Parallel Databases: Queries and updates
- GAMMA machine (80’s), today in all commercial DBMS.
- Typically x10’s nodes.
- FO in AC⁰; “SQL embarrassingly parallel”

Parallel Data Analytics: Queries only – this course
- MapReduce, Hadoop, PigLatin, Dremel, Scope, Spark.
- Typically x100’s or x1000’s nodes.
- Data reshuffling / communication is new bottleneck.

Distributed State: Updates (transactions) – will not discuss
- Replicate objects (3-5 times). Central problem: consistency.
- E.g. Google, Amazon, Yahoo, Microsoft, Ebay.
- Eventual consistency (NoSQL, Dynamo, BigTable, Peanuts).
- Strong consistency: Paxos, Spanner.
Key Concepts

Input data of size m is partitioned on p servers, connected by a network. Query processing involves local computation and communication. Performance parameters [Gray&Dewitt’92]

Speedup How does performance change when p increases?
 Ideal: linear speedup.

Scaleup How does performance change when p, m increase at same rate?
 Ideal: constant scaleup.

![Graph showing speedup and scaleup](image.png)
Data Partition

Given a database of size m, partition it on p servers.

Balanced partition Each server holds $\approx \frac{m}{p}$ data.

Skewed partition Some server holds $\gg \frac{m}{p}$ data.

Usually, the input data is already partitioned, but we need to re-partition for a particular problem. *Data reshuffling.*
Example 1: Hash-Partitioned Join

Compute $Q(x, y, z) = R(x, y) \bowtie S(y, z)$, where $|R| = m_1$, $|S| = m_2$

Input data The input relations R, S are partitioned on the servers.

Data reshuffling Given hash function $h : \text{Domain} \rightarrow [p]$

 Send every tuple $R(x, y)$ to server $h(y)$.
 Send every tuple $S(y, z)$ to server $h(y)$.

Computation In parallel, each server i computes the join $R_i(x, y) \bowtie S_i(y, z)$ of its local fragments R_i, S_i.

If y is a key, then the load/server is $m_1/p + m_2/p$ (why?) Linear Speedup

Otherwise, we may have skew (why?) What is the worst speedup?
Understanding Skew

Given: $R(x, y)$ with m items, p servers.
Send each tuple $R(x, y)$ to server $h(y)$, where h = random function.

Claim 1 For each server u, its expected load is $E[L_u] = m/p$. Why?

Claim 2 We say that R is skewed if some value y occurs more than m/p times in R. Then some server has $L_u > m/p$.

Claim 3 If R is not skewed, the max$_u L_u$ is $O(m/p)$ with high probability. (Details in lecture 4.)

Take-away: we assume no skew, then:

Max-load = O(Expected load)
Understanding Skew

Given: \(R(x, y) \) with \(m \) items, \(p \) servers.
Send each tuple \(R(x, y) \) to server \(h(y) \), where \(h = \) random function.

Claim 1 For each server \(u \), its expected load is \(E[L_u] = \frac{m}{p} \). Why?

Claim 2 We say that \(R \) is skewed if some value \(y \) occurs more than \(\frac{m}{p} \) times in \(R \). Then some server has \(L_u > \frac{m}{p} \).

Claim 3 If \(R \) is not skewed, the \(\max_u L_u \) is \(O(\frac{m}{p}) \) with high probability. (Details in lecture 4.)

Take-away: we assume no skew, then:

\[
\text{Max-load} = O(\text{Expected load})
\]
Understanding Skew

Given: $R(x, y)$ with m items, p servers. Send each tuple $R(x, y)$ to server $h(y)$, where h = random function.

Claim 1 For each server u, its expected load is $E[L_u] = m/p$. Why?

Claim 2 We say that R is skewed if some value y occurs more than m/p times in R. Then some server has $L_u > m/p$.

Claim 3 If R is not skewed, the $\max_u L_u$ is $O(m/p)$ with high probability. (Details in lecture 4.)

Take-away: we assume no skew, then:

$$\text{Max-load} = O(\text{Expected load})$$
Understanding Skew

Given: \(R(x, y) \) with \(m \) items, \(p \) servers. Send each tuple \(R(x, y) \) to server \(h(y) \), where \(h = \) random function.

Claim 1 For each server \(u \), its expected load is \(\mathbb{E}[L_u] = m/p \). Why?

Claim 2 We say that \(R \) is skewed if some value \(y \) occurs more than \(m/p \) times in \(R \). Then some server has \(L_u > m/p \).

Claim 3 If \(R \) is not skewed, the \(\max_u L_u \) is \(O(m/p) \) with high probability. (Details in lecture 4.)

Take-away: we assume *no skew*, then:

\[
\text{Max-load} = O(\text{Expected load})
\]
Example 2: Broadcast Join

Compute $Q(x, y, z) = R(x, y) \bowtie S(y, z)$, where $|R| = m_1 \gg |S| = m_2$

Input data The input relations R, S are partitioned on the servers.

Broadcast Send every tuple $S(y, z)$ to every server.

Computation In parallel, each server u computes the join $R_u(x, y) \bowtie S(y, z)$ of its local fragment R_u with S.

If $m_2 \leq m_1/p$ then the Broadcast Join is very effective. Used a lot in practice.
Massively Parallel Communication Model (MPC)

[Beame’13] The MPC model is the following:

p servers are connected by a network. Servers are infinitely powerful.

Input Data of size m is initially uniformly partitioned.

Computation = several rounds.

One round = local computation plus global communication.
Massively Parallel Communication Model (MPC)

[Beame’13] The MPC model is the following:

p servers are connected by a network. Servers are infinitely powerful.

Input Data of size m is initially uniformly partitioned.

Computation = several rounds.

One round = local computation plus global communication.

The only cost is the communication.

Definition (The Load of a algorithm on the MPC Model)

$L_u = \text{maximum amount of data received by server } u \text{ during any round}$

$L = \max_u L_u$
Massively Parallel Communication Model (MPC)

Number of servers = \(p \)

Input data = size \(m \)

Algorithm = Several rounds

One round = Compute & communicate

Max communication load per server = \(L \)
Load/Rounds Tradeoff in the MPC Model

Naive 1-Round Send entire data to server 1, compute locally. \(L = m \)

Naive \(p \)-Rounds At each round, send a \(m/p \)-fragment of the data to server 1, then compute locally. \(L = m/p \).

