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Basic Concepts
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Overview
Best response.

Nash equilibrium.

Pareto efficient outcomes.

Social welfare.

Social optima.

Examples.
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Strategic Games: Definition
Strategic game for n ≥ 2 players:

(possibly infinite) set Si of strategies,

payoff function pi : S1 × . . . × Sn → R,

for each player i.

Basic assumptions:

players choose their strategies simultaneously,

each player is rational: his objective is to maximize his payoff,

players have common knowledge of the game and of each
others’ rationality.
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Three Examples
Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 1

The Battle of the Sexes
F B

F 2, 1 0, 0
B 0, 0 1, 2

Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1
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Main Concepts
Notation: si, s

′
i ∈ Si, s, s′, (si, s−i) ∈ S1 × . . . × Sn.

si is a best response to s−i if

∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i).

s is a Nash equilibrium if ∀i si is a best response to s−i:

∀i ∈ {1, . . ., n} ∀s′i ∈ Si pi(si, s−i) ≥ pi(s
′
i, s−i).

s is Pareto efficient if for no s′

∀i ∈ {1, . . ., n} pi(s
′) ≥ pi(s),

∃i ∈ {1, . . ., n} pi(s
′) > pi(s).

Social welfare of s:
∑n

j=1 pj(s).

s is a social optimum if
∑n

j=1 pj(s) is maximal.
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Nash Equlibrium
Prisoner’s Dilemma: 1 Nash equilibrium

C D
C 2, 2 0, 3
D 3, 0 1, 1

The Battle of the Sexes: 2 Nash equilibria

F B
F 2, 1 0, 0
B 0, 0 1, 2

Matching Pennies: no Nash equlibrium

H T
H 1,−1 −1, 1
T −1, 1 1,−1
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Prisoner’s Dilemma

C D
C 2, 2 0, 3
D 3, 0 1, 1

1 Nash equilibrium: (D,D),

3 Pareto efficient outcomes: (C,C), (C,D),(D,C),

1 social optimum: (C,C).
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Prisoner’s Dilemma for n Players
n > 1 players,

two strategies:
1 (formerly C),
0 (formerly D).

pi(s) :=

{

2
∑

j 6=i sj + 1 if si = 0

2
∑

j 6=i sj if si = 1

For n = 2 we get the original Prisoner’s Dilemma game.

Let 1 = (1, . . ., 1) and 0 = (0, . . ., 0).

0 is the unique Nash equilibrium, with social welfare n.

Social optimum: 1, with social welfare 2n(n − 1).
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Tragedy of the Commons
Common resources: goods that are are not excludable
(people cannot be prevented from using them)
but are rival (one person’s use of them diminishes another
person’s enjoyment of it).

Examples: congested toll-free roads, fish in the ocean, the
environment, . . .,

Problem: Overuse of such common resources leads to their
destruction.

This phenomenon is called the tragedy of the commons
(Hardin ’81).
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Tragedy of the Commons I
(Gardner ’95)

n > 1 players,

two strategies:
1 (use the resource),
0 (don’t use),

payoff function:

pi(s) :=

{

0.1 if si = 0

F (m)/m otherwise

where m =
∑n

j=1 sj and

F (m) := 1.1m − 0.1m2.
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Tragedy of the Commons I, ctd
payoff function:

pi(s) :=

{

0.1 if si = 0

F (m)/m otherwise

where m =
∑n

j=1 sj and F (m) := 1.1m − 0.1m2.

Note: F (m)/m is strictly decreasing,
F (9)/9 = 0.2, F (10)/10 = 0.1, F (11)/11 = 0.