Ideal Algorithms 1-Round, load \(L = m/p \) (but rarely possible)

Real Algorithms \(O(1) \) rounds, and \(L = O(m/p^{1-\varepsilon}) \), for \(0 \leq \varepsilon < 1 \).
Load/Rounds Tradeoff in the MPC Model

Naive 1-Round Send entire data to server 1, compute locally. \(L = m \)

Naive \(p \)-Rounds At each round, send a \(m/p \)-fragment of the data to server 1, then compute locally. \(L = m/p \).

Ideal Algorithms 1-Round, load \(L = m/p \) (but rarely possible)

Real Algorithms \(O(1) \) rounds, and \(L = O(m/p^{1-\varepsilon}) \), for \(0 \leq \varepsilon < 1 \).
Load/Rounds Tradeoff in the MPC Model

Naive 1-Round Send entire data to server 1, compute locally. \(L = m \)

Naive \(p \)-Rounds At each round, send a \(m/p \)-fragment of the data to server 1, then compute locally. \(L = m/p \).

Ideal Algorithms 1-Round, load \(L = m/p \) (but rarely possible)

Real Algorithms \(O(1) \) rounds, and \(L = O(m/p^{1-\varepsilon}) \), for \(0 \leq \varepsilon < 1 \).
Load/Rounds Tradeoff in the MPC Model

Naive 1-Round Send entire data to server 1, compute locally. \(L = m \)

Naive \(p \)-Rounds At each round, send a \(m/p \)-fragment of the data to server 1, then compute locally. \(L = m/p \).

Ideal Algorithms 1-Round, load \(L = m/p \) (but rarely possible)

Real Algorithms \(O(1) \) rounds, and \(L = O(m/p^{1-\varepsilon}) \), for \(0 \leq \varepsilon < 1 \).
Examples on the MPC Model

Example: Join \(Q(x, y, z) = R(x, y), S(y, z) \).

Round 1 (Hash-partitioned join) Send tuple \(R(x, y) \) to server \(h(y) \), send \(S(y, z) \) to server \(h(y) \), compute the join locally.

Load: \(O(m/p) \) (assuming no skew).

Example: Triangles \(Q(x, y, z) = R(x, y), S(y, z), T(z, x) \).

Round 1 hash-partitioned join: \(Aux(x, y, z) = R(x, y), S(y, z) \)

Round 2 hash-partitioned join: \(Q(x, y, z) = Aux(x, y, z), T(z, x) \)

Load: can be as high as \(m^2/p \) because of the intermediate result!!

Can we compute triangles with a smaller load?
Examples on the MPC Model

Example: Join \(Q(x, y, z) = R(x, y), S(y, z) \).

Round 1 (Hash-partitioned join) Send tuple \(R(x, y) \) to server \(h(y) \), send \(S(y, z) \) to server \(h(y) \), compute the join locally.

Load: \(O(m/p) \) (assuming no skew).

Example: Triangles \(Q(x, y, z) = R(x, y), S(y, z), T(z, x) \)

Round 1 hash-partitioned join: \(\text{Aux}(x, y, z) = R(x, y), S(y, z) \)

Round 2 hash-partitioned join: \(Q(x, y, z) = \text{Aux}(x, y, z), T(z, x) \)

Load: can be as high as \(m^2/p \) because of the intermediate result!!

Can we compute triangles with a smaller load?
A Simple Lower Bound for the MPC Model

Let Q be a query, with $|R_1| = \cdots = |R_\ell| = m$.

Fact

For any algorithm for Q with r rounds and load L, it holds: $r \cdot L \geq m/p^{1/\rho^}$.*
A Simple Lower Bound for the MPC Model

Let \(Q \) be a query, with \(|R_1| = \cdots = |R_\ell| = m \).

Fact

For any algorithm for \(Q \) with \(r \) rounds and load \(L \), it holds: \(r \cdot L \geq m/p^{1/\rho^*} \).

Proof

- Construct an instance where \(|Q| = m^{\rho^*} \).
- One server: receives \(\leq r \cdot L \) tuples from \(R_j \), for all \(j \), hence finds \(\leq (r \cdot L)^{\rho^*} \) answers.
- All \(p \) servers find \(p(r \cdot L)^{\rho^*} \) answers.
- It follows: \(r \cdot L \geq m/p^{1/\rho^*} \). \(\square \)
A Simple Lower Bound for the MPC Model

Let Q be a query, with $|R_1| = \cdots = |R_\ell| = m$.

Fact

For any algorithm for Q with r rounds and load L, it holds: $r \cdot L \geq m/p^{1/\rho^}$.***

Proof

- Construct an instance where $|Q| = m^{\rho^*}$.
- One server: receives $\leq r \cdot L$ tuples from R_j, for all j, hence finds $\leq (r \cdot L)^{\rho^*}$ answers.
- All p servers find $p(r \cdot L)^{\rho^*}$ answers.
- It follows: $r \cdot L \geq m/p^{1/\rho^*}$. \Box

Question

For $Q = R(x, y), S(y, z)$ it should be $r \cdot L \geq m/p^{1/2}$, but we computed a join with load $L = m/p$. Contradiction?
A Simple Lower Bound for the MPC Model

Let \(Q \) be a query, with \(|R_1| = \cdots = |R_\ell| = m \).

Fact

For any algorithm for \(Q \) with \(r \) rounds and load \(L \), it holds: \(r \cdot L \geq m/p^{1/\rho^} \).*

Proof

- Construct an instance where \(|Q| = m^{\rho^*} \).
- One server: receives \(\leq r \cdot L \) tuples from \(R_j \), for all \(j \), hence finds \(\leq (r \cdot L)^{\rho^*} \) answers.
- All \(p \) servers find \(p(r \cdot L)^{\rho^*} \) answers.
- It follows: \(r \cdot L \geq m/p^{1/\rho^*} \). \(\square \)

Question

For \(Q = R(x, y), S(y, z) \) it should be \(r \cdot L \geq m/p^{1/2} \), but we computed a join with load \(L = m/p \). Contradiction?

Answer: the algorithm is for skew-free data, the bound for skewed data.
One-Round Algorithm for Triangles

$Q(x, y, z) = R(x, y), S(y, z), T(z, x)$

Place the p servers in a cube: $[p] \equiv [p^{1/3}] \times [p^{1/3}] \times [p^{1/3}]$.

Round 1 In parallel, each server does the following:

– Send $R(x, y)$ to all servers $(h_1(x), h_2(y), *)$
– Send $S(y, z)$ to all servers $(*, h_2(y), h_3(z))$
– Send $T(z, x)$ to all servers $(h_1(x), *, h_3(z))$

Then compute Q locally

Theorem (Beame’14)

1) If h_1, h_2, h_3 are independent hash functions, then the expected load at some server u is $E[L_u] = \frac{m_1 + m_2 + m_3}{p^{2/3}} \overset{\text{def}}{=} L$. [Why do we need independence?]

2) If the data has no skew, then maximum load is $O(L)$ w.h.p.
One-Round Algorithm for Triangles

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]
Place the \(p \) servers in a cube: \([p] \equiv [p^{1/3}] \times [p^{1/3}] \times [p^{1/3}] \).

Round 1 In parallel, each server does the following:
- Send \(R(x, y) \) to all servers \((h_1(x), h_2(y), *)\)
- Send \(S(y, z) \) to all servers \((*, h_2(y), h_3(z))\)
- Send \(T(z, x) \) to all servers \((h_1(x), *, h_3(z))\)
Then compute \(Q \) locally

Theorem (Beame'14)

1. If \(h_1, h_2, h_3 \) are independent hash functions, then the expected load at some server \(u \) is \(\mathbb{E}[L_u] = \frac{m_1+m_2+m_3}{p^{2/3}} \) def \(= L \). [Why do we need independence?]
2. If the data has no skew, then maximum load is \(O(L) \) w.h.p.
One-Round Algorithm for Triangles

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

Place the \(p \) servers in a cube: \([p] \equiv [p^{1/3}] \times [p^{1/3}] \times [p^{1/3}]\).

Round 1 In parallel, each server does the following:
- Send \(R(x, y) \) to all servers \((h_1(x), h_2(y), \ast)\)
- Send \(S(y, z) \) to all servers \((\ast, h_2(y), h_3(z))\)
- Send \(T(z, x) \) to all servers \((h_1(x), \ast, h_3(z))\)

Then compute \(Q \) locally.

Theorem (Beame’14)

1. If \(h_1, h_2, h_3 \) are independent hash functions, then the expected load at some server \(u \) is \(\mathbb{E}[L_u] = \frac{m_1+m_2+m_3}{p^{2/3}} \overset{\text{def}}{=} L \). [Why do we need independence?]
2. If the data has no skew, then maximum load is \(O(L) \) w.h.p.
Discussion

- We will call the algorithm *HyperCube*, following [Beame’13].

- Each tuple $R(x, y)$ is replicated $p^{1/3}$ times. Hence, load $L = \frac{m}{p^{2/3}}$.

- Partitioning $R(x, y) \to (h_1(x), h_2(y), \star)$ more tolerant to skew:
 Each value x is sent to $p^{1/3}$ buckets, each y is sent to $p^{1/3}$ buckets. Can tolerate degrees up to $\leq \frac{m}{p^{1/3}}$ (better than $\frac{m}{p}$).

- Notice that the algorithm only shuffles the data: each server still has to compute the query locally. Important to use worst-case algorithm.

- Non-linear speedup, because the load is $\frac{m}{p^{2/3}}$. Can we compute triangles with a load of $\frac{m}{p}$?
Lower Bound for Triangle Queries

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

Assume \(|R| + |S| + |T| = m\). Denote \(L_{\text{lower}} = m/p^{2/3}\).

Theorem

Any 1-round algorithm that computes \(Q\) must have load \(L \geq L_{\text{lower}}\), even on database instances without skew.

Hence, HyperCube is optimal for computing triangles on permutations.

Next, we will prove the theorem.
Lower Bound for Triangle Queries

\(Q(x, y, z) = R(x, y), S(y, z), T(z, x) \)

We assume \(R, S, T \) are permutations over a domain of size \(n \).

Example \(n = 4 \):

\[
\begin{array}{ccc}
R & x & y \\
1 & 3 & 1 \\
2 & 1 & 2 \\
3 & 4 & 3 \\
4 & 2 & 4 \\
\end{array}
\quad \bowtie \quad
\begin{array}{ccc}
S & y & z \\
1 & 4 & 1 \\
2 & 2 & 2 \\
3 & 1 & 3 \\
4 & 3 & 4 \\
\end{array}
\quad \bowtie \quad
\begin{array}{ccc}
T & z & x \\
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3 \\
4 & 4 & 4 \\
\end{array}
\]

\(Q = \begin{array}{ccc}
x & y & z \\
1 & 3 & 1 \\
2 & 2 & 3 \\
3 & 4 & 3 \\
\end{array} \)

Question: what is \(E[|Q|] \), over random permutations \(R, S, T \)?

Theorem (Beame’13)

Denote \(L_{\text{lower}} = 3n/p^{2/3} \). Let \(A \) be an algorithm for \(Q \), with load \(L < L_{\text{lower}} \). Then, the expected number of triangles returned by \(A \) is

\[
E[|A|] \leq \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} E[|Q|]
\]
Lower Bound for Triangle Queries

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

We assume \(R, S, T \) are permutations over a domain of size \(n \).

Example \(n = 4 \):

\[
\begin{array}{ccc}
R & S & T \\
\hline
x & y & z \\
1 & 3 & 1 \\
2 & 1 & 2 \\
3 & 4 & 3 \\
4 & 2 & 4 \\
\end{array}
\]

\[Q = \begin{array}{ccc}
x & y & z \\
1 & 3 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3 \\
4 & 4 & 4 \\
\end{array}
\]

Question: what is \(\mathbb{E}[|Q|] \), over random permutations \(R, S, T \)?

Theorem (Beame’13)

Denote \(L_{\text{lower}} = 3n/p^{2/3} \). Let \(A \) be an algorithm for \(Q \), with load \(L < L_{\text{lower}} \). Then, the expected number of triangles returned by \(A \) is

\[
\mathbb{E}[|A|] \leq \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} \mathbb{E}[|Q|]
\]
Lower Bound for Triangle Queries

\[Q(x, y, z) = R(x, y), S(y, z), T(z, x) \]

We assume \(R, S, T \) are permutations over a domain of size \(n \).

Example \(n = 4 \):

\[
\begin{array}{cc}
R & x & y \\
1 & 3 \\
2 & 1 \\
3 & 4 \\
4 & 2 \\
\end{array}
\]

\[
\begin{array}{cc}
S & y & z \\
1 & 4 \\
2 & 2 \\
3 & 1 \\
4 & 3 \\
\end{array}
\]

\[
\begin{array}{cc}
T & z & x \\
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4 \\
\end{array}
\]

\[Q = \begin{array}{ccc}
x & y & z \\
1 & 3 & 1 \\
3 & 4 & 3 \\
\end{array} \]

Question: what is \(\mathbb{E}[|Q|] \), over random permutations \(R, S, T \)?