Nash equilibria:
n < 10: all players use the resource,
n ≥ 10: 9 or 10 players use the resource,

Social optimum: 5 players use the resource.
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Tragedy of the Commons II
(Osborne ’04)

n > 1 players,

strategies: [0, 1],

payoff function:

pi(s) :=

{

si(1 −
∑n

j=1 sj) if
∑n

j=1 sj ≤ 1

0 otherwise
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Tragedy of the Commons II, ctd
payoff function:

pi(s) :=

{

si(1 −
∑n

j=1 sj) if
∑n

j=1 sj ≤ 1

0 otherwise

‘Best’ Nash equilibrium:
when each si = 1

n+1 ,
with social welfare n

(n+1)2 and
∑n

j=1 sj = n
n+1 .

Social optimum, when
∑n

j=1 sj = 1
2 ,

with social welfare 1
4 .

For all n > 1, n
(n+1)2 < 1

4 .

limn → ∞
n

(n+1)2 = 0 and limn → ∞
n

n+1 = 1.
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More on Nash Equilibria
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Overview
Best response dynamics.

Potential games.

Congestion games.

Examples.

Price of Stability.

Mixed strategies.

Nash Theorem.
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Best Response Dynamics
Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

An algorithm to find a Nash equilibrium:

choose s ∈ S1 × . . . × Sn;
while s is not a NE do

choose i ∈ {1, . . ., n} such that
si is not a best response to s−i;

si := a best response to s−i

od

Example: the Battle of the Sexes game.

F B
F 2, 1 0, 0
B 0, 0 1, 2
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Best Response Dynamics, ctd

Best response dynamics may miss a Nash equilibrium.

Example (Shoham and Leyton-Brown ’09)

H T E
H 1,−1 −1, 1 −1,−1
T −1, 1 1,−1 −1,−1
E −1,−1 −1,−1 −1,−1
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Potential Games
(Monderer and Shapley ’96)

Consider a game G := (S1, . . ., Sn, p1, . . ., pn).

Function P : S1 × . . .Sn → R is a potential function for G if

∀i ∈ {1, . . ., n} ∀s−i ∈ S−i ∀si, s
′
i ∈ Si

pi(si, s−i) − pi(s
′
i, s−i) = P (si, s−i) − P (s′i, s−i).

Intuition: P tracks the changes in the payoff when some
player deviates.

Potential game: a game that has a potential function.
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Example
Prisoner’s dilemma for n players.

pi(s) :=

{

2
∑

j 6=i sj + 1 if si = 0

2
∑

j 6=i sj if si = 1

For i = 1, 2

pi(0, s−i) − pi(1, s−i) = 1.

So P (s) := −
∑n

j=1 sj is a potential function.
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Non-examples
The Battle of the Sexes

F B
F 2, 1 0, 0
B 0, 0 1, 2

Each potential function P would have to satisfy

P (F, F ) − P (B,F ) = 2,

P (F, F ) − P (F,B) = 1,

P (B,B) − P (F,B) = −1,

P (B,B) − P (B,F ) = −2.

Matching Pennies See the next slide.
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Potential Games, ctd
Theorem (Monderer and Shapley ’96)
Every finite potential game has a Nash equilibrium.

Proof 1.

The games (S1, . . ., Sn, p1, . . ., pn) and (S1, . . ., Sn, P, . . ., P )
have the same set of Nash equilibria.

Take s for which P reaches maximum. Then s is a Nash
equilibrium of (S1, . . ., Sn, P, . . ., P ).

Proof 2.
For finite potential games the best response dynamics
terminates.
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Congestion Games
n > 1 players,

set M of facilities (road segments, primary production
factors, . . .),

each strategy is a non-empty subset of M ,

each player has a possibly different set of strategies,

cj : {1, . . ., n} → R is the cost function for using j ∈ M ,

cj(k) is the cost to each user of facility j when there are k

users of j,

uj(s) := |{r ∈ {1, . . ., n} | j ∈ sr}| is the number of users of
facility j given s,

ci(s) :=
∑

j∈si
cj(uj(s)),

(We use here cost functions ci instead of payoff functions pi.)
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Przykład
5 kierowców.

Każdy kierowca wybiera drogę z Katowic do Gliwic,

Więcej kierowców wybiera tę samą drogę: większe
opóźnienia.