Theorem (Beame’13)

Denote \(L_{lower} = 3n/p^{2/3} \). Let \(A \) be an algorithm for \(Q \), with load \(L < L_{lower} \). Then, the expected number of triangles returned by \(A \) is

\[
\mathbb{E}[|A|] \leq \left(\frac{L}{L_{lower}} \right)^{3/2} \mathbb{E}[|Q|]
\]
Discussion: Inputs, Messages, Bits

- Initially, the relations R, S, T are on disjoint servers. This is w.l.o.g. Stronger: assume that R is on server 1, S on server 2, T on server 3. Any server u receives three messages:
 - msg_1 about R
 - msg_2 about S
 - msg_3 about T
 $$|msg_1| + |msg_2| + |msg_3| \leq L \text{ bits.}$$

- Messages may encode arbitrary information. E.g. bit 1 says “R is even”; bit 2 says “R has a 17-cycle”; etc.

- No lower bound is possible for a fixed input R, S, T: an algorithm may simply check for that input and encode using $L = O(1)$ bits. Instead, the lower bound is a statement about all permutations.
Notation: Bits v.s. Tuples

- Size of db in #tuples \(m = |R| + |S| + |T| \).

 Size of db in #bits \(M = |R| \log n + |S| \log n + |T| \log n = m \log n \)

 where \(n \) = size of the domain.

- If \(R \) is a random permutation, then size(\(R \)) = \(\log(n!) \) \(\lesssim \) \(n \log n \) bits.

- \(L_{\text{lower}} = m/p^{2/3} \) tuples becomes \(L_{\text{lower}} = 3 \log(n!)/p^{2/3} \) bits.

- Will prove the following, where \(L, L_{\text{lower}} \) are expressed in bits:

 \[
 E[|A|] \leq \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} E[|Q|]
 \]
Proof – Part 1: $E[|Q|]$ on Random Inputs

$Q(x, y, z) = R(x, y), S(y, z), T(z, x)$

Lemma

$E[|Q|] = 1$, where the expectation is over random permutations R, S, T.

Proof.

Note: $\forall i, j, k \in [n], P((i, j) \in R) = P((j, k) \in S) = P((k, i) \in T) = 1/n$.

$$E[|Q|] = \sum_{i, j, k} P((i, j) \in R \land (j, k) \in S \land (k, i) \in T)$$

$$= \sum_{i, j, k} P((i, j) \in R) \cdot P((j, k) \in S) \cdot P((k, i) \in T) = n^3 \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$$
Proof – Part 1: $E[|Q|]$ on Random Inputs

$Q(x, y, z) = R(x, y), S(y, z), T(z, x)$

Lemma

$E[|Q|] = 1$, where the expectation is over random permutations R, S, T.

Proof.

Note: $\forall i, j, k \in [n]$, $P((i, j) \in R) = P((j, k) \in S) = P((k, i) \in T) = 1/n$.

$$E[|Q|] = \sum_{i,j,k} P((i, j) \in R \land (j, k) \in S \land (k, i) \in T)$$

$$= \sum_{i,j,k} P((i, j) \in R) \cdot P((j, k) \in S) \cdot P((k, i) \in T) = n^3 \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$$
Proof – Part 1: $E[|Q|]$ on Random Inputs

$Q(x, y, z) = R(x, y), S(y, z), T(z, x)$

Lemma

$E[|Q|] = 1$, where the expectation is over random permutations R, S, T.

Proof.

Note: $\forall i, j, k \in [n], P((i, j) \in R) = P((j, k) \in S) = P((k, i) \in T) = 1/n$.

$$E[|Q|] = \sum_{i,j,k} P((i, j) \in R \land (j, k) \in S \land (k, i) \in T)$$

$= \sum_{i,j,k} P((i, j) \in R) \cdot P((j, k) \in S) \cdot P((k, i) \in T) = n^3 \cdot \frac{1}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$
In expectation, there is one triangle! $E[|Q|] = 1$

Will prove: if algorithm A has load $L < L_{\text{lower}}$, then $E[A] = \left(\frac{L}{L_{\text{lower}}}\right)^{3/2}$.
Proof – Part 2: What We Learn from a Message

Fix a server $u \in [p]$, and a message msg_1 it received about R.

Definition

The set of *known tuples* is:

$$K_1(msg_1) = \{(i, j) | \forall R(msg_1(R) = msg_1 \Rightarrow (i, j) \in R)\}$$

Similarly $K_2(msg_2)$, $K_3(msg_3)$ known tuples in S and T.

Observation

Upon receiving msg_1, msg_2, msg_3, server u can output triangle (i, j, k) iff

$$(i, j) \in K_1(msg_1) \land (j, k) \in K_2(msg_2) \land (k, i) \in K_2(msg_3)$$
Proof – Part 2: What We Learn from a Message

Fix a server $u \in [p]$, and a message msg_1 it received about R.

Definition

The set of *known tuples* is:

$$K_1(msg_1) = \{(i,j) \mid \forall R(msg_1(R) = msg_1 \Rightarrow (i,j) \in R)\}$$

Similarly $K_2(msg_2)$, $K_3(msg_3)$ known tuples in S and T.

Observation

Upon receiving msg_1, msg_2, msg_3, server u can output triangle (i,j,k) iff

$$(i,j) \in K_1(msg_1) \land (j,k) \in K_2(msg_2) \land (k,i) \in K_2(msg_3)$$
Proof – Part 2: What We Learn from a Message

Fix a server \(u \in [p] \), and a message \(\text{msg}_1 \) it received about \(R \).

Definition

The set of *known tuples* is:

\[
K_1(\text{msg}_1) = \{(i,j) \mid \forall R(\text{msg}_1(R) = \text{msg}_1 \Rightarrow (i,j) \in R)\}
\]

Similarly \(K_2(\text{msg}_2) \), \(K_3(\text{msg}_3) \) known tuples in \(S \) and \(T \).

Observation

Upon receiving \(\text{msg}_1, \text{msg}_2, \text{msg}_3 \), server \(u \) can output triangle \((i,j,k)\) iff

\[
(i,j) \in K_1(\text{msg}_1) \land (j,k) \in K_2(\text{msg}_2) \land (k,i) \in K_2(\text{msg}_3)
\]
Discussion

The useful information we learn from a message is the set of known tuples.

We show next: if $L_1 = \text{size}(\text{msg}_1)$ is small, then $K_1(\text{msg}_1)$ is small

"If you know only a few bits, then you know only a few tuples"

Later: if K_1, K_2, K_3 are small, the server knows only few triangles (AGM)
Proof – Part 3: With Few Bits You Know Only Few Tuples

Denote $H(R) = \log(n!)$ the entropy of R.

Proposition

Let $f_1 < 1$. If $msg_1(R)$ has $\leq f_1 \cdot H(R)$ bits, then $\mathbb{E}[|K_1(msg_1(R))|] \leq f_1 \cdot n$, where the expectation is over random permutations R.
Proof – Part 3: With Few Bits You Know Only Few Tuples

Denote $H(R) = \log(n!)$ the entropy of R.

Proposition

Let $f_1 < 1$. If $msg_1(R)$ has $\leq f_1 \cdot H(R)$ bits, then $\mathbb{E}[|K_1(msg_1(R))|] \leq f_1 \cdot n$, where the expectation is over random permutations R.

Proof.

Denote $k = |K_1(m_1)|$.

Proof – Part 3: With Few Bits You Know Only Few Tuples

Denote $H(R) = \log(n!)$ the entropy of R.

Proposition

Let $f_1 < 1$. If $\text{msg}_1(R)$ has $\leq f_1 \cdot H(R)$ bits, then $E[|K_1(\text{msg}_1(R))|] \leq f_1 \cdot n$, where the expectation is over random permutations R.

Proof.

Denote $k = |K_1(m_1)|$.

$H(R|m_1) \leq \log[(n - k)!] \leq (1 - \frac{k}{n}) \cdot H(R)$ because $\log[(n - k)!]/(n - k) \leq \log(n!)/n$.

Proof – Part 3: With Few Bits You Know Only Few Tuples

Denote $H(R) = \log(n!)$ the entropy of R.

Proposition

Let $f_1 < 1$. If $msg_1(R)$ has $\leq f_1 \cdot H(R)$ bits, then $\mathbb{E}[|K_1(msg_1(R))|] \leq f_1 \cdot n$, where the expectation is over random permutations R.

Proof.

Denote $k = |K_1(m_1)|$.

$H(R|m_1) \leq \log[(n-k)!] \leq (1 - \frac{k}{n}) \cdot H(R)$ because $\log[(n-k)!]/(n-k) \leq \log(n!)/n$.

$H(R) = H(R, msg_1(R))$ \text{ \hspace{1cm} R determines $msg_1(R)$}$
Proof – Part 3: With Few Bits You Know Only Few Tuples

Denote $H(R) = \log(n!)$ the entropy of R.

Proposition

Let $f_1 < 1$. If $msg_1(R)$ has $\leq f_1 \cdot H(R)$ bits, then $E[|K_1(msg_1(R))|] \leq f_1 \cdot n$, where the expectation is over random permutations R.

Proof.

Denote $k = |K_1(m_1)|$.

$H(R|m_1) \leq \log[(n-k)!] \leq (1 - \frac{k}{n}) \cdot H(R)$ because $\log[(n-k)!]/(n-k) \leq \log(n!)/n$.

$$H(R) = H(R, msg_1(R))$$

$$= H(msg_1(R)) + \sum_{m_1} H(R|m_1) \cdot P(m_1)$$

R determines $msg_1(R)$

chain rule
Proof – Part 3: With Few Bits You Know Only Few Tuples

Denote $H(R) = \log(n!)$ the entropy of R.

Proposition

Let $f_1 < 1$. If $msg_1(R)$ has $\leq f_1 \cdot H(R)$ bits, then $E[|K_1(msg_1(R))|] \leq f_1 \cdot n$, where the expectation is over random permutations R.

Proof.

Denote $k = |K_1(m_1)|$.

$H(R|m_1) \leq \log[(n-k)!] \leq (1 - \frac{k}{n}) \cdot H(R)$ because $\log[(n-k)!]/(n-k) \leq \log(n!)/n$.

$$H(R) = H(R, msg_1(R)) = H(msg_1(R)) + \sum_{m_1} H(R|m_1) \cdot P(m_1)$$

R determines $msg_1(R)$

$$\leq f_1 \cdot H(R) + \sum_{m_1} (1 - \frac{|K_1(m_1)|}{n}) \cdot H(R) \cdot P(m_1)$$

$$= f_1 \cdot H(R) + \left[1 - \sum_{m_1} \frac{|K_1(m_1)| \cdot P(m_1)}{n}\right] \cdot H(R) = f_1 \cdot H(R) + \left[1 - \frac{E[|K_1(m_1)|]}{n}\right] \cdot H(R)$$
Proof – Part 3: With Few Bits You Know Only Few Tuples

Denote \(H(R) = \log(n!) \) the entropy of \(R \).

Proposition

Let \(f_1 < 1 \). If \(msg_1(R) \) has \(\leq f_1 \cdot H(R) \) bits, then \(E[|K_1(msg_1(R))|] \leq f_1 \cdot n \), where the expectation is over random permutations \(R \).

Proof.

Denote \(k = |K_1(m_1)| \).

\[
H(R|m_1) \leq \log[(n-k)!] \leq (1 - \frac{k}{n}) \cdot H(R) \text{ because } \log[(n-k)!]/(n-k) \leq \log(n!)/n.
\]

\[
H(R) = H(R, msg_1(R))
\]

\[
= H(msg_1(R)) + \sum_{m_1} H(R|m_1) \cdot P(m_1)
\]

\[
\leq f_1 \cdot H(R) + \sum_{m_1} (1 - \frac{|K_1(m_1)|}{n}) \cdot H(R) \cdot P(m_1)
\]

\[
= f_1 \cdot H(R) + \left[1 - \sum_{m_1} \frac{|K_1(m_1)| \cdot P(m_1)}{n} \right] \cdot H(R) = f_1 \cdot H(R) + \left[1 - \frac{E[|K_1(m_1)|]}{n} \right] \cdot H(R)
\]

It follows: \(E[|K_1(m_1)|] \leq f_1 n \)
Proof – Part 4: Few Known Tuples form Few Triangles

Continue to fix one server u. Its load $L = L_1 + L_2 + L_3$.

Denote: $a_{ij} = \Pr((i,j) \in K_1(msg_1(R)))$; similarly b_{jk}, c_{ki} for S, T.