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Przykład jako ’Congestion Game’
5 players,

3 facilities (roads),

each strategy: (a singleton set consisting of) a road,

cost function:

ci(s) :=







































1 if si = 1and |j | sj = 1| = 1

2 if si = 1and |j | sj = 1| = 2

3 if si = 1and |j | sj = 1| ≥ 3

1 if si = 2and |j | sj = 2| = 1

. . .

6 if si = 3and |j | sj = 3| ≥ 3
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Możliwy Rozwój Wydarze ń (1)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Możliwy Rozwój Wydarze ń (2)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Możliwy Rozwój Wydarze ń (3)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE
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Możliwy Rozwój Wydarze ń (4)

1/2/3 1/4/5 1/5/6

GLIWICE

KATOWICE

Osiągneliśmy równowagę Nasha, przy użyciu dynamiki
najlepszej odpowiedzi (best response dynamics).
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Congestion Games, ctd

Theorem (Rosenthal, ’73)
Every congestion game is a potential game.

Proof.

P (s) :=
∑

j∈s1∪. . .∪sn

uj(s)
∑

k=1

cj(k),

where (recall) uj(s) = |{r ∈ {1, . . ., n} | j ∈ sr}|,

is a potential function.

Conclusion Every congestion game has a Nash equilibrium.
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Inny Przykład
Założenia:

4000 kierowców jedzie z A do B.

Każdy kierowca ma 2 możliwości (strategie).

T/100

T/100

45

 U

R

B

45

A

Problem: Znajdź równowagę Nasha (T = liczba kierowców).
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Równowaga Nasha

T/100

T/100

45

 U

R

B

45

A

Odpowiedź: 2000/2000.

Czas jazdy: 2000/100 + 45 = 45 + 2000/100 = 65.
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Paradoks Braessa
Dodaj szybką drogę z U do R.

Każdy kierowca ma teraz 3 możliwości (strategie):
A - U - B,
A - R - B,
A - U - R - B.

T/100

T/100

45

 U

R

B

45

A 0

Problem: Znajdź równowagę Nasha.
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Równowaga Nasha

T/100

T/100

45

 U

R

B

45

A 0

Odpowiedź: Każdy kierowca wybierze drogę A - U - R - B.

Dlaczego?: Droga A - U - R - B jest zawsze najlepszą
odpowiedzią (best response).
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Mała komplikacja

T/100

T/100

45

 U

R

B

45

A 0

Czas jazdy: 4000/100 + 4000/100 = 80!
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Czy to si ę zdarza?
z Wikipedii (‘Braess Paradox’):

In Seoul, South Korea, a speeding-up in traffic around the
city was seen when a motorway was removed as part of the
Cheonggyecheon restoration project.

In Stuttgart, Germany after investments into the road
network in 1969, the traffic situation did not improve until a
section of newly-built road was closed for traffic again.

In 1990 the closing of 42nd street in New York City reduced
the amount of congestion in the area.

In 2008 Youn, Gastner and Jeong demonstrated specific
routes in Boston, New York City and London where this
might actually occur and pointed out roads that could be
closed to reduce predicted travel times.
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Cena Stabilno ści (Price of Stability)

Definicja

CS: koszty społeczne najlepszej równowagi Nasha
społeczne optimum

In English:

PoS: social welfare of the best Nash equilibrium
social welfare of the social optimum

Pytanie: Ile wynosi CS dla ‘congestion games’?
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Przykład

B

x

n

A

n - (parzysta) ilość graczy.
x - ilość kierowców na dolnej drodze.

Dwie równowagi Nasha
1/(n − 1), z kosztem społecznym n + (n − 1)2.
0/n, z kosztem społecznym n2.

Społeczne optimum
Weźmy f(x) = x · x + (n − x) · n = x2 − n · x + n2.
Chcemy znaleźć minimum f .
f ′(x) = 2x − n, więc f ′(x) = 0 jeśli x = n

2 .
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Przykład

B

x

n

A

Najlepsza równowaga Nasha
1/(n − 1), z kosztem społecznym n + (n − 1)2.

Społeczne optimum
f(x) = x2 − n · x + n2.
Społeczne optimum = f(n

2 ) = 3
4n2.

CS = (n + (n − 1)2)/3
4n2 = 4

3
n+(n−1)2

n2 .

limn→∞ CS = 4
3 .
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Cena Stabilno ści

Twierdzenie (Roughgarden i Tárdos, 2002)
Załóżmy, że funkcje opóźnień (n.p. T/100) są liniowe.
Wówczas CS dla ’congestion games’ jest ≤ 4

3 .

Dobrą równowagę Nasha można osiągnąć przy użyciu
dynamiki najlepszej odpowiedzi (best response dynamics).

Niestety: może zabrać wykładniczo długo zanim osiągniemy
równowagę.
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Mixed Extension of a Finite Game

Probability distribution over a finite non-empty set A:

π : A → [0, 1]

such that
∑

a∈A π(a) = 1.

Notation: ∆A.

Fix a finite strategic game G := (S1, . . ., Sn, p1, . . ., pn).

Mixed strategy of player i in G: mi ∈ ∆Si.

Joint mixed strategy: m = (m1, . . .,mn).
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Mixed Extension of a Finite Game (2)

Mixed extension of G:

(∆S1, . . .,∆Sn, p1, . . ., pn),

where

m(s) := m1(s1) · . . . · mn(sn)

and

pi(m) :=
∑

s∈S

m(s) · pi(s).

Theorem (Nash ’50) Every mixed extension of a finite
strategic game has a Nash equilibrium.
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Kakutani’s Fixed Point Theorem
Theorem (Kakutani ’41)
Suppose A is a compact and convex subset of R

n and

Φ : A →P(A)

is such that

Φ(x) is non-empty and convex for all x ∈ A,

for all sequences (xi, yi) converging to (x, y)

yi ∈ Φ(xi) for all i ≥ 0,

implies that

y ∈ Φ(x).

Then x∗ ∈ A exists such that x∗ ∈ Φ(x∗).
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Proof of Nash Theorem
Fix (S1, . . ., Sn, p1, . . ., pn). Define

besti : Πj 6=i∆Sj →P(∆Si)

by

besti(m−i) := {m′
i ∈ ∆Si | pi(m

′
i,m−i) attains the maximum}.

Then define

best : ∆S1 × . . .∆Sn →P(∆S1 × . . . × ∆Sn)

by

best(m) := best1(m−1) × . . . × best1(m−n).

Note m is a Nash equilibrium iff m ∈ best(m).
best(·) satisfies the conditions of Kakutani’s Theorem.
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Comments

First special case of Nash theorem: Cournot (1838).

Nash theorem generalizes von Neumann’s Minimax
Theorem (’28).

An alternative proof (also by Nash) uses Brouwer’s Fixed
Point Theorem.

Search for conditions ensuring existence of Nash equilibrium.
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2 Examples
Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1

(1
2 · H + 1

2 · T, 1
2 · H + 1

2 · T ) is a Nash equilibrium.

The payoff to each player in the Nash equilibrium: 0.

The Battle of the Sexes
F B

F 2, 1 0, 0
B 0, 0 1, 2

(2/3 · F + 1/3 · B, 1/3 · F + 1/3 · B) is a Nash equilibrium.

The payoff to each player in the Nash equilibrium: 2/3.
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Mechanism Design
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Overview

Decision problems.

Direct mechanisms.

Groves mechanisms.

Examples.