Denote A_u the set of triangles returned by u:

$$E[|A_u|] = \sum_{i,j,k} a_{ij} b_{jk} c_{ki} \leq \left((\sum_{ij} a_{ij}^2)(\sum_{jk} b_{jk}^2)(\sum_{ki} c_{ki}^2)\right)^{1/2} \quad \text{(Friedgut)}$$

$a_{ij} \leq 1/n$ (why?) and $\sum_{ij} a_{ij} = E[|K_1(msg_1(R))|] \leq \frac{L_1}{\log(n!)} n$ (why?)

It follows: $\sum_{ij} a_{ij}^2 \leq 1/n \sum_{ij} a_{ij} \leq \frac{L_1}{\log(n!)}$

$$E[|A_u|] \leq \left(\frac{L_1}{\log(n!)}, \frac{L_2}{\log(n!)}, \frac{L_3}{\log(n!)}\right)^{1/2} \leq \left(\frac{L_1+L_2+L_3}{3\log(n!)}\right)^{3/2} = \left(\frac{L}{M}\right)^{3/2} \text{ triangles.}$$

All p servers return $E[|A|] \leq p \left(\frac{L}{M}\right)^{3/2} = \left(\frac{L}{\frac{L}{p^{2/3}}M}\right)^{3/2} = \left(\frac{L}{L_{lower}}\right)^{3/2} \text{ triangles.}$

QED
Proof – Part 4: Few Known Tuples form Few Triangles

Continue to fix one server \(u \). Its load \(L = L_1 + L_2 + L_3 \).

Denote: \(a_{ij} = \Pr((i, j) \in K_1(msg_1(R))) \); similarly \(b_{jk}, c_{ki} \) for \(S, T \).

Denote \(A_u \) the set of triangles returned by \(u \):

\[
\mathbb{E}[|A_u|] = \sum_{i,j,k} a_{ij} b_{jk} c_{ki} \leq \left(\sum_{ij} a_{ij}^2 \right) \left(\sum_{jk} b_{jk}^2 \right) \left(\sum_{ki} c_{ki}^2 \right)^{1/2} \quad \text{(Friedgut)}
\]

\(a_{ij} \leq 1/n \) (why?) and \(\sum_{ij} a_{ij} = \mathbb{E}[|K_1(msg_1(R))|] \leq \frac{L_1}{\log(n!)} n \) (why?)

It follows: \(\sum_{ij} a_{ij}^2 \leq 1/n \sum_{ij} a_{ij} \leq \frac{L_1}{\log(n!)} \)

\[
\mathbb{E}[|A_u|] \leq \left(\frac{L_1}{\log(n!)} \cdot \frac{L_2}{\log(n!)} \cdot \frac{L_3}{\log(n!)} \right)^{1/2} \leq \left(\frac{L_1 + L_2 + L_3}{3 \log(n!)} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} \text{ triangles.}
\]

All \(p \) servers return \(\mathbb{E}[|A|] \leq p \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{M} \frac{1}{p^{2/3}} \right)^{3/2} = \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} \text{ triangles.} \)

QED
Proof – Part 4: Few Known Tuples form Few Triangles

Continue to fix one server u. Its load $L = L_1 + L_2 + L_3$.

Denote: $a_{ij} = \Pr((i,j) \in K_1(msg_1(R)))$; similarly b_{jk}, c_{ki} for S, T.

Denote A_u the set of triangles returned by u:

$$\mathbb{E}[|A_u|] = \sum_{i,j,k} a_{ij} b_{jk} c_{ki} \leq \left(\left(\sum_{ij} a_{ij}^2 \right) \left(\sum_{jk} b_{jk}^2 \right) \left(\sum_{ki} c_{ki}^2 \right) \right)^{1/2}$$

(Friedgut)

$a_{ij} \leq 1/n$ (why?) and $\sum_{ij} a_{ij} = \mathbb{E}[|K_1(msg_1(R))|] \leq \frac{L_1}{\log(n!)} n$ (why?)

It follows: $\sum_{ij} a_{ij}^2 \leq 1/n \sum_{ij} a_{ij} \leq \frac{L_1}{\log(n!)}$

$$\mathbb{E}[|A_u|] \leq \left(\frac{L_1}{\log(n!)} \cdot \frac{L_2}{\log(n!)} \cdot \frac{L_3}{\log(n!)} \right)^{1/2} \leq \left(\frac{L_1+L_2+L_3}{3 \log(n!)} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} \text{ triangles.}$$

All p servers return $\mathbb{E}[|A|] \leq p \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} \text{ triangles.}$

QED
Proof – Part 4: Few Known Tuples form Few Triangles

Continue to fix one server \(u \). Its load \(L = L_1 + L_2 + L_3 \).

Denote: \(a_{ij} = \Pr((i,j) \in K_1(\text{msg}_1(R))) \); similarly \(b_{jk}, c_{ki} \) for \(S, T \).

Denote \(A_u \) the set of triangles returned by \(u \):
\[
\mathbb{E}[|A_u|] = \sum_{i,j,k} a_{ij} b_{jk} c_{ki} \leq \left(\left(\sum_{ij} a_{ij}^2 \right) \left(\sum_{jk} b_{jk}^2 \right) \left(\sum_{ki} c_{ki}^2 \right) \right)^{1/2} \quad \text{(Friedgut)}
\]
\[
a_{ij} \leq 1/n \quad \text{(why?) \quad and} \quad \sum_{ij} a_{ij} = \mathbb{E}[|K_1(\text{msg}_1(R))|] \leq \frac{L_1}{\log(n!)} n \quad \text{(why?)}
\]

It follows: \(\sum_{ij} a_{ij}^2 \leq 1/n \sum_{ij} a_{ij} \leq \frac{L_1}{\log(n!)} \)
\[
\mathbb{E}[|A_u|] \leq \left(\frac{L_1}{\log(n!)} \cdot \frac{L_2}{\log(n!)} \cdot \frac{L_3}{\log(n!)} \right)^{1/2} \leq \left(\frac{L_1+L_2+L_3}{3 \log(n!)} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} \text{ triangles.}
\]

All \(p \) servers return \(\mathbb{E}[|A|] \leq p \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{M} \frac{1}{p^{2/3}} \right)^{3/2} = \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} \text{ triangles.} \)

QED
Proof – Part 4: Few Known Tuples form Few Triangles

Continue to fix one server u. Its load $L = L_1 + L_2 + L_3$.

Denote: $a_{ij} = \Pr((i,j) \in K_1(\text{msg}_1(R)))$; similarly b_{jk}, c_{ki} for S, T.