Optimality results.
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Intelligent Design
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Intelligent Design
A theory of an intelligently guided invisible hand wins the
Nobel prize

WHAT on earth is mechanism design? was the
typical reaction to this year’s Nobel prize in
economics, announced on October 15th.
[...]
In fact, despite its dreary name, mechanism
design is a hugely important area of economics,
and underpins much of what dismal scientists do
today. It goes to the heart of one of the
biggest challenges in economics: how to arrange
our economic interactions so that, when everyone
behaves in a self-interested manner, the result
is something we all like.
(The Economist, Oct. 18th, 2007)
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Decision Problems
Decision problem for n players:

set D of decisions,

for each player i a set of (private) types Θi

and a utility function

vi : D × Θi →R.

Intuitions

Type is some private information known only to the player
(e.g., player’s valuation of the item for sale),
vi(d, θi) represents the benefit to player i of type θi from
the decision d ∈ D.

Assume the individual types are θ1, . . ., θn. Then
∑n

i=1 vi(d, θi) is the social welfare from d ∈ D.
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Decision Rules
Decision rule is a function

f : Θ1 × . . . × Θn → D.

Decision rule f is efficient if

n
∑

i=1

vi(f(θ), θi) ≥
n

∑

i=1

vi(d, θi)

for all θ ∈ Θ and d ∈ D.

Intuition f is efficient if it always maximizes the social welfare.
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Set up
Each player i receives/has a type θi,

each player i submits to the central authority a type θ′i,

the central authority computes decision

d := f(θ′1, . . ., θ
′
n),

and communicates it to each player i.

Basic problem How to ensure that θ′i = θi.
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Example 1: Sealed-Bid Auction
Set up There is a single object for sale. Each player is a buyer.
The decision is taken by means of a sealed-bid auction. The
object is sold to the highest bidder.

D = {1, . . . , n},

each Θi is R+,

vi(d, θi) :=

{

θi if d = i

0 otherwise

Let argsmax θ := µi(θi = maxj∈{1,...,n} θj).

f(θ) := argsmax θ.

Note f is efficient.

Payments will be treated later.
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Example 2: Public Project Problem

Each person is asked to report his or her
willingness to pay for the project, and
the project is undertaken if and only if
the aggregate reported willingness to pay
exceeds the cost of the project.

(15 October 2007, The Royal Swedish Academy of Sciences,
Press Release, Scientific Background)
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Public Project Problem, formally

c: cost of the public project (e.g., building a bridge),

D = {0, 1},

each Θi is R+,

vi(d, θi) := d(θi −
c
n),

f(θ) :=

{

1 if
∑n

i=1 θi ≥ c

0 otherwise

Note f is efficient.
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Ex. 3: Reversed Sealed-bid Auction
Set up Each player offers the same service. The decision is
taken by means of a sealed-bid auction. The service is
purchased from the lowest bidder.

D = {1, . . . , n},

each Θi is R−;
−θi is the price player i offers,

vi(d, θi) :=

{

θi if d = i

0 otherwise

f(θ) := argsmax θ.

Example f(−8,−5,−4,−6) = 3. That is, given the offers 8, 5, 4, 6,
the service is bought from player 3.
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Example 4: Buying a Path in a Network
Set up Given a graph G := (V,E).

• Each edge e ∈ E is owned by player e.

• Two distinguished vertices s, t ∈ V .

• Each player e submits the cost θe of using the edge e.

• The central authority selects the shortest s − t path in G.

D = {p | p is a s − t path in G},

each Θi is R+,

vi(p, θi) :=

{

−θi if i ∈ p

0 otherwise

f(θ) := p, where p is the shortest s − t path in G.
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Manipulations
Example An optimal strategy for player i in public project
problem:

if θi ≥
c
n submit θ′i = c.

if θi < c
n

submit θ′i = 0.

For example, assume c = 30.

player type
A 6

B 7

C 25

Players A and B should submit 0. Player c should submit 30.
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Revised Set-up: Direct Mechanisms
Each player i receives/has a type θi,

each player i submits to the central authority a type θ′i,

the central authority computes decision

d := f(θ′1, . . ., θ
′
n),

and taxes

(t1, . . ., tn) := g(θ′1, . . ., θ
′
n) ∈ R

n,

and communicates to each player i both d and ti.

final utility function for player i:

ui(d, θi) := vi(d, θi) + ti.
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Direct Mechanisms, ctd
Direct mechanism (f, t) is incentive compatible if
for all θ ∈ Θ, i ∈ {1, . . ., n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).

Intuition Submitting false type (so θ′i 6= θi) does not pay off.

Direct mechanism (f, t) is feasible if
∑n

i=1 ti(θ) ≤ 0 for all θ.

Intuition External financing is never needed.
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Groves Mechanisms
ti(θ) :=

∑

j 6=i vj(f(θ), θj) + hi(θ−i), where

hi : Θ−i → R is an arbitrary function.

Note

ui((f, t)(θ), θi) =
∑n

j=1 vj(f(θ), θj) + hi(θ−i).

Intuitions

Player i cannot manipulate the value of hi(θ−i).
Suppose hi(θ−i) = 0.
When the individual types are θ1, . . ., θn

ui((f, t)(θ), θi) is the social welfare from f(θ).
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Groves Theorem
Theorem (Groves ’73)
Suppose f is efficient. Then each Groves mechanism is
incentive compatible.

Proof.
For all θ ∈ Θ, i ∈ {1, . . . , n} and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) =
n

∑

j=1

vj(f(θi, θ−i), θj) + hi(θ−i)

(f is efficient) ≥
n

∑

j=1

vj(f(θ′i, θ−i), θj) + hi(θ−i)

= ui((f, t)(θ′i, θ−i), θi).
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Special Case: Pivotal Mechanism
hi(θ−i) := −maxd∈D

∑

j 6=i vj(d, θj).

Then

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
d∈D

∑

j 6=i

vj(d, θj) ≤ 0.

Note Pivotal mechanism is feasible.
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Re: Sealed-Bid Auction

Note In the pivotal mechanism

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise

So the pivotal mechanism is Vickrey auction (Vickrey ’61):
the winner pays the 2nd highest bid.

Strategic Games: a Mini-Course for Computer Scientists – p. 66/91



Example

player bid tax to authority util.
A 18 0 0

B 24 −21 3

C 21 0 0

Social welfare: 0 + 0 + 3 = 3.
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Maximizing Social Welfare

Question: Does Vickrey auction maximize social welfare?

Notation θ∗: the reordering of θ is descending order.

Example For θ = (1, 4, 2, 3, 1) we have
θ−2 = (1, 2, 3, 0),
(θ−2)

∗ = (3, 2, 1, 0),
so (θ−2)

∗
2 = 2.

Intuition (θ−2)
∗
2 is the second highest bid among other bids.
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Bailey-Cavallo Mechanism
(Bailey ’97, Cavallo ’06)

Assume n ≥ 3.

ti(θ) := tpi (θ) +
(θ−i)

∗
2

n

Note Bailey-Cavallo mechanism is a Groves mechanism.

Example

player bid tax to authority util. why?
A 18 0 7 (= 1/3 of 21)
B 24 −2 9 (= 24 − 2 − 7 − 6)
C 21 0 6 (= 1/3 of 18)
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Bailey-Cavallo Mechanism, ctd

Note Bailey-Cavallo mechanism is feasible.

Proof. For all i and θ, (θ−i)
∗
2 ≤ θ∗2, so

n
∑

i=1

ti(θ) = −θ∗2 +
n

∑

i=1

(θ−i)
∗
2

n
=

n
∑

i=1

−θ∗2 + (θ−i)
∗
2

n
≤ 0.
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Re: Public Project Problem
Assume the pivotal mechanism.
Examples Suppose c = 30 and n = 3.

player type tax ui

A 6 0 −4

B 7 0 −3

C 25 −7 8

Social welfare can be negative.