Denote A_u the set of triangles returned by u:

$\mathbb{E}[|A_u|] = \sum_{i,j,k} a_{ij} b_{jk} c_{ki} \leq \left((\sum_{ij} a_{ij}^2) (\sum_{jk} b_{jk}^2) (\sum_{ki} c_{ki}^2) \right)^{1/2}$

\text{(Friedgut)}

$a_{ij} \leq 1/n$ (why?) and $\sum_{ij} a_{ij} = \mathbb{E}[|K_1(\text{msg}_1(R))|] \leq \frac{L_1}{\log(n!)} n$ (why?)

It follows: $\sum_{ij} a_{ij}^2 \leq 1/n \sum_{ij} a_{ij} \leq \frac{L_1}{\log(n!)}$

$\mathbb{E}[|A_u|] \leq \left(\frac{L_1}{\log(n!)} \cdot \frac{L_2}{\log(n!)} \cdot \frac{L_3}{\log(n!)} \right)^{1/2} \leq \left(\frac{L_1 + L_2 + L_3}{3 \log(n!)} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2}$ triangles.

All p servers return $\mathbb{E}[|A|] \leq p \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} \left(\frac{L}{L_{lower}} \right)^{3/2}$ triangles.

QED
Proof – Part 4: Few Known Tuples form Few Triangles

Continue to fix one server \(u \). Its load \(L = L_1 + L_2 + L_3 \).

Denote: \(a_{ij} = \Pr((i,j) \in K_1(\text{msg}_1(R))) \); similarly \(b_{jk}, c_{ki} \) for \(S, T \).

Denote \(A_u \) the set of triangles returned by \(u \):
\[
E[|A_u|] = \sum_{i,j,k} a_{ij} b_{jk} c_{ki} \leq \left((\sum_{ij} a_{ij}^2)(\sum_{jk} b_{jk}^2)(\sum_{ki} c_{ki}^2) \right)^{1/2} \quad \text{(Friedgut)}
\]
\[
a_{ij} \leq 1/n \quad \text{(why?) \quad and \quad } \sum_{ij} a_{ij} = E[|K_1(\text{msg}_1(R))|] \leq \frac{L_1}{\log(n)!} n \quad \text{(why?)}
\]

It follows:
\[
\sum_{ij} a_{ij}^2 \leq 1/n \sum_{ij} a_{ij} \leq \frac{L_1}{\log(n)!}
\]
\[
E[|A_u|] \leq \left(\frac{L_1}{\log(n)!} \cdot \frac{L_2}{\log(n)!} \cdot \frac{L_3}{\log(n)!} \right)^{1/2} \leq \left(\frac{L_1 + L_2 + L_3}{3 \log(n)!} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} \text{ triangles.}
\]

All \(p \) servers return \(E[|A|] \leq p \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{p^{2/3} M} \right)^{3/2} = \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} \text{ triangles.}
\]

QED
Proof – Part 4: Few Known Tuples form Few Triangles

Continue to fix one server \(u \). Its load \(L = L_1 + L_2 + L_3 \).

Denote: \(a_{ij} = \Pr((i,j) \in K_1(msg_1(R))) \); similarly \(b_{jk}, c_{ki} \) for \(S, T \).

Denote \(A_u \) the set of triangles returned by \(u \):

\[
\mathbb{E}[|A_u|] = \sum_{i,j,k} a_{ij} b_{jk} c_{ki} \leq \left((\sum_{ij} a_{ij}^2) (\sum_{jk} b_{jk}^2) (\sum_{ki} c_{ki}^2) \right)^{1/2} \quad \text{(Friedgut)}
\]

\(a_{ij} \leq 1/n \) (why?) and \(\sum_{ij} a_{ij} = \mathbb{E}[|K_1(msg_1(R))|] \leq \frac{L_1}{\log(n!)} n \) (why?)

It follows: \(\sum_{ij} a_{ij}^2 \leq 1/n \sum_{ij} a_{ij} \leq \frac{L_1}{\log(n!)} \)

\[
\mathbb{E}[|A_u|] \leq \left(\frac{L_1}{\log(n!)} \cdot \frac{L_2}{\log(n!)} \cdot \frac{L_3}{\log(n!)} \right)^{1/2} \leq \left(\frac{L_1+L_2+L_3}{3 \log(n!)} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} \text{ triangles.}
\]

All \(p \) servers return \(\mathbb{E}[|A|] \leq p \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{M} \right)^{3/2} = \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} \text{ triangles.} \)

QED
Discussion of the Lower Bound for the Triangle Query

Algorithm A with load $L < L_{\text{lower}} = \frac{m}{p^{2/3}}$, \[E[A] \leq \left(\frac{L}{L_{\text{lower}}}\right)^{3/2} E[|Q|] \]

- The result is for Skew-free Data.
- There exists at least one instance on which A fails (trivial).
- Even if A is randomized, there exists at least one instance where A fails with high probability (Yao’s lemma).
- Parallelism gets harder as p increases. An algorithm with load $L = O\left(\frac{m}{p^{1-\varepsilon}}\right)$, with $\varepsilon < 1/3$ reports only $O\left(\frac{1}{p^{1/3-\varepsilon}}\right)$ triangles. Fewer, as p increases!
Discussion of the Lower Bound for the Triangle Query

Algorithm A with load \(L < L_{\text{lower}} = m/p^{2/3} \),

\[
\mathbb{E}[A] \leq \left(\frac{L}{L_{\text{lower}}} \right)^{3/2} \mathbb{E}[|Q|]
\]

- The result is for Skew-free Data

- There exists at least one instance on which A fails (trivial).

- Even if A is randomized, there exists at least one instance where A fails with high probability (Yao’s lemma).

- Parallelism gets harder as \(p \) increases. An algorithm with load \(L = O\left(\frac{m}{p^{1-\varepsilon}} \right) \), with \(\varepsilon < 1/3 \) reports only \(O\left(\frac{1}{p^{1/3-\varepsilon}} \right) \) triangles. Fewer, as \(p \) increases!
Generalization to Full Conjunctive Queries

- Will discuss the equal-cardinality case today.

- Will discuss the general case in Lecture 3.
The Fractional Vertex Cover / Edge Packing

Hypergraph: $Q = R_1(x_1), \ldots, R_\ell(x_\ell)$ Nodes: x_1, \ldots, x_k, edges: R_1, \ldots, R_ℓ.