player type tax ui

A 4 −5 −5

B 3 −6 −6

C 22 0 0
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Formally

Note In the pivotal mechanism

ti(θ) =



















0 if
∑

j 6=i θj ≥
n−1
n c and

∑n
j=1 θj ≥ c

∑

j 6=i θj −
n−1
n c if

∑

j 6=i θj < n−1
n c and

∑n
j=1 θj ≥ c

0 if
∑

j 6=i θj ≤
n−1
n c and

∑n
j=1 θj < c

n−1
n

c −
∑

j 6=i θj if
∑

j 6=i θj > n−1
n

c and
∑n

j=1 θj < c

This is the mechanism essentially proposed in Clarke ’71).
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Optimality Result (1)

Theorem (Apt, Conitzer, Guo and Markakis ’08)
Consider the sealed bid auction.
No tax-based mechanism exists that is

feasible,

incentive compatible,

‘better’ than Bailey-Cavallo mechanism.
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Optimality Result (2)

Theorem (Apt, Conitzer, Guo and Markakis ’08)
Consider the public project problem.
No tax-based mechanism exists that is

feasible,

incentive compatible,

‘better’ than Clarke’s tax.
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Proof Steps
1. Limit attention to Groves mechanisms.

(B. Holmström, ’79)

2. Introduce anonymous Groves mechanisms.

3. Pivotal mechanism t is here anonymous.

4. Each Groves mechanism t entails an anonymous Groves
mechanism t′.

5. Lemma

If t is feasible, then so is t′.
If t is ‘better’ than t0, then so is t′.

6. Lemma No feasible anonymous Groves mechanism is
‘better’ than the pivotal mechanism t.
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However . . .

Pivotal mechanism is not optimal in the public project problem

when the payments per player can differ.

Note: Pivotal mechanism then ceases to be anonymous.
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Re: Reversed Sealed-Bid Auction

Take

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
d∈D\{i}

∑

j 6=i

vj(d, θj).

Note

ti(θ) =

{

−maxj 6=i θj if i = argsmax θ.

0 otherwise

So in this mechanism the winner receives the amount equal to
the 2nd lowest offer.

Example Consider Θ = (−8,−5,−4,−6). The service is bought
from player 3 who receives for it 5.
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Re: Buying a Path in a Network
(Nisan, Ronen ’99)
Take

ti(θ) :=
∑

j 6=i

vj(f(θ), θj) − max
p∈D(G\{i})

∑

j 6=i

vj(p, θj).

Note

ti(θ) =

{

cost(p2) − cost(p1 − {i}) if i ∈ p1

0 otherwise

where

p1 is the shortest s − t path in G(θ),
p2 is the shortest s − t path in (G \ {i})(θ−i).
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Example

Consider the player owning the edge e.
To compute the payment he receives

determine the shortest s− t path. Its length is 7. It contains e.

determine the shortest s − t path that does not include e. Its
length is 12.

So player e receives 12 − (7 − 4) = 9.
His final utility is 9 − 4 = 5.
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Pre-Bayesian Games
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Pre-Bayesian Games

(Hyafil, Boutilier ’04, Ashlagi, Monderer, Tennenholtz ’06,)

In a strategic game after each player selected his strategy
each player knows all the payoffs
(complete information).

In a pre-Bayesian game after each player selected his
strategy each player knows only his payoff
(incomplete information).

This is achieved by introducing (private) types.
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Pre-Bayesian Games: Definition
Pre-Bayesian game for n ≥ 2 players:

(possibly infinite) set Ai of actions,

(possibly infinite) set Θi of (private) types,

payoff function pi : A1 × . . . × An × Θi → R,

for each player i.

Basic assumptions:

Nature moves first and provides each player i with a θi,

players do not know the types received by other players,

players choose their actions simultaneously,

each player is rational (wants to maximize his payoff),

players have common knowledge of the game and of each
others’ rationality.
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Ex-post Equilibrium

A strategy for player i:

si(·) ∈ AΘi

i .

Joint strategy s(·) is an ex-post equilibrium if each si(·) is a
best response to s−i(·):

∀θ ∈ Θ ∀i ∈ {1, . . ., n} ∀s′i(·) ∈ AΘi

i

pi(si(θi), s−i(θ−i), θi) ≥ pi(s
′
i(θi), s−i(θ−i), θi).

Note: For each θ ∈ Θ we have one strategic game.
s(·) is an ex-post equilibrium if for each θ ∈ Θ the joint action
(s1(θ1), . . ., sn(θn)) is a Nash equilibrium in the θ-game.
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Quiz
Θ1 = {U,D}, Θ2 = {L,R},

A1 = A2 = {F,B}.

U

L

F B
F 2, 1 2, 0
B 0, 1 2, 1

R

F B
F 2, 0 2, 1
B 0, 0 2, 1

D

F B
F 3, 1 2, 0
B 5, 1 4, 1

F B
F 3, 0 2, 1
B 5, 0 4, 1

Which strategies form an ex-post equilibrium?
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Answer
Θ1 = {U,D}, Θ2 = {L,R},

A1 = A2 = {F,B}.

U

L

F B
F 2, 1 2, 0
B 0, 1 2, 1

R

F B
F 2, 0 2, 1
B 0, 0 2, 1

D

F B
F 3, 1 2, 0
B 5, 1 4, 1

F B
F 3, 0 2, 1
B 5, 0 4, 1

Strategies
s1(U) = F, s1(D) = B,
s2(L) = F, s2(R) = B
form an ex-post equilibrium.
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But . . .
Ex-post equilibrium does not need to exist in mixed extensions of
finite pre-Bayesian games.

Example: Mixed extension of the following game.

Θ1 = {U,B}, Θ2 = {L,R},

A1 = A2 = {C,D}.

U

L

C D
C 2, 2 0, 0
D 3, 0 1, 1

R

C D
C 2, 1 0, 0
D 3, 0 1, 2

B

C D
C 1, 2 3, 0
D 0, 0 2, 1

C D
C 1, 1 3, 0
D 0, 0 2, 2
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Safety-level Equilibrium
Strategy si(·) for player i is a safety-level best response to
s−i(·) if for all strategies s′i(·) of player i and all θi ∈ Θi

min
θ
−i∈Θ

−i

pi(si(θi), s−i(θ−i), θi) ≥ min
θ
−i∈Θ

−i

pi(s
′
i(θi), s−i(θ−i), θi).

Intuition minθ
−i∈Θ

−i
pi(si(θi), s−i(θ−i), θi) is the guaranteed

payoff to player i when his type is θi and s(·) are the selected
strategies.

Joint strategy s(·) is a safety-level equilibrium if each si(·) is a
safety-level best response to s−i(·).

Theorem (Ashlagi, Monderer, Tennenholtz ’06)
Every mixed extension of a finite pre-Bayesian game has a
safety-level equilibrium.
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Relation to Mechanism Design
Strategy si(·) is dominant if for all a ∈ A and θi ∈ Θi

∀a ∈ A pi(si(θi), a−i, θi) ≥ pi(ai, a−i, θi).

A pre-Bayesian game is of a revelation-type if Ai = Θi for all
i ∈ {1, . . ., n}.

So in a revelation-type pre-Bayesian game the strategies of
player i are the functions on Θi.

A strategy for player i is called truth-telling if it is the identity
function πi(·).
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Relation to Mechanism Design, ctd
Mechanism design (as discussed here) can be viewed as an
instance of the revelation-type pre-Bayesian games.

With each direct mechanism (f, t) we can associate a
revelation-type pre-Bayesian game:

Each Θi as in the mechanism,
Each Ai = Θi,
pi(θ

′
i, θ−i, θi) := ui((f, t)(θ′i, θ−i), θi).

Note Direct mechanism (f, t) is incentive compatible iff in the
associated pre-Bayesian game for each player truth-telling is
a dominant strategy.

Conclusion In the pre-Bayesian game associated with a
Groves mechanism, (π1(·), . . ., πi(·)) is a dominant strategy
ex-post equilibrium.
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