Definition

A *fractional vertex cover* of Q is a sequence $v_1 \geq 0, \ldots, v_k \geq 0$ such that:

$$\forall j: \sum_{i: x_i \in R_j} v_i \geq 1$$

A *fractional edge packing* of Q is a sequence $u_1 \geq 0, \ldots, u_\ell \geq 0$ such that:

$$\forall i: \sum_{j: x_i \in R_j} u_j \leq 1$$

By duality: $\min_v \sum_i v_i = \max_u \sum_j u_j = \tau^*$
The Fractional Vertex Cover / Edge Packing

Hypergraph: $Q = R_1(x_1), \ldots, R_\ell(x_\ell)$ Nodes: x_1, \ldots, x_k, edges: R_1, \ldots, R_ℓ.

Definition

A *fractional vertex cover* of Q is a sequence $v_1 \geq 0, \ldots, v_k \geq 0$ such that:

$$\forall j : \sum_{i : x_i \in R_j} v_i \geq 1$$

A *fractional edge packing* of Q is a sequence $u_1 \geq 0, \ldots, u_\ell \geq 0$ such that:

$$\forall i : \sum_{j : x_i \in R_j} u_j \leq 1$$

By duality: $\min_v \sum_i v_i = \max_u \sum_j u_j = \tau^*$
The HyperCube Algorithm for General Queries

\[Q(x) = R_1(x_1), \ldots, R_\ell(x_\ell), \quad |R_1| = \ldots = |R_\ell| = m \]

p servers.
The HyperCube Algorithm for General Queries

\[Q(x) = R_1(x_1), \ldots, R_\ell(x_\ell), \quad |R_1| = \ldots = |R_\ell| = m \]

\(p \) servers.

\(v = (v_1, \ldots, v_k) \) any fractional vertex cover; \(v_0 \overset{\text{def}}{=} \sum_i v_i \).

Organize the \(p \) servers in a hypercube: \([p] = [p^{v_0}] \times \cdots \times [p^{v_0}]\).

Choose \(k \) independent hash functions \(h_1, \ldots, h_k \).
The HyperCube Algorithm for General Queries

\[Q(\mathbf{x}) = R_1(x_1), \ldots, R_\ell(x_\ell), \quad |R_1| = \ldots = |R_\ell| = m \]

\(p \) servers.

\[\mathbf{v} = (v_1, \ldots, v_k) \] any fractional vertex cover; \(v_0 \overset{\text{def}}{=} \sum_i v_i \).

Organize the \(p \) servers in a hypercube: \([p] \equiv [p^{v_1^{v_0}}] \times \cdots \times [p^{v_k^{v_0}}] \).

Choose \(k \) independent hash functions \(h_1, \ldots, h_k \)

Round 1 Each server sends each tuple \(R_j(x_{j_1}, x_{j_2}, \ldots) \) to all servers whose coordinates \(j_1, j_2, \ldots \) are \(h_{j_1}(x_{j_1}), h_{j_2}(x_{j_2}), \ldots \) and broadcasts along the missing dimensions. Then, each server computes \(Q \) on its local data.

Theorem The load of the HyperCube algorithm is

\[L = \ell m p^1/\sqrt{v_0} = O(m p^{1/\sqrt{v_0}}) \]

Proof. Fix a server. \(E[\# \text{ tuples in } R_j] = m p \sum_i v_i/\sqrt{v_0} \leq m p^1/\sqrt{v_0} \) since \(\sum_i v_i \geq 1 \).
The HyperCube Algorithm for General Queries

\[Q(x) = R_1(x_1), \ldots, R_\ell(x_\ell), \quad |R_1| = \ldots = |R_\ell| = m \]

\(p \) servers.

\(\mathbf{v} = (v_1, \ldots, v_k) \) any fractional vertex cover; \(v_0 \overset{\text{def}}{=} \sum_i v_i \).

Organize the \(p \) servers in a hypercube: \([p] \equiv [p^{v_1} v_0] \times \ldots \times [p^{v_k} v_0] \).

Choose \(k \) independent hash functions \(h_1, \ldots, h_k \)

Round 1 Each server sends each tuple \(R_j(x_{j_1}, x_{j_2}, \ldots) \) to all servers whose coordinates \(j_1, j_2, \ldots \) are \(h_{j_1}(x_{j_1}), h_{j_2}(x_{j_2}), \ldots \) and broadcasts along the missing dimensions. Then, each server computes \(Q \) on its local data.

Theorem

The load of the HyperCube algorithm is

\[L = \ell \frac{m}{p^{1/v_0}} = O\left(\frac{m}{p^{1/v_0}} \right). \]

Proof.

Fix a server. \(\mathbb{E}[\# \text{ tuples in } R_j] = \frac{m}{p^{\sum_{i \in R_j} v_i / v_0}} \leq \frac{m}{p^{1/v_0}} \) since \(\sum_{i \in R_j} v_i \geq 1 \).
Lower Bound for General Queries

Definition

$R \subseteq [n]^r$ is called a matching of arity r if $|R| = n$ and every column is a key.

Example: matching of arity 3, $n = 4$

\[
\begin{array}{ccc}
 \text{x} & \text{y} & \text{z} \\
 1 & 3 & 2 \\
 2 & 1 & 4 \\
 3 & 4 & 3 \\
 4 & 2 & 1 \\
\end{array}
\]

Theorem

Suppose all arities are ≥ 2. For any packing u, denote $L_{lower} = \frac{m}{p^{1/\sum_j u_j}}$.

Then, for any algorithm A with load $L < L_{lower}$, it returns

$E[|A|] \leq (L/L_{lower})^u E[|Q|]$ answers, where the expectation is over random matchings.

Proof in the section today. (Q: what about arities 1?)
Lower Bound for General Queries

Corollary

HyperCube algorithm is optimal. *(Because \(\min_v \sum_i v_i = \max_u \sum_j u_j = \tau^* \).)*
Summary of Lecture 2

- Parallel query engines today compute one join at a time. Issues: communication rounds, intermediate results, skew.
- The HyperCube algorithm: one round. Restrictions: Equal-cardinalities (will generalize in Lecture 3) Skew-free databases (skew is open, but will discuss in Lecture 4).
- HyperCube is more resilient to skew than a join.
- A surprising fact:
 Parallel algorithms: lower bound given by \textit{fractional edge packing}.
 Sequential algorithms: lower given by \textit{fractional edge cover}.
- Multiple rounds: all lower bounds [Beame’13] use weaker model. Open problem: an algorithm with load $O(n/p)$ cannot compute
 \[Q = R_1(x_0, x_1), R_2(x_1, x_2), R_3(x_2, x_3), R_4(x_3, x_4), R_5(x_4, x_5) \]
 in two rounds, over random permutations